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Abstract. Deciding upon which algorithm would be the most efficient for a given set of
linear programming problems is a significant step in linear programming solvers. CPLEX
Optimizer supports primal and dual variants of the simplex algorithm and the interior point
method. In this paper, we examine a prediction model using artificial neural networks for the
performance of CPLEX’s interior point method on a set of benchmark linear programming
problems (netlib, kennington, Mészáros, Mittelmann). Our study consists of the measurement
of the execution time needed for the solution of 295 linear programming problems. Specific
characteristics of the linear programming problems are examined, such as the number of con-
straints and variables, the nonzero elements of the constraint matrix and the right-hand side,
and the rank of the constraint matrix of the linear programming problems. The purpose of our
study is to identify a model, which could be used for prediction of the algorithm’s efficiency
on linear programming problems of similar structure. This model can be used prior to the
execution of the interior point method in order to estimate its execution time. Experimental
results show a good fit of our model both on the training and test set, with the coefficient of
determination value at 78% and 72%, respectively.
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1 Introduction

Various algorithms exist for the solution of linear programming problems. When it comes to the
selection of the most appropriate algorithm to use for a set of problems, the question still remains:
how to select the most efficient method, in terms of the execution time? CPLEX Optimizer [3]
includes several high-performance linear programming algorithms. In this study, we are exploring
a first approach towards creating a prediction model for the efficiency of the interior point method.
A thorough description of the interior point method would exceed the scope of this short paper,
therefore, more information about its steps and functionality can be found in [2, 6, 8].
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2 Empirical results

2.1 Data

For the purpose of our computational study, 295 benchmark linear programming problems were
used from the netlib (25), kennington (13), Mészáros (217), and Mittelmann (40) libraries. The
problems were solved with CPLEX’s 12.6.1 [3] interior point method and the respective execution
time, needed for their solution, was recorded for each problem. The linear programming problem
characteristics which were examined in this study and set as input in our model are the following:
(i) m: the number of constraints, (ii) n: the number of variables, (iii) nnzA: the number of nonzero
elements of the constraint matrix, (iv) nnzb: the number of nonzero elements of the right-hand side
vector, and (v) rankA: the rank of the constraint matrix. The execution time was set as the output
of our model.

2.2 Neural network model

The neural network model presented in this study has been generated using the scikit-learn toolkit [5].
While testing several statistical environments, we found scikit-learn to be the most suitable for
the purpose of our analysis, since it supports numerous methods of supervised and unsupervised
learning, model selection and evaluation and transformation of data. The algorithm used for the
generation of our model is the Multi-layer Perceptron (MLP). MLP is a supervised learning algo-
rithm that can learn a function f(∆) : Rx → Ro by training on a dataset, where x is the number
of dimensions for input and o is the number of dimensions for output. Given a set of input features
and an output target, MLP can learn a nonlinear function approximator for either classification
or regression. We also experimented with other supervised learning methods available in scikit-
learn toolkit, such as linear regression, lasso regression, ridge regression and decision trees, but we
obtained the best results using the MLP method.

The greatest challenge during our analysis was related to the number of hidden layers, which
had to be set while testing our models, along with the activation function we had to choose. It
was noted that the more hidden layers we have in our models, the worse results we eventually get.
The activation function is very significant since it converts an input signal of the last hidden layer
to an output signal for the next layer. Commonly used activation functions are the hyperbolic tan
function (tanh), the logistic sigmoid function (logistic) and the rectified linear unit function (relu).
Such activation functions were tested while repeated and extensive testing was also performed on the
number of hidden layers. In addition, scaling and normalizing the original data is a significant issue
that we experimented with. Evaluating the metrics of each model, we formed our model using the
parameters shown in Table1. Apart from the activation function and the number of hidden layers,
the solver selected for weight optimization is LBFGS, an optimizer in the family of quasi-Newton
methods. LBFGS uses a weighted linear summation to transform the input values of previous layers
to output values for the next layer. Tolerance value refers to the tolerance for the optimization. For
example, if, upon a certain number of iterations, we fail to decrease the training loss or to increase the
validation score by at least a value equal to tolerance, convergence is considered to be reached and
training stops. The alpha value refers to the L2 penalty (regularization term) parameter, while the
maximum number of iterations indicates that the solver will iterate until convergence (determined
by tolerance value) or this number of iterations.

The ratio between the training and test set was chosen to be 70 to 30. To evaluate the perfor-
mance of our model, certain metrics were taken into consideration. The R-squared (R2, coefficient
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Table 1: Model parameters for the MLP method
Algorithm MLPRegressor
Hidden layer sizes 20
Activation function relu
Solver lbfgs
Alpha value 1e− 5
Maximum iterations 1000
Tolerance 0.0001

of determination) provides an estimate of the strength of the relationship between a regression
model and the dependent variable (output), while the Root Mean Square Error (RMSE) is the
standard deviation of the residuals. We also include the mean absolute error that measures the
average magnitude of the errors in a set of predictions, without considering their direction, and the
median absolute error that is insensitive to outliers [1, 4, 7].

Table 2 presents the results of the neural network. For the training set, the model achieved an
RMSE value of 123.32 and an R2 value of 0.78, while for the test set the model achieved an RMSE
value of 296.73 and an R2 value of 0.72. Taking into account the variability in the features of the
295 linear programming models and the metrics’ values, it is shown that our model can explain the
data reasonably well. As an example, an R2 value of 1 would indicate a perfect fit of the data, so
the current R2 value proves goodness of fit of our model. Further below, a graphical representation

Table 2: MLP model for the interior point method execution time
Training set Test set

Root Mean squared error 123.32 296.73
Absolute Mean error 54.31 97.54
Absolute Median error 7.12 9.49
R2 0.78 0.72

of the comparison between the metrics measured for some of the models we tested is presented in
Figure 1 (different number of hidden layers, number of neurons, activation functions, scaling and
normalization techniques).

3 Conclusions

An important step in solving linear programming problems is the selection of the most efficient
algorithm. Most linear programming solvers have a heuristic procedure to select the most suitable
algorithm based on the characteristic of the input linear programming problem. In this paper, we
experiment with a neural network for predicting the execution time of CPLEX’s interior point
method. Experimental results show that the model can achieve an R2 value of 78% for the training
set and 72% for the test set. Taking into account the variability in the features of the benchmark
linear programming models we examined and the metrics used for the comparison of the generated
models, the current model proves to have a good fit on the data and thus, can be used for further
prediction of the algorithm’s efficiency.
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Fig. 1: Tuning the parameters in the models

In future work, we plan to build prediction models for the primal and dual simplex algorithm and
experiment with various supervised learning methods. Building accurate models for the prediction
of the execution of the primal simplex algorithm, the dual simplex algorithm, and the interior point
method will lead a linear programming solver to select the most efficient algorithm for a given linear
programming problem. That would lead to great savings in solving linear programming problems.
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