
����������
�������

Citation: Voulgaropoulou, S.;

Samaras, N.; Ploskas, N. Predicting

the Execution Time of the Primal and

Dual Simplex Algorithms Using

Artificial Neural Networks.

Mathematics 2022, 10, 1038. https://

doi.org/10.3390/math10071038

Academic Editor: Qing-Wen Wang

Received: 23 February 2022

Accepted: 19 March 2022

Published: 24 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Predicting the Execution Time of the Primal and Dual Simplex
Algorithms Using Artificial Neural Networks
Sophia Voulgaropoulou 1,†, Nikolaos Samaras 1,*,† and Nikolaos Ploskas 2,†

1 Department of Applied Informatics, School of Information Sciences, University of Macedonia,
GR-54636 Thessaloniki, Greece; svoulgaropoulou@uom.edu.gr

2 Department of Electrical & Computer Engineering, Faculty of Engineering, University of Western Macedonia,
GR-50100 Kozani, Greece; nploskas@uowm.gr

* Correspondence: samaras@uom.edu.gr; Tel.: +30-2310-891866
† These authors contributed equally to this work.

Abstract: Selection of the most efficient algorithm for a given set of linear programming problems
has been a significant and, at the same time, challenging process for linear programming solvers.
The most widely used linear programming algorithms are the primal simplex algorithm, the dual
simplex algorithm, and the interior point method. Interested in algorithm selection processes in
modern mathematical solvers, we had previously worked on using artificial neural networks to
formulate and propose a regression model for the prediction of the execution time of the interior point
method on a set of benchmark linear programming problems. Extending our previous work, we are
now examining a prediction model using artificial neural networks for the performance of CPLEX’s
primal and dual simplex algorithms. Our study shows that, for the examined set of benchmark linear
programming problems, a regression model that can accurately predict the execution time of these
algorithms could not be formed. Therefore, we are proceeding further with our analysis, treating
the problem as a classification one. Instead of attempting to predict exact values for the execution
time of primal and dual simplex algorithms, our models estimate classes, expressed as time ranges,
under which the execution time of each algorithm is expected to fall. Experimental results show a
good performance of the classification models for both primal and dual methods, with the relevant
accuracy score reaching 0.83 and 0.84, respectively.

Keywords: linear programming; primal simplex; dual simplex; CPLEX optimizer; artificial neu-
ral network

MSC: 65Y20; 90C05

1. Introduction

Linear programming is perhaps the most important and well–studied optimization
problem. Linear programming is the process of minimizing or maximizing a linear objective
function z = ∑n

j=1 cjxj taking into account a number of linear equality and inequality
constraints. Consider the following linear program in the standard form:

min cTx

s.t. Ax = b

x ≥ 0

where A ∈ Rmxn, (c, x) ∈ Rn, b ∈ Rm, and T denotes transposition. We assume that A
has full rank, rank(A) = m, m < n. Consequently, the linear system Ax = b is consistent.
Detailed information on the theoretical background and different forms of linear program-
ming problems, along with description of the geometry of the feasible region and the
duality principle, is covered by [1,2].

Mathematics 2022, 10, 1038. https://doi.org/10.3390/math10071038 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10071038
https://doi.org/10.3390/math10071038
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8201-7081
https://orcid.org/0000-0001-5876-9945
https://doi.org/10.3390/math10071038
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10071038?type=check_update&version=2


Mathematics 2022, 10, 1038 2 of 21

The most well-known method for solving linear programming problems is the simplex
algorithm developed by George B. Dantzig [3,4]. It is one of the top ten algorithms with
the greatest influence in the 20th century [5]. At the same time as Dantzig presented the
simplex algorithm, Lemke [6] proposed the dual simplex algorithm, while other researchers
proposed the interior point algorithms [7–9]. A thorough description of the linear program-
ming algorithms would exceed the scope of this paper, therefore, more information can be
found in [1,2].

Linear programming problems can nowadays be solved with a plethora of algorithms.
However, regardless of the number of algorithms which are available and can solve a spe-
cific linear programming problem, it is still difficult to decide upon which algorithm would
be the most appropriate to use. Algorithm selection is facilitated through algorithm tuning
processes with several interesting studies conducted in this field [10–12]. Researchers
and software designers often perform extensive computational experiments to find the
default values of parameters that will perform well on most instances of their data. In this
concept, modern mathematical solvers have become complex software systems having
various parameters that can be efficiently tuned. The configuration process of the solver’s
parameters is referred to as solver tuning [13] and has been applied successfully in various
mathematical solvers [14–19].

A fundamental question that is often raised by researchers is the selection process of
the most efficient algorithm in terms of its execution time. In this work, we are looking
into this problem exactly. We are concentrating on the execution time, rather than the
number of iterations for the solution of an LP problem (as examined for the Exterior
Point Simplex Algorithm in [20]), which will be subject to further examination in the
future. We are interested in predicting the execution time of a solver for a specific problem
instance. By gaining information about the execution time needed to solve an instance, a
mathematical solver may devise different options to solve this instance. Similar studies
have been conducted in the past, such as [21] which aimed to predict the solution time of
Branch-and-Bound algorithms for mixed-integer programs (MIPs) and proposes a double
exponential smoothing technique, evaluating it with three MIP solvers.

Meta-learning approaches have been utilized for tuning the performance of algorithms,
mainly machine learning ones. The more similar those previous problems are, the better
performance we can achieve [22]. Of course, there is no free lunch [23]. When a new
problem comes in, leveraging prior experience may not be effective. Apart from tuning the
performance of algorithms, meta-learning approaches have been also utilized for predicting
their execution time [24,25].

In the field of performance modeling of software systems, analytical modeling and
machine learning methods are mostly used [26–29]. Analytical modeling exploits existing
knowledge of the internal dynamics of the software system and can express the relation-
ship of the inputs and outputs using a set of analytical equations. However, software
systems have become more complex over the years and applying analytical modeling
techniques to predict their execution time does not yield good results. Therefore, various
researchers explored machine learning techniques to predict the execution time of software
systems [30–33].

To the best of our knowledge, a performance modeling tool for any mathematical
optimization solver does not exist yet. With this work, we aim to predict the execution
time of CPLEX’s [34] primal and dual simplex algorithms for solving linear programming
problems and we investigate if this tool can be built with regression or classification
algorithms. Computational results show that a regression model cannot achieve adequate
goodness of fit, while on the other hand, a classification algorithm achieves considerably
good accuracy.

CPLEX includes several high-performance linear programming algorithms, support-
ing also primal and dual variants of the simplex algorithm, and the interior point method.
In [35], we proposed a regression model using artificial neural networks (ANNs) for the
prediction of the execution time of CPLEX’s interior point method on a set of benchmark lin-



Mathematics 2022, 10, 1038 3 of 21

ear programming problems (Kennington [36], Mészáros [37], Mittelmann [38], Netlib [39]).
Now, we are investigating whether or not a regression model can also be built for CPLEX’s
primal and dual simplex algorithms. Our computational results show that, with regression,
we cannot generate models that achieve goodness of fit for our data and, thus, they cannot
stand as accurate prediction models for the execution time of the examined algorithms. An
important parameter to consider regarding the difficulty to successfully create prediction
models through regressions, for both primal and dual algorithms, is the different time
complexities they demonstrate (i.e., worst case, average). Analyzing and describing the
algorithms’ complexity would exceed the scope of this study, however, this aspect should be
further examined in future work. Moreover, regression analysis could prove more effective
with the use of several other techniques as well, such as principal component analysis
(PCA), so this is also taken into consideration for the next steps of our research. Moving
forward with our analysis, we examined our problem further as a classification problem.
We attempt to predict the time range under which the execution time will fall, rather than
estimate its exact value, and our goal is achieved with the use of classification techniques.

The subsequent section consists of a presentation of our dataset, while a brief de-
scription of regression and classification concepts follows next. Moving forward, we first
provide an overview of the results we achieved with regression for the prediction of the
execution time of the interior point method. Afterwards, we elaborate on the analysis
conducted to form regression models, using artificial neural networks, for the prediction
of primal and dual simplex algorithms’ execution time. A thorough description of the
models, which were generated using classification techniques, is provided along with the
respective results. Before concluding this study, we include a graphical representation
of the comparative analysis among the generated models, which was utilized in order to
select the most appropriate model for each algorithm.

2. Materials and Methods
2.1. Dataset

For the purpose of our computational study, 295 benchmark linear programming
problems (LPs) were used from the Netlib (25), Kennington (13), Mészáros (217), and
Mittelmann (40) libraries. The problems were solved with CPLEX’s 12.6.1 [34] primal and
dual simplex algorithms. The execution time for their solution, was recorded for each
problem. In this study, we examined the following LP characteristics which were set as
input to our model. The execution time was set as the output of the model.

• m, n: number of constraints and variables, respectively;
• nnzA, nnzb: number of nonzero elements of the constraint matrix and right-hand side

vector, respectively;
• rankA: constraint matrix rank.

Apart from the above problem characteristics, we also examined other characteris-
tics as well, such as the number of variables (after adding slack variables), the problem
density, the data length (bit length) that represents integer data, and the constraint matrix
norm. However, these characteristics showed no statistically significant contribution to
the creation of our models, based on the evaluation metrics we used, that are explained in
Section 3.1 below.

Table 1 includes the lower and upper values of the analyzed characteristics for the
current set of problems. These values may occur in different problems and are provided
only as reference in this paper (i.e., they are not all related to the same problem).

The reason behind the selection of our dataset was our interest in predicting the per-
formance of CPLEX’s primal and dual simplex algorithms on well-known LPs, such as
the ones described above. Including problems of different natures and structures (such as
quadratic or mixed-integer problems) could increase the size of our dataset for training the
examined ANNs, however, the diversity of the examined problems would not contribute to
meaningful results regarding the problems’ solution. In order to ensure that our dataset size
is sufficient for training an artificial neural network, we took into consideration commonly



Mathematics 2022, 10, 1038 4 of 21

applied rules-of-thumb, such as that the dataset size should be at least a factor of (a) 50 to
1000 times the number of predicted classes [40], and (b) 10 to 100 times the number of
the examined features/characteristics [41–45]. The implementations of primal and dual
simplex algorithms which have been utilized in the current study are the ones supported in
CPLEX Optimizer 12.6.1, as described in previous sections. We executed both algorithms
with the default options of CPLEX Optimizer, in order to minimize subjectivity in our
observations, which may have resulted from different settings in CPLEX Optimizer. This
should be considered as an interesting area of research for the future, especially in combi-
nation with solver tuning techniques. Since the hardware and software characteristics are
crucial parameters of a specific computing environment, which prove to have a significant
impact on the performance of an algorithm [46], all experiments were conducted in the
same environment, thus, this factor can be considered the same for all problems, with no
fluctuation from one problem to another. More specifically, the computational comparison
was performed on a quad-processor Intel Core i7 3.4 GHz with 32 GB of main memory and
8 cores, a clock of 3700 MHz, an L1 code cache of 32 KB per core, an L1 data cache of 32 KB
per core, an L2 cache of 256 KB per core, an L3 cache of 8 MB, and a memory bandwidth of
21 GB/s, running on Microsoft Windows 7 64 bit. In case the computational experiments
need to be performed under different hardware conditions, a re-training process on the
respective ANNs is required.

Table 1. Lower and upper values of examined LP characteristics.

Minimum Maximum

Constraints 25 986,069
Variables 882 15,000,000
Nonzero elements of constraint matrix 3108 30,000,000
Nonzero elements of right-hand side vector 0 512,209
Rank of the constraint matrix 25 526,121
Primal simplex execution time (s) 0.01 4541.88
Dual simplex execution time (s) 0.01 5184.27

The neural network models presented in this study have been generated and examined
with the use of the scikit-learn toolkit [47]. The scikit-learn toolkit integrates a plethora
of widely used machine learning techniques, which can be further utilized for inferential
statistical data analysis. In contrast to descriptive analysis, which focuses on the attributes
of the sampled dataset only, inferential analysis is closer to the concept of a data population,
which the observed data derive from. Scikit-learn supports a plethora of supervised and
unsupervised learning methods, along with methods for model selection, and evaluation
and transformation of data. Extending our previous work [35], as this was performed
for the interior point method, we first used the Multi-layer Perceptron (MLP) Regression
algorithm (MLPRegressor) for the generation of our models for primal and dual methods.
Apart from MLPRegressor, we also experimented with other supervised learning methods
and, more specifically, with regression (such as ElasticNet, Ridge, Random Forest, etc.) and
classification methods (such as MLPClassifier, KNeighborsClassifier) available in scikit-
learn. The results of the complete process of our analysis are presented in the next sections
of this paper.

2.2. Regression vs. Classification

Regression and classification belong to the broader family of supervised machine
learning techniques. Both regression and classification apply the same concept of using
known datasets (i.e., training datasets) to make predictions about new incoming data.
Considering that an input variable x and an output variable y are available, a supervised
learning algorithm aims to “teach” a mapping function (that is, y = f (x)) from the input
variable x to the output variable y. This way, whenever there are new input data x, the



Mathematics 2022, 10, 1038 5 of 21

respective output variable y will be able to be predicted, with the help of regression or
classification predictive models. Although these techniques share the same objective, re-
gression and classification have a main difference, which is that the output variable for
classification is categorical (or discrete), while in regression it is numerical (or continuous).
Classification predicts a discrete class label, while regression, a continuous quantity. There
are some algorithms, though, which can be used both for classification and regression,
with only slight modifications, such as artificial neural networks (ANNs) and decision
trees. Classification predictive models can be evaluated using the accuracy value, whereas
regression predictive models are evaluated through the respective coefficient of determina-
tion and the root mean squared error (quantities that cannot be measured for classification
predictions). In this study, we used several regressors, which are mentioned specifically in
the following sections, however, as analyzed further below, the respective models could
not be used as accurate prediction models of the execution time. More information on
regression, classification, and artificial neural networks can be found in [44,48–51].

MLPRegressor belongs to the family of supervised learning algorithms and it can learn
a function f (x) : Rx → Ro by training on a dataset, where the number of dimensions for
input is denoted by x, while the number of dimensions for output is denoted by o. The pa-
rameters of MLPRegressor are further described in this section in order to better understand
its functionality. One of the most important parameters is the number of hidden layers that
needs to be examined and defined, along with their size and the activation function which
we have to choose. The activation is responsible for converting the input signal of the last
hidden layer to an output signal for the next layer. Commonly used activation functions are
the hyperbolic tan function (tanh), the logistic sigmoid function (logistic), and the rectified
linear unit function (relu). Numerous combinations of all supported activation functions
with different numbers of hidden layers were tested in this study. Since we are working
with ANNs, it is significant to test the solver of our model. Neural networks consist of
a number of simple but highly interconnected nodes, the so-called “neurons”, which are
organized in layers. Neural networks are extremely helpful in finding patterns that are too
complex to be manually extracted and taught for any kind of machine. In an ANN, the
input layer (which has one neuron for each element of the input data) communicates to
one or more hidden layers that are present in the network. The hidden layers are actually
the place where all the processing of the information takes place, thus their name may
not be so representative of their real significance; they are characterized as “hidden” only
because they do not constitute the input or the output layer. The information is processed
through weights and biases (commonly referred to as W and b). In more detail, once the
input is received, the neuron calculates a weighted sum (by also adding the bias) and
according to the result and the preset activation function, it is activated or not. The neuron
transfers this information to its connected neurons, ending up at the last hidden layer that
is linked to the output layer, which has only one neuron for the respective output. The
solver of the model is related to the weight optimization process that takes place while
transmitting information through hidden layers. There are several solvers that can be
used, such lbfgs, an optimizer in the family of quasi-Newton methods, and sgd, concerning
stochastic gradient descent. For small datasets, lbfgs has proven to converge faster and
perform better in general, as explained in [47]. Solver lbfgs works by using a weighted
linear summation which transforms the input values of previous layers to output values for
the next layer. One other parameter is the tolerance value, which refers to the tolerance for
the optimization. For example, if, upon a certain number of iterations, we fail to decrease
the training loss or to increase the validation score by at least a value equal to tolerance,
convergence is considered to be reached and training stops. The alpha value refers to the L2
penalty parameter (Ridge regression; regularization technique used to address over-fitting
and feature selection). The solver will iterate until convergence (defined by the tolerance
value) or the maximum number of iterations. Last but not least, one more aspect that needs
to be taken into consideration is the scale of our data, since the parameters which are given
as input to a model may be of different scale. Scaling and normalizing the original data



Mathematics 2022, 10, 1038 6 of 21

were significant steps we took upon generating our models to minimize any difficulty for
the examined problems to be modeled.

3. Results and Discussion
3.1. Regression Evaluation Metrics

A simple regression model is the linear regression model, which implies that there
is a linear relationship between the dependent and independent variable. This linear
relationship is represented by a line, i.e., the regression line, which is found to be closer
to the data points than other lines, according to a specific mathematical criterion, and can
be calculated with the least squares method [51,52]. The distinctive feature of the least
squares regression line is the vertical distance between the data points and the regression
line, which is the smallest possible. The least squares method, and thus the regression
line, are named as such because the best line of fit is the one that minimizes the sum of
squares of the errors (i.e., variance). This may be difficult to visualize, however, and the
main purpose is to find the equation that fits the data points as closely as possible. A simple
linear regression model is represented by Equation (1) below:

Yi = (b0 + b1Xi) + εi (1)

where Yi is the dependent variable, b0 represents the intercept with the vertical axis, b1 is the
slope of the regression line, and Xi is the independent variable. The value of εi represents
the amount of residual. Generally, the residual value is calculated as the difference between
the observed value and the estimated value of the regression model. Small residuals
correspond to a good fit of the regression model, while the opposite implies that the model
does not fit well to the examined data. The entities b0 and b1 are characterized as “regression
coefficients” and are necessary for the least squares method, since we need to identify their
values and, thus, the regression line, so that the following quantity (2) is minimized.

1 ∑
i

ε2
i = ∑

i
(Yi − b0 − b1Xi)

2 (2)

The following amounts of total sum of squares, residual sum of squares, and model
sum of squares ((3)–(5), respectively) contribute to the evaluation of good fit of the regres-
sion line to the examined data. Sum of squares (SS) indicates the deviation from the mean
and is calculated as the sum of the squares of the differences from the mean [49].

1SST = ∑
i
(Yi −Y)2 (3)

1SSR = ∑
i
(Yi − b0 − b1Xi)

2 (4)

1SSM = SST − SSR. (5)

A rather useful and simple interpretation of the sums of squares would be that SST
and SSR represent the deviation of the examined data from the “worst model” (mean value)
and the “best model” (line), respectively, while SSM denotes the difference between the
“worst model” and the “best model”. The bigger the value of SSM, the more important
the contribution of the model to the prediction of the independent variable Y. The smaller
the value of SSM, the lower the contribution of the model to the improvement of the
“worst prediction” of the mean value. The quality of the model fitting can be calculated
as the percentage of the improvement in prediction (6) which is introduced by the model.
This implies the percentage of the independent variable’s volatility, which is explained
by the model and is named “coefficient of determination”, corresponding to the square of
Pearson’s coefficient [53,54].

1R2 =
SSM
SST

=
SST − SSR

SST
= 1− SSR

SST
. (6)



Mathematics 2022, 10, 1038 7 of 21

R-squared (R-Sq) or R2 defines the good fit of a statistical model to the examined
data. The higher its value, the better fit the model has. Although the significance of this
coefficient is crucial for all regression models, we should always take into consideration
its two main drawbacks. It has been reported that with the addition of one or more new
parameter(s) in a model, the respective R2 value increases. This fact explains why taking
only the R-squared value into account can not secure the good fit of a model. This is one
of the reasons why the R-squared value alone cannot guarantee the good fit of a model.
Moreover, the metric may be affected by random noise of the dataset, especially when there
is a high amount of parameters and higher order polynomials in the examined model. In
such cases, we have an “over-fitting” problem, which results to misleadingly high R2 values
and makes the model unsuitable for prediction purposes [55]. An additional measure for
evaluation of the regression model is the F-test, which is calculated by the mean sums of
squares as shown in Equations (7)–(9) below. The mean squares (MS) amount is calculated
by dividing the respective sum of squares by the degrees of freedom. It estimates the
population variance. The mean squares are useful for defining whether the parameters of a
regression model are significant [49].

1MSM =
SSM

Degrees o f Freedom
=

SSM
Number o f Variables

(7)

1MSR =
SSR

Degrees o f Freedom
=

SSR
n− Number o f Regression Coe f f icients

(8)

1F =
MSM
MSR

. (9)

Degrees of freedom is the number of values in the final calculation of a statistic that are
free to vary. The concept of this metric was introduced by Student in 1908 [56], while the
specific naming belongs to Fisher, who used it some years later in 1922 [57]. Although R2

estimates the relationship strength between a regression model and the dependent variable,
it does not support any formal hypothesis test for this relationship. This is the reason for
the significance of F and the corresponding P values. The F-test determines whether this
relationship is statistically significant or not. More specifically, if the P-value for the F-test
is lower than the defined significance level, the regression model is statistically significant
for predictive purposes [48]. In the case the statistical significance is <0.001, we can safely
conclude that the model highly contributes to the prediction of the independent variable.

Moreover, the statistical significance of the regression coefficients is crucial for the
validity of the regression model and the evaluation of its quality. More specifically, the
value of b0 defines the change upon the dependent variable if the respective independent
variable changes by one unit. To examine the statistical significance of b1 we apply a
t-test with significance < 0.05 [56]. The standard error of the coefficient (SE Coef ) is the
standard deviation of the estimate of a coefficient in a regression model. It measures the
precision of the model’s estimation about the coefficient’s unknown value. The SE Coef
value is always positive and the smaller it is, the more precise the estimate. The division
of the coefficient by the respective standard error results in a specific t-value (T), which
is also known as the t-statistic. It measures the likelihood that the actual value of the
parameter is not zero. The larger the absolute value of T is, then the less possible it is
for the real value of the parameter to be zero. If (P), that is related to the t-statistic, is
lower than the defined significance level, we conclude that the coefficient is different from
zero [48]. An introduction to multiple regression would be the extension of the linear
model with more than one independent variable (10). In the case of two independent
variables, the regression line’s equation extends to a plane, while in the case of more than
two independent variables, to a hyperplane.

1Yi = (b0 + b1Xi + ... + bkXk) + εi. (10)



Mathematics 2022, 10, 1038 8 of 21

In multiple regression, the amounts of SST , SSR, and SSM are calculated in a more
complicated way but their meaning and significance remain the same. The fact that
multiple independent variables are involved in the regression makes it imperative to
calculate a coefficient of multiple correlation that reveals the strength of the relationship of
the dependent variable with all independent ones. The value of R2 is calculated similarly to
the simple linear regression, as the volatility percentage of the independent variable, which
is actually explained by the model. One fundamental issue that needs to be clarified before
initiating the creation of a multiple regression model is how the independent variables
will be selected. Taking into consideration that, during examination of a specific dataset,
we can use particular attributes and features as independent variables, it is clear that the
latter are usually correlated to each other. However, there are several methodologies for
the selection of the most appropriate variables for the regression model, such as forced
entry, when all variables enter the model simultaneously, stepwise, where the order of
variables is defined by mathematical criteria, forward, backward, etc. [58]. In general, the
researcher should have a good understanding of the dataset that needs to be examined,
so that the most appropriate methodology can be selected. Another matter that concerns
researchers is the model’s accuracy, since it is crucial that the model can achieve a good fit to
the data and its behavior is not affected by a few extreme instances. Such instances, called
“outliers”, are cases which differ significantly from the rest of the dataset. They can stand as
a “diagnostics” measure of the model’s fitting, since they may have a great impact on the
regression coefficients’ values. Outliers can be detected by their large residual values. For
better comprehension and comparison of residuals, these can be standardized by dividing
their value by their standard deviation. Standardized residuals with an absolute value > 3
may be concerning, while in the case over 1% or 5% of the standardized residuals are >2.5
or >2, respectively, then this is a indication of poor fitting. Other measures of checking
for outliers are the adjusted predicted value, which is calculated for each case separately,
by removing it from the sample and estimating it with the new regression model that is
formed, Cook’s distance, which is a measure of overall impact of a data point on the model
(e.g., data points with a value > 1 may be concerning), etc. [59,60]. Detailed explanation of
additional metrics which are examined for the selection of best-fitting regression models is
provided below:

1. Adjusted R-squared (R-Sq(adj)): adjusted coefficient of determination. This metric
proves to be useful during the comparison of models with different numbers of
predictors (i.e., independent variables), since it is adjusted according to the number
of predictors in a model. In more detail, its value increases only if a new predictor
improves the model more than was anticipated by chance, while it decreases when a
predictor improves the model less than anticipated by chance. Interestingly enough,
its value turns out to always be less than the R-squared value [55].

2. Predicted R-squared (R-Sq(pred)): the predicted R-squared explains the predictability
of a regression model, i.e., predicting responses for new observations. A regression
model that seems to fit the original data may not be capable of providing valid
predictions for new observations. Similarly to adjusted R-squared, predicted R-
squared is always lower than R-squared and there are times when even a negative
value has been observed. Perhaps the most important benefit of this metric is that it
can “prevent” researchers from using models which over-fit. Since it is impossible
to predict random noise, the value of predicted R-squared would drop in case of an
over-fitted model. Kutner et al. explain that if R-Sq(pred) is much lower than the
model’s R-Sq value, the model is probably over-fitted [49].

3. Standard error of regression (S): standard error of regression measures the units of
the “response” (dependent variable) and stands for the standard distance between
data values and the estimated regression line. As the S value decreases, the model’s
predictability increases. When comparing different models, the model with the lowest
S value reflects the best fit [61].



Mathematics 2022, 10, 1038 9 of 21

One more metric is root mean square error (RMSE), which is the standard deviation
of the residuals (prediction errors). RMSE measures the residuals’ spread around the line
of best fit. It is a measure of accuracy used for comparison of different models, which
are generated for a specific dataset. This metric has nonnegative values, while a value of
0 would indicate a perfect fit to the data, however, this is quite impossible to achieve in
practice. In general, the lower the RMSE value is, the better. It is important to note that
this metric should not be used between different datasets, as it is scale-dependent [62] and
comparisons of different data types would, thus, not be valid. Apart from these metrics,
we also measured the mean absolute error (MAE), which measures the average magnitude
of the errors in a set of predictions, without considering their direction, and the median
absolute error (MedAE) that is insensitive to outliers [48,49,55].

3.2. Regression

During our study on the interior point method [35], MLPRegressor was applied,
resulting in the selection of the most appropriate model to predict the execution time of
the algorithm. The prediction model for the interior point method achieved an R2 value of
78% (training set) and 72% (test set). The percentage in both sets (training and test), along
with the values in the rest metrics considered for the model evaluation, proved that the
regression model for the interior point method has a very good fit on the data and, thus,
can further be used for prediction of the algorithm’s efficiency. The training and test sets
were formed through cross validation, as supported for MLPRegressor by the scikit-learn
library [47].

Table 2 shows the results of the regression model for the interior point method execu-
tion time, using MLPRegressor ANN, while Figures 1 and 2 show some examples of the
comparative analysis we performed before deciding on the selected model. More details
on the complete analysis can be found in [35].

Based on the above results, we decided to move on with our effort to generate respec-
tive models for the primal and dual algorithms as well. Evaluating the metrics of each
model for the primal and dual simplex algorithm separately, our models were formed,
using the parameters shown in Table 3. To split our dataset into training and test sets,
a ratio of 75 to 25 was selected and the formulated models were evaluated on the standard
metrics, which were analyzed earlier in this section.

Table 2. Metrics for MLPRegressor model for the execution time of interior point method.

Training Set Test Set

RMSE 123.32 296.73
MAE 54.31 97.54
MedAE 7.12 9.49
R2 0.78 0.72

Table 4 presents the results of our neural networks, both for primal and dual simplex
algorithms on the examined dataset. For the primal simplex algorithm, the model that
showed the best performance, compared to the rest of the models that we formed and
tested, achieved an RMSE value of 342.08 and an R2 value of 0.79, while for the test set the
model achieved an RMSE value of 1302.25 and an R2 value of 0.21. The model was set to
work with one hidden layer of size equal to 30 neurons, logistic activation function, and the
lbfgs solver. As for the dual simplex algorithm, the results we achieved with the best fitting
model were an RMSE value of 345.28 and an R2 value of 0.66 in the training set, while in
the test set, these values reached 1260.39 and 0.05, respectively. In this case, there was again
one hidden layer with 20 neurons, while the activation function and solver were logistic
and lbfgs, similarly to the model formulated for the primal simplex algorithm. Taking into
account the variability in the features of the 295 LPs of our dataset and the metrics’ values,
our models performed below our initial expectations since it was shown that they cannot
explain the data reasonably well, showing a significant discrepancy between the metrics’



Mathematics 2022, 10, 1038 10 of 21

values of the training and the test set. An R2 value of 1 would indicate a perfect fit of the
data, so the current R2 values of the training sets for both algorithms prove a certain level
of goodness of fit of our models, which, however, cannot be verified/validated further.
This is confirmed by the R2 values of the respective test sets, which drop significantly,
while the corresponding RMSE values increase tremendously, compared to the ones of the
training set. At this point, it is interesting to keep in mind what Hillier and Lieberman
defined in [63], i.e., relationships between primal and their respective dual problems must
be symmetric, since “the dual of this dual problem is this primal problem”. Therefore, in
the future, we are interested in examining the corresponding dual version of each LP, to
identify whether there is any impact on the results we achieved through regression.

Figure 1. Regression model for interior point method—tuning the number of neurons (1 hidden layer).

Figure 2. Regression model for interior point method—tuning the activation function.

Table 3. MLPRegressor model parameters used for primal and dual simplex algorithms.

Algorithm Primal, Dual

Hidden layers 1–3
Hidden layer sizes 10–100 neurons/layer
Activation function relu, tanh, logistic
Solver lbfgs, sgd
Alpha value 1× 10−5

Maximum iterations 1000
Tolerance 0.0001



Mathematics 2022, 10, 1038 11 of 21

Table 4. MLPRegressor model for the execution time of the primal and dual simplex algorithms.

Primal Dual

Training Set Test Set Training Set Test Set

RMSE 342.08 1302.25 345.28 1260.39
MAE 9.60 25.07 11.35 25.16
MedAE 3.26 14.75 3.93 16.05
R2 0.79 0.21 0.66 0.05

These values reveal models that cannot be further utilized for prediction of the exe-
cution time needed for the solution of LPs by the primal and dual simplex algorithms. It
is quite interesting to show that these results were considered the “best” after extensive
and thorough testing, with different numbers of hidden layers and neurons per layer (1–3
and 10–100, respectively), different activation functions (relu, tanh, and logistic), and solvers
(lbfgs and sgd). A graphical representation of the results we received with only some of the
different models formed with MLPRegressor follows below. The models we tested showed
worse performance with some of them even characterized by negative values of R2 for the
test set, which could not be interpreted to lead to meaningful and useful results. More
specifically, since R2 compares the fit of the chosen model with that of a horizontal straight
line (the null hypothesis), if the model fits worse than a horizontal line, then R2 is negative,
meaning that the chosen model does not follow the trend of the data, so would not be
useful for prediction purposes. Moreover, models formed with the sgd solver showed poor
goodness of fit (R2 values below 0.06 and 0.20 for the primal and dual simplex algorithms,
respectively), thus they are not included in the graphical representation. A few of our
models are presented in the respective graphs in Figures 3 and 4. The example of Figure 3
presents the R2 value for several different numbers of neurons in models for the primal
simplex algorithm, using one hidden layer, the logistic activation function, and the lbfgs
solver. The R2 value is given both for the training and test sets. In Figure 4, the R2 value of
several models is given, using the relu, tanh, and logistic activation functions and having
30 neurons in one hidden layer with lbfgs as the solver. Furthermore, similar results are
presented for the dual simplex algorithm in Figures 5 and 6. Figure 5 presents the R2 value
for several different numbers of neurons in models for the dual simplex algorithm, using
one hidden layer, the logistic activation function, and the lbfgs solver. In Figure 6, the R2

value of several models is given, using the relu, tanh, and logistic activation functions and
having 20 neurons in one hidden layer with lbfgs as the solver. The R2 value is given both
for the training and test sets below, for all presented samples of our comparative analysis.

Elaborating further on the concept of regression, we extended our analysis to more
regression algorithms, such as Decision Tree, ElasticNet, Lasso, Random Forest, Ridge,
Support Vector, and Linear Regressor. Although scikit’s GridSearch function was utilized
to identify the best regression model generated from each algorithm, the models that were
eventually formulated could not be used for prediction purposes. A remarkable exception
was reported for the Random Forest ANN model, which may result in better values of
the evaluation metrics than MLPRegressor, but shows the same significant discrepancies
between the training and test set. More specifically, the reported R2 values of the training
set for primal and dual simplex algorithms show goodness of fit for the relevant Random
Forest ANN models, in combination with the values of the rest metrics, as well. However,
this fact cannot be validated through the test set, since the R2 values decrease significantly,
along with the remaining error metrics’ values which increase to a large extent, compared
to the ones of the training set. The values of the metrics which were used to evaluate the
respective ANN regression models for primal and dual simplex algorithms are included in
Tables 5 and 6, separated for the training and test set.



Mathematics 2022, 10, 1038 12 of 21

Figure 3. Regression model for primal method—tuning the number of neurons in hidden layers.

Figure 4. Regression model for primal method—tuning the activation function.

Figure 5. Regression model for dual method—tuning the number of neurons in hidden layers.



Mathematics 2022, 10, 1038 13 of 21

Figure 6. Regression model for dual method—tuning the activation function.

Table 5. Other regression models for the execution time of the primal simplex algorithm.

Training Set Test Set

RMSE MAE MedAE R2 RMSE MAE MedAE R2

Decision Tree 1441.9 31.77 26.02 0.01 2098.2 37.06 28.00 −0.03
ElasticNet 1483.2 32.11 24.28 0.07 1717.2 35.04 27.27 −0.01
Lasso 1470.6 32.24 35.39 0.05 1797.1 35.17 24.92 −0.002
Linear 1669.9 34.95 27.82 0.05 1177.7 29.90 24.39 −0.03
Random Forest 209.4 10.28 7.57 0.88 954.20 22.52 17.53 0.15
Ridge 1491.6 32.10 24.50 0.04 1809.10 36.41 28.00 −0.01
Support Vector 1663.0 27.55 17.89 −0.08 2138.28 31.92 18.46 −0.14

Table 6. Other regression models for the execution time of the dual simplex algorithm.

Training Set Test Set

RMSE MAE MedAE R2 RMSE MAE MedAE R2

Decision Tree 1125.2 28.02 23.90 0.02 998.6 26.98 25.90 −0.08
ElasticNet 1014.7 26.16 20.90 0.03 1206.8 27.90 20.76 0.04
Lasso 940.2 24.01 18.77 0.09 1327.0 28.93 20.92 −0.08
Linear 1040.6 25.87 17.59 0.10 1006.7 25.99 22.91 −0.10
Random Forest 148.4 8.68 6.77 0.87 618.9 17.29 13.12 0.34
Ridge 1033.3 26.21 19.78 0.11 997.9 24.84 18.60 −0.10
Support Vector 1299.2 21.26 8.06 −0.17 1356.96 24.15 12.20 −0.30

These findings enhanced our focus towards classification techniques in order to exper-
iment with our dataset further. Now, instead of trying to predict an exact value, such as the
execution time of an algorithm, we will concentrate on predicting the class under which
the value of the execution time may fall. As shown in the following sections, classification
techniques seem to work fine for our dataset.

3.3. Classification

Having tested regression models thoroughly, we concluded that keeping the models
that showed the best performance as prediction models for the execution time of the primal
and dual simplex algorithm would not be a safe or valid choice. Therefore, we decided to
experiment with classification techniques and identify models that could be used for the
prediction of certain classes of instances. For the purpose of this study, we tested two of
the most commonly used classification algorithms supported by the scikit-learn toolkit,



Mathematics 2022, 10, 1038 14 of 21

such as Multi-layer Perceptron Classifier (MLPClassifier) and KNeighborsClassifier. In
contrast to other classification algorithms, such as Naive Bayes Classifier, MLPClassifier
performs the task of classification, based on an underlying neural network. The process
of classification using ANNs may seem theoretically complex and difficult to implement
and interpret and it surely requires extensive testing to tune (offering a plethora of tuning
options to prevent over- or under-fitting, though). However, this still cannot change the
fact that it can prove to be a powerful tool for dealing with complex relations and functions
that connect the examined input and output variables, while it is also effective for high
dimensionality problems. The parameters described earlier for MLPRegressor are also
present in the use of MLPClassifier. Therefore, we proceeded with exhaustive testing
of several models using different numbers of hidden layers and numbers of neurons,
different activation functions, and solvers. The exact ranges of values are presented above
in Table 3. To measure the validity and accuracy of the models, which were generated by
MLPClassifier and the remaining classifiers, we analyzed the confusion matrix and the
accuracy value of each model, along with the classification report that is created upon
testing of the model. In statistical classification and machine learning, a confusion matrix
supports the visualization of a supervised learning algorithm’s performance, by showing
the instances in a predicted class in each row of the matrix and the instances in an actual
class in each column of the matrix (or vice versa). The confusion matrix can show how
many instances were misclassified for each class. Accuracy is another significant metric
for evaluating classification models, which, in general, can be considered as the number
of predictions that the examined model identified correctly. Detailed explanation of the
concepts of confusion matrix, accuracy, etc. can be found in [64]. More specifically, accuracy
could be represented by the following definition:

Accuracy = (Total number of correct predictions/Total number of predictions). (11)

We could explain the concept of accuracy in classification problems with the help of
some simple but useful terms such as true and false positives and true and false negatives.
A true positive (TP) is an instance that exists in an actual class of our dataset and has also
been correctly predicted by our examined model. A true negative (TN) is an instance that
does not exist in the actual class of our dataset and it is also correctly predicted by our
examined model. A false positive (FP) is an instance that does not exist in the class, but
our model has predicted it incorrectly, while a false negative (FN) refers to an instance that
exists in a class of the examined dataset, however, it is incorrectly predicted (i.e, that it does
not exist). As a fraction, accuracy could be expressed as follows:

Accuracy = (TP + TN)/(TP + TN + FP + FN). (12)

However, it would not be safe to consider that the confusion matrix and accuracy
value can stand alone as proof of the validity and good performance of the examined
models, thus we proceeded with further analysis of the generated classification reports. A
classification report includes the precision, recall, F1, and support scores of a classification
model. Compared to a plain accuracy value, we could say that the classification report
offers a deeper intuition of the classifier’s behavior and can also help select the most
effective model for the examined dataset (for instance, the model with the “strongest”
values of classification metrics). Before presenting the results of our models in this section,
we include a brief description of the metrics we used to compare our results. The precision
value is representative of the classifier’s ability to avoid marking a negative instance as
positive. For each class of a given dataset, the precision is defined as the ratio of TPs to the
sum of TPs and FPs, as shown below:

Precision = TP/(TP + FP). (13)



Mathematics 2022, 10, 1038 15 of 21

Moving on, we examine the recall value which depicts the classifier’s ability to find all
positive instances. For each class of the examined dataset, recall is calculated by the ratio of
TPs to the sum of TPs and FNs, as shown below:

Recall = TP/(TP + FN). (14)

Furthermore, the F1 score is the harmonic mean of precision and recall, with its best
value reaching 1 (i.e., perfect precision and recall) and its worst at 0. Although F1 cannot be
used alone to describe the accuracy of a classification model, it can certainly be useful while
comparing several models. Last, but not least, the support value stands for the number
of actual instances of each class in the examined dataset. This value provides us with
a clear picture of the “balance” in our dataset, meaning how balanced the separation of
the instances among the classes of our dataset is. Unbalanced training data may result
in weaknesses in the reported scores of the classifier, which would result in the need for
stratified sampling or even re-balancing [64].

3.4. Classification Model for the Primal and Dual Simplex Algorithms

This subsection includes the classification models for the primal and dual simplex
algorithms, along with examples from our comparative analysis to select the most efficient
models for the examined dataset. The selected model for the primal simplex algorithm
uses the tanh activation function, lbfgs solver, and two hidden layers of 100 neurons each.
Similarly, the selected model for the dual simplex algorithm uses the lbfgs solver and two
hidden layers of 100 neurons each, with the only exception being the activation function,
which is relu instead of tanh. The execution time of primal and dual simplex algorithms
was separated into four classes, which are defined as shown in Table 7. The classes were
formulated after extensive sampling of the given dataset and experimenting with different
numbers of classes. Class 0 represents LPs that are easy to solve, with the time needed
for their solution being less than 0.1 s, for both algorithms. Class 1 consists of LPs that
are relatively easy to solve, with the execution time falling in ranges 0.1–0.5 and 0.1–1 s,
for primal and dual simplex algorithms, respectively. Class 2 stands for the LPs that seem
to require more time to solve (i.e., execution time for primal and dual simplex reported
in ranges of 0.5–4 and 1–10 s, respectively). Finally, Class 3 consists of LPs that can be
considered rather difficult and time-consuming, with the relevant execution time exceeding
4 and 10 seconds for primal and dual simplex algorithms, respectively. The generated
classification model for the execution time of the primal simplex algorithm reaches an
accuracy value of 0.83, while the generated classification model for the execution time of
the dual simplex algorithm has an accuracy value of 0.84. The respective confusion matrices
and classification reports are available in Tables 8–10. It is shown that the model for the
primal simplex algorithm misclassifies only 2 instances in Class 0, 3 instances in Class 1
and Class 2, while 7 instances are misclassified in Class 3. The model for the dual simplex
algorithm classifies all 33 instances correctly in Class 0, misclassifies 4 instances in Class 1
and 6 instances in Class 2, while Class 3 turns out to be the most challenging one with
4 out of a total of 11 instances misclassified. The precision, recall, and F1 scores for each
examined class are quite satisfying, with the average scores confirming the accuracy of the
generated models.

Table 7. Classes of the primal and dual simplex algorithm execution time (in seconds).

Class Primal Dual

0 0 < time < 0.1 0 < time < 0.1
1 0.1 ≤ time < 0.5 0.1 ≤ time < 1
2 0.5 ≤ time < 4 1 ≤ time < 10
3 4 ≤ time 10 ≤ time



Mathematics 2022, 10, 1038 16 of 21

Table 8. Confusion matrix for the primal simplex algorithm execution time.

Actual Class

0 1 2 3

0 22 2 0 0

Predicted Class 1 2 21 0 1
2 0 0 20 3
3 0 0 7 11

Table 9. Confusion matrix for the dual simplex algorithm execution time.

Actual Class

0 1 2 3

0 33 0 0 0

Predicted Class 1 4 20 0 0
2 0 3 15 3
3 0 2 2 7

Table 10. Classification reports for the primal and dual simplex algorithm execution time.

Class (Primal) Precision Recall F1 Support

0 0.92 0.92 0.92 24
1 0.91 0.88 0.89 24
2 0.74 0.87 0.80 23
3 0.73 0.61 0.67 18
avg/total 0.83 0.83 0.83 89

Class (Dual) Precision Recall F1 Support

0 0.89 1.00 0.94 33
1 0.80 0.83 0.82 24
2 0.88 0.71 0.79 21
3 0.70 0.64 0.67 11
avg/total 0.84 0.84 0.84 89

These results were extracted after extensive testing with several combinations of
activation functions, solvers, different numbers of hidden layers and neurons, and different
classification algorithms (e.g., KNeighborsClassifier). The following figures (Figures 7–12)
include a graphical representation of examples from various tests which were performed
and used for comparative analysis, before we reach the final models of this study. As
shown, although we have an accuracy score of 0.88 in Figure 10, the respective model is
not selected. The reason for this is that the rest of its characteristics (precision, recall, F1)
indicate a unsuitable model for our dataset, i.e., precision and F1 are ill-defined and, thus,
they are set to 0.0 in labels with no predicted samples.



Mathematics 2022, 10, 1038 17 of 21

Figure 7. Classification model for primal method—tuning the number of hidden layers and neurons
(tanh activation function, lbfgs solver).

Figure 8. Classification model for primal method—tuning the activation function and solver (2 hidden
layers, 100 neurons each).

Figure 9. Classification model for primal method—testing different classification algorithms (1 hidden
layer, tanh activation function, lbfgs solver).



Mathematics 2022, 10, 1038 18 of 21

Figure 10. Classification model for dual method—tuning the number of hidden layers and neurons
(relu activation function, lbfgs solver).

Figure 11. Classification model for dual method—tuning the activation function and solver (2 hidden
layers, 100 neurons each).

Figure 12. Classification model for dual method—testing different classification algorithms.



Mathematics 2022, 10, 1038 19 of 21

4. Conclusions

As stated at the beginning of this paper, an important step in solving linear program-
ming problems is the selection of the most efficient algorithm. To select the most suitable
algorithm, the majority of linear programming solvers use a heuristic procedure, based on
the characteristics of the input linear programming problem. In this study, we examined
the use of neural networks for predicting the execution time of CPLEX’s primal and dual
simplex algorithms. The results we received from the regression process were not satisfying
enough to support a prediction model for the execution time of each method. Thus, we
further experimented with classification approach, which led to meaningful results about
the generated models, with the accuracy of our model for the primal method reaching 0.83,
while for dual it was 0.84. Through classification, we may not be able to predict the exact
value for the primal method and dual method’s execution time, but we gain in predicting
the class under which a specific problem can be classified. This action alone generates
adequate information about the time needed for the solution of a problem, enabling the
solver to select the most efficient of the examined simplex algorithms.

Author Contributions: Conceptualization, N.S. and N.P.; methodology and validation, N.S., N.P.
and S.V.; formal analysis and investigation, N.P. and S.V.; writing—original draft preparation, S.V.;
writing—review and editing, N.P. and N.S.; supervision, N.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Python source code and training data used in this study are available
upon request. If interested please reach out to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bertsimas, D.; Tsitsiklis, J.N. Introduction to Linear Optimization; Athena Scientific: Belmont, MA, USA, 1997; Volume 6.
2. Ploskas, N.; Samaras, N. Linear Programming Using MATLAB; Springer: Cham, Switzerland, 2017.
3. Dantzig, G.B. Programming in linear structure. Econometrica 1949, 17, 73–74.
4. Dantzig, G.B. Linear Programming and Extensions; Princeton University Press: Princeton, NJ, USA, 1963.
5. Dongarra, J.; Sullivan, F. Guest editors’ introduction: The top 10 algorithms. Comput. Sci. Eng. 2020, 2, 73–74. [CrossRef]
6. Lemke, C.E. The dual method of solving the linear programming problem. Nav. Res. Logist. Q. 1954, 1, 36–47. [CrossRef]
7. Frisch, K.R. The Logarithmic Potential Method of Convex Programming; Memorandum from the Institute of Economics, University of

Oslo: Oslo, Norway, 1955.
8. Hoffman, A.; Mannos, M.; Sokolowsky, D.; Wiegmann, N. Computational experience in solving linear programs. J. Soc. Ind. Appl.

Math. 1953, 1, 17–33. [CrossRef]
9. Neumann, J.V. On a Maximization Problem; Technical Report; Institute for Advanced Study: Princeton, NJ, USA, 1947.
10. Baz, M.; Hunsaker, B. Automated Tuning of Optimization Software Parameters; Technical Report; Department of Industrial Engineering,

University of Pittsburgh: Pittsburgh, PA, USA, 2007.
11. Baz, M.; Hunsaker, B.; Prokopyev, O. How much do we “pay” for using default parameters? Comput. Optim. Appl. 2011, 48, 91–108.

[CrossRef]
12. Franzin, A.; Cáceres, L.P.; Stützle, T. Effect of transformations of numerical parameters in automatic algorithm configuration.

Optim. Lett. 2018, 12, 1741–1753. [CrossRef]
13. Barry, M.; Abgottspon, H.; Schumann, R. Solver tuning and model configuration. In Joint German/Austrian Conference on Artificial

Intelligence (Künstliche Intelligenz); Springer: Cham, Switzerland, 2018; pp. 141–154.
14. Audet, C.; Orban, D. Finding optimal algorithmic parameters using derivative-free optimization. SIAM J. Optim. 2006, 17, 642–664.

[CrossRef]
15. Chen, W.; Shao, Z.; Wang, K.; Chen, X.; Biegler, L. Random sampling-based automatic parameter tuning for nonlinear programming

solvers. Ind. Eng. Chem. Res. 2011, 50, 3907–3918. [CrossRef]
16. Hutter, F.; Hoos, H.; Leyton-Brown, K. Automated configuration of mixed integer programming solvers. In International Conference

on Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming; Springer: Cham,
Switzerland, 2010; pp. 186–202.

http://doi.org/10.1109/MCISE.2000.814652
http://dx.doi.org/10.1002/nav.3800010107
http://dx.doi.org/10.1137/0101002
http://dx.doi.org/10.1007/s10589-009-9238-5
http://dx.doi.org/10.1007/s11590-018-1240-3
http://dx.doi.org/10.1137/040620886
http://dx.doi.org/10.1021/ie100826y


Mathematics 2022, 10, 1038 20 of 21

17. Hutter, F.; Hoos, H.; Leyton-Brown, K.; Stützle, T. ParamILS: An automatic algorithm configuration framework. J. Artif. Intell.
Res. 2009, 36, 267–306. [CrossRef]

18. Liu, J.; Ploskas, N.; Sahinidis, N. Tuning BARON using derivative-free optimization algorithms. J. Glob. Optim. 2019, 74, 611–637.
[CrossRef]

19. Sauk, B.; Ploskas, N.; Sahinidis, N. GPU parameter tuning for tall and skinny dense linear least squares problems. Optim. Methods
Softw. 2020, 35, 638–660. [CrossRef]

20. Voulgaropoulou, S.; Samaras, N.; Sifaleras, A. Computational complexity of the exterior point simplex algorithm. Oper. Res.
Springer 2019, 19, 297–316. [CrossRef]

21. Özaltın, O.; Hunsaker, B.; Schaefer, A. Predicting the Solution Time of Branch-and-Bound Algorithms for Mixed-Integer Programs.
INFORMS J. Comput. 2011, 23, 392–403. [CrossRef]

22. Vanschoren, J. Meta-learning: A survey. arXiv 2018, arXiv:1810.03548.
23. Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Search; Technical Report; Technical Report SFI-TR-95-02-010; Santa Fe

Institute: Santa Fe, New Mexico, 1995.
24. Priya, R.; de Souza, B.F.; Rossi, A.L.; de Carvalho, A.C. Predicting execution time of machine learning tasks using metalearning.

In Proceedings of the 2011 World Congress on Information and Communication Technologies, Mumbai, India, 11–14 December
2011; pp. 1193–1198.

25. Brazdil, P.; Carrier, C.G.; Soares, C.; Vilalta, R. Metalearning: Applications to Data Mining; Springer-Verlag: Berlin/Heidelberg,
Germany, 2009.

26. Matsunaga, A.; Fortes, J.A. On the use of machine learning to predict the time and resources consumed by applications. In
Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, Melbourne, VIC,
Australia, 17–20 May 2010; pp. 495–504.

27. Sun, J.; Sun, G.; Zhan, S.; Zhang, J.; Chen, Y. Automated performance modeling of HPC applications using machine learning.
IEEE Trans. Comput. 2020, 69, 749–763. [CrossRef]

28. Pietri, I.; Juve, G.; Deelman, E.; Sakellariou, R. A performance model to estimate execution time of scientific workflows on the
cloud. In Proceedings of the 2014 9th Workshop on Workflows in Support of Large-Scale Science, New Orleans, LA, USA, 16–21
November 2014; pp. 11–19.

29. Amaris, M.; de Camargo, R.Y.; Dyab, M.; Goldman, A.; Trystram, D. A comparison of GPU execution time prediction using
machine learning and analytical modeling. In Proceedings of the 2016 IEEE 15th International Symposium on Network
Computing and Applications (NCA), Cambridge, MA, USA, 31 October–2 November 2016; pp. 326–333.

30. Krishnaswamy, S.; Loke, S.; Zaslavsky, A. Estimating computation times of data-intensive applications. IEEE Distrib. Syst. Online
2004, 5, 8374521. [CrossRef]

31. Smith, W. Prediction services for distributed computing. In Proceedings of the IEEE International Parallel and Distributed
Processing Symposium, Long Beach, CA, USA, 26–30 March 2007; pp. 1–10.

32. Smith, W.; Foster, I.; Taylor, V. Predicting application run times with historical information. J. Parallel Distrib. Comput. 2004,
64, 1007–1016. [CrossRef]

33. Tsafrir, D.; Etsion, Y.; Feitelson, D. Backfilling using system-generated predictions rather than user runtime estimates. IEEE Trans.
Parallel Distrib. Syst. 2007, 18, 789–803. [CrossRef]

34. IBM ILOG CPLEX. CPLEX 12.6.0 User Manual. Available online: http://www-01.ibm.com/support/knowledgecenter/SSSA5
P_12.6.1/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html?lang=en (accessed on 15 June 2021).

35. Voulgaropoulou, S.; Samaras, N.; Ploskas, N., Predicting the execution time of the interior point method for solving linear
programming problems using artificial neural networks. In Learning and Intelligent Optimization (LION 13); Lecture Notes in
Computer Science; Springer: Cham, Switzerland, 2019; pp. 319–324.

36. Carolan, W.J.; Hill, J.E.; Kennington, J.L.; Niemi, S.; Wichmann, S.J. An Empirical Evaluation of the KORBX® Algorithms for
Military Airlift Applications. Oper. Res. Informs 1990, 38, 240–248. [CrossRef]

37. Mészáros, C. Mészáros Linear Programming Test Set. Available online: http://old.sztaki.hu/~meszaros/public_ftp/lptestset/
(accessed on 15 June 2021).

38. Mittelmann, H. Mittelmann’s Linear Programming Test Set. Available online: http://plato.asu.edu/ftp/lptestset/ (accessed on
15 June 2021).

39. Netlib Repository. NETLIB Linear Programming Test Set. Available online: https://netlib.org/lp/ (accessed on 15 June 2021).
40. Cireşan, D.C.; Meier, U.; Schmidhuber, J. Transfer learning for Latin and Chinese characters with deep neural networks. In

Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, 10–15 June 2012.
41. Alwosheel, A.; van Cranenburgh, S.; Chorus, C.G. Is your dataset big enough? Sample size requirements when using artificial

neural networks for discrete choice analysis. J. Choice Model. 2018, 28, 167–182. [CrossRef]
42. Chauhan, V.; Joshi, K.D.; Surgenor, B. Machine vision for coin recognition with ANNs: Effect of training and testing parameters.

In Engineering Applications of Neural Networks, Proceedings of the 18th International Conference, EANN 2017, Athens, Greece, 25–27
August 2017; Communications in Computer and Information Science; Boracchi, G., Iliadis, L., Jayne, C., Likas, A., Eds.; Springer:
Cham, Switzerland, 2017; Volume 744, pp. 523–534.

43. Jain, A.K.; Chandrasekaran, B. Dimensionality and sample size considerations in pattern recognition practice. Handb. Stat 1982,
39, 835–855.

http://dx.doi.org/10.1613/jair.2861
http://dx.doi.org/10.1007/s10898-018-0640-3
http://dx.doi.org/10.1080/10556788.2018.1527331
http://dx.doi.org/10.1007/s12351-017-0291-z
http://dx.doi.org/10.1287/ijoc.1100.0405
http://dx.doi.org/10.1109/TC.2020.2964767
http://dx.doi.org/10.1109/MDSO.2004.1301253
http://dx.doi.org/10.1016/j.jpdc.2004.06.008
http://dx.doi.org/10.1109/TPDS.2007.70606
http://www-01.ibm.com/support/knowledgecenter/SSSA5P_12.6.1/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSSA5P_12.6.1/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html?lang=en
http://dx.doi.org/10.1287/opre.38.2.240
http://old.sztaki.hu/~meszaros/public_ftp/lptestset/
http://plato.asu.edu/ftp/lptestset/
https://netlib.org/lp/
http://dx.doi.org/10.1016/j.jocm.2018.07.002


Mathematics 2022, 10, 1038 21 of 21

44. Kavzoglu, T.; Mather, P.M. The use of backpropagating artificial neural networks in land cover classification. Int. J. Rem. Sens.
2003, 24, 4907–4983. [CrossRef]

45. Raudys, S.J.; Jain, A.K. Small sample size effects in statistical pattern recognition: Recommendations for practitioners. IEEE Trans.
Pattern Anal. Mach. Intell. 1991, 13, 252–264. [CrossRef]

46. Maros, I.; Khaliq, M. Advances in Design and Implementation of Optimization Software. Eur. J. Oper. Res. 2002, 140, 322–337.
[CrossRef]

47. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

48. Draper, N.R.; Smith, H. Applied Regression Analysis, 3rd ed.; John Wiley and Sons: Hoboken, NJ, USA, 1998.
49. Kutner, M.H.; Neter, J.; Nachtsheim, C.J.; Wasserman, W. Applied Linear Statistical Models, 5th ed.; McGraw-Hill/Irwin: New York,

NY, USA, 2004.
50. Silva, I.N.; Spatti, D.H.; Flauzino, R.A.; Liboni, L.H.B.; dos Reis Alves, S.F. Artificial Neural Networks. A Practical Course; Springer

International Publishing: Cham, Switzerland, 2017.
51. Bretscher, O. Linear Algebra with Applications, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1995.
52. Stigler, S.M. Gauss and the Invention of Least Squares. Ann. Stat. 1981, 9, 465–474. [CrossRef]
53. Pearson, K. Notes on regression and inheritance in the case of two parents. Proc. R. Soc. Lond. 1895, 58, 240–242. [CrossRef]
54. Stigler, S.M. Francis Galton’s Account of the Invention of Correlation. Stat. Sci. 1989, 4, 73–79. [CrossRef]
55. Rao, C.R. Coefficient of Determination, Linear Statistical Inference and Its Applications, 2nd ed.; Wiley: New York, NY, USA, 1973.
56. Student. The probable error of a mean. Biometrika 1908, 6, 1–25. [CrossRef]
57. Fisher, R.A. On the interpretation of χ2 from contingency tables and the calculation of P. J. R. Stat. Soc. 1922, 85, 87–94. [CrossRef]
58. Castle, J.; Doornik, J.; Hendry, D. Evaluating automatic model selection. J. Time Ser. Econom. 2011, 3, 1–33. [CrossRef]
59. Cook, D. Detection of Influential Observations in Linear Regression. Technometrics Am. Stat. Assoc. 1977, 19, 15–18.
60. Cook, D. Influential Observations in Linear Regression. J. Am. Stat. Assoc. Am. Stat. Assoc. 1979, 74, 169–174. [CrossRef]
61. Hosmer, D.; Jovanovic, B.; Lemeshow, S. Best subsets logistic regression. Biometrics 1989, 45, 1265–1270. [CrossRef]
62. Hyndman, R.; Koehler, A. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [CrossRef]
63. Hillier, F.S.; Lieberman, G.J. Introduction to Operations Research; Holden-Day Inc.: San Francisco, CA, USA, 1967.
64. Fawcett, T. An Introduction to ROC Analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]

http://dx.doi.org/10.1080/0143116031000114851
http://dx.doi.org/10.1109/34.75512
http://dx.doi.org/10.1016/S0377-2217(02)00072-3
http://dx.doi.org/10.1214/aos/1176345451
http://dx.doi.org/10.1098/rspl.1895.0041
http://dx.doi.org/10.1214/ss/1177012580
http://dx.doi.org/10.2307/2331554
http://dx.doi.org/10.2307/2340521
http://dx.doi.org/10.2202/1941-1928.1097
http://dx.doi.org/10.1080/01621459.1979.10481634
http://dx.doi.org/10.2307/2531779
http://dx.doi.org/10.1016/j.ijforecast.2006.03.001
http://dx.doi.org/10.1016/j.patrec.2005.10.010

	Introduction
	Materials and Methods
	Dataset
	Regression vs. Classification

	Results and Discussion
	Regression Evaluation Metrics
	Regression
	Classification
	Classification Model for the Primal and Dual Simplex Algorithms

	Conclusions
	References

