
A Web-Based Decision Support System using
Basis Update on Simplex Type Algorithms

Nikolaos Ploskas1, Nikolaos Samaras2, and Jason Papathanasiou3

1 University of Macedonia, 156 Egnatia Str., Thessaloniki 54006, Greece,
ploskas@uom.gr,

2 University of Macedonia, 156 Egnatia Str., Thessaloniki 54006, Greece,
samaras@uom.gr

3 University of Macedonia, 156 Egnatia Str., Thessaloniki 54006, Greece,
jasonp@uom.gr

Abstract. Linear Programming is a significant and well-studied opti-
mization methodology. Simplex type algorithms have been widely used
in Decision Support Systems. The computation of the basis inverse is
a crucial step in simplex type algorithms. In this paper, we review and
compare three basis update methods. We incorporate these methods on
the exterior and the revised simplex algorithm in order to highlight the
significance of the choice of the basis update method in simplex type algo-
rithms and the reduction that can offer to the solution time. We perform
a computational comparison in which the basis inverse is computed with
three updating methods. Finally, we have implemented a web-based De-
cision Support System that assists decision makers in the selection of
the algorithm and basis update method in order to solve their Linear
Programming problems.

Key words: Linear Programming, Decision Support System, Exterior
Point Simplex Algorithm, Revised Simplex Algorithm, Basis Inverse

1 Introduction

Web-based Decision Support Systems (DSS) are computerized information sys-
tems that supports decision-policy makers using a Web browser [20]. The three
most widely used frameworks for implementing web-based DSS are communication-
driven, knowledge-driven and document-driven DSS [3]. Communication-driven
DSS bring together multiple decision makers using electronic communication
technologies. Communication-driven DSS may also assist managers in collab-
orative decision-making processes (for more information, see [10]). Knowledge-
driven DSS recomment actions to decision makers. Finally, document-driven DSS
support managers organize and analyze large volumes of data.
Web-based DSS can be implemented using three different Web technologies [2]:
(i) server-side technologies, (ii) client-side technologies, and (iii) distributed im-
plementations. Server-side technologies include Java applications, ASP, PHP,
CGI, and JSP, while client-side tecnologies include Java applets and ActiveX
controls. Finally, distributed implementations are based on Java RMI, COM+,



2 Ploskas et al.

and Enterprise Java Beans. Recently, DSS also utilize web services and messag-
ing protocols like SOAP [3].
This paper presents a web-based knowledge-driven DSS that supports decision
makers solving their Linear Programming problems. Operations research ap-
plications that the proposed DSS can be utilized include telecommunications,
bio-informatics, revenue management, supply chain management, resource allo-
cation, etc. A real application case study for the transition from fossil to re-
newable energy resources in the United States [11] adapted from Manne [15] is
presented in Section 5, in which our application can be utilized in the decision
making process. The user interface of the proposed DSS has been implemented
using jsp, while the simplex type algorithms have been implemented with MAT-
LAB.
The structure of the paper is as follows. Section 2 presents the background of
our work. Section 3 includes the presentation of the three basis update methods,
while in Section 4 the computational experiments are presented. In Section 5,
a web-based DSS for the selection of the algorithm and basis update method is
presented. Finally, the conclusions of this paper are outlined in Section 6.

2 Background

Linear Programming (LP) is the process of minimizing or maximizing a linear
objective function z =

∑n
j=1 cjxj to a number of linear equality and inequality

constraints. The simplex algorithm is the most widely used method for solving
Linear Programming problems (LPs). Consider the following LP (LP.1) in the
standard form:

min cTx

s.t. Ax = b (LP.1)

x ≥ 0

where A ∈ Rm×n, (c, x) ∈ Rn, b ∈ Rm, and T denotes transposition. We assume
that A has full rank, rank(A) = m,m < n. Consequently, the linear system
Ax = b is consistent. The simplex algorithm searches for an optimal solution by
moving from one feasible solution to another, along the edges of the feasible set.
The dual problem associated with the (LP.1) is presented in (DP.1):

min bTw

s.t. ATw + s = c (DP.1)

s ≥ 0

where w ∈ Rm and s ∈ Rn.
Using a partition (B,N) (LP.1) can be written as follows:



A DSS for Basis Update on Simplex Type Algorithms 3

min cTBxB + cTNxN

s.t. ABxB +ANxN = b (LP.2)

xB , xN ≥ 0

In the above problem, AB is an m×m non-singular submatrix of A, called basic
matrix or basis. The columns of A belonging to subset B are called basic and
those belonging to N are called non basic. The solution of the linear problem
xB = (AB)

−1b, xN = 0 is called a basic solution. A solution x = (xB , xN ) is
feasible iff x ≥ 0; otherwise, the solution is infeasible. The solution of the (DP.1)

is computed by the relation s = c−ATw, where w = (cB)
T
(AB)

−1 are the sim-
plex multipliers and s are the dual slack variables. The basis AB is dual feasible
iff s ≥ 0.
In each iteration, the simplex algorithm interchanges a column of matrix AB

with a column of matrix AN and constructs a new basis AB . Any iteration of
simplex type algorithms is relatively expensive. The total execution time of an
iteration of simplex type algorithms is dictated by the computation of the basis
inverse. This inverse, however, does not have to be computed from scratch during
each iteration of the simplex algorithm. Simplex type algorithms maintain a fac-
torization of basis and update this factorization in each iteration. This step must
be carefully designed and implemented, because it is the most time-consuming
step in simplex-type algorithms. Many updating methods have been proposed
[1][4][6][7][16][21][22]. In Section 2 we present three well-known methods for the
basis inverse.
Simplex type algorithms have been widely used in Decision Support Systems.
Ghodsypour and O’Brien [9] have implemented a DSS for supplier selection us-
ing the revised simplex method. Lappi et al. [12] designed an information system
for forest management planning systems which generate alternative treatment
schedules for treatment units and select optimal schedule combinations using the
simplex method. Venkataramanan and Bornstein [23] have proposed a network-
based DSS for the assigning parking spaces utilizing primal network simplex
algorithm. Lauer et al. [13] have implemented a DSS to schedule student com-
puter lab attendants at a major university using the revised simplex algorithm.
Lourenço et al. [14] have proposed a DSS for portfolio robustness evaluation
using a solver based on the revised simplex algorithm.
In a previous paper [19], we reviewed and compared both the CPU- and GPU-
based implementations of five updating methods, namely: (i) Gaussian Elimi-
nation, (ii) the built-in function inv of MATLAB, (iii) LU decomposition, (iv)
Product Form of the Inverse (PFI) and (v) a Modification of the Product Form
of the Inverse (MPFI); and incorporated them with the revised simplex algo-
rithm. We have performed a computational study over dense randomly optimal
generated LPs and concluded that MPFI, PFI and MATLAB’s inv are the best
serial basis update methods. In this paper, a computational study is performed
in order to highlight the impact of the choice of the basis update methods on
the exterior and the revised simplex algorithm. The Exterior Primal Simplex



4 Ploskas et al.

Algorithm (EPSA) that we used has been proposed by Paparrizos et al. [18].
This algorithm outperforms the Revised Simplex Method (RSM) as the problem
size increases and the density decreases. The RSM in the computational study
has been proposed by Dantzig [5].

3 Basis Update Methods

In this section, three widely-used updating methods are presented: (i) the MAT-
LAB’s built-in method inv, (ii) the Product Form of the Inverse, and (iii) the
Modification of the Product Form of the Inverse.

3.1 MATLAB’s Built-in Function inv

MATLAB’s built-in function inv can be used to compute the basis inverse in
every step of the algorithms. MATLAB’s inv uses LAPACK routines to compute
the basis inverse and is already optimized. Hence, its execution time is smaller
compared with other relevant methods that compute the explicit basis inverse.
The time complexity of this method is O(n3).

3.2 Product Form of the Inverse

The new basis inverse can be updated, according to the PFI updating method
[6], at any iteration using the equation (1):

(AB)
−1 = (ABE)

−1
= E−1(AB)

−1 (1)

where E−1 is the inverse of the eta-matrix and can be computed by (2).

E−1 = I − 1

hrl
(hl − el) e

T
l =



1 −h1l

. . .
...

1/hrl

...
. . .

−hml/hrl 1

 (2)

If the current basis inverse is computed using regular multiplication, then the
complexity of the PFI is Θ

(
m3

)
.

3.3 A Modification of Product Form of the Inverse

In MPFI updating scheme [4], the current basis inverse (AB)
−1 can be computed

from the previous inverse (AB)
−1 using a simple outer product of two vectors

and one matrix addition, as shown in the equation (3):



A DSS for Basis Update on Simplex Type Algorithms 5

(AB)
−1

=
(
ABr.

)−1
+ v ⊗ (ABr.)

−1
(3)

The updating scheme of the inverse is shown in (4).

(AB)
−1

:
∣∣br1 · · · brr · · · brm

∣∣

(AB)
−1

=

∣∣∣∣∣∣∣∣∣∣∣∣

b11 · · · b1m
...

. . .
...

0 0 0
...

. . .
...

bm1 · · · bmm

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣

−h1l

hrl

...
− 1

hrl

...

−hml

hrl

∣∣∣∣∣∣∣∣∣∣∣∣∣
(4)

The time complexity of this method is Θ(m2).

4 Computational Study

A computational study of the aforementioned updating techniques on the EPSA
and RSM is presented in this section. The computational comparison has been
performed on a quad-processor Intel Core i7 3.4 GHz with 32 Gbyte of main
memory and 8 cores, running under Microsoft Windows 7 64-bit. The algorithms
have been implemented using MATLAB Professional R2013a.
The Netlib set of LPs [8] was used in this computational study, which is a
well-known suite containing many read world LPs. 71% of the Netlib LPs are ill-
conditioned [17], so numerical difficulties may occur. Table 1 presents some useful
information about the test bed, which was used in the computational study.
The first column includes the name of the problem, the second the number of
constraints, the third the number of variables, the fourth the nonzero elements
of matrix A and the fifth the objective value. For each instance, we averaged
times over 10 runs.
In this computational study, we examine the significance of the choice of the
basis updating technique on EPSA and RSM. Thus, we have executed these
algorithms with the three different basis update methods presented in Section
2. Table 2 presents the results from the execution of EPSA and RSM with the
aforementioned basis update methods over the Netlib set. All times in Table
2 are measured in seconds using the MATLAB’s built-in command cputime.
In Table 2, the following abbreviations are used: (i) INV - MATLAB’s built-in
function, (ii) PFI - Product Form of the Inverse, and (iii) MPFI - Modification
of the Product Form of the Inverse. The results are graphically illustrated in
Figure 1.

From the above results, we observe that: (i) the percentage of the time to
compute the basis inverse to the total time is bigger in RSM than EPSA, and
(ii) PFI is much faster than MPFI and MATLAB’s inv over the Netlib set.



6 Ploskas et al.

Table 1. Statistics of the Netlib LPs (optimal, Kennington and infeasible LPs)

Name Constraints Variables Nonzeros A Objective value

ADLITTLE 57 97 465 2.25E+05

AFIRO 28 32 88 -4.65E+02

AGG 489 163 2,541 -3.60E+07

AGG2 517 302 4,515 -2.02E+07

AGG3 517 302 4,531 1.03E+07

BANDM 306 472 2,659 -1.59E+02

BEACONFD 174 262 3,476 3.36E+04

BLEND 75 83 521 -3.08E+01

DEGEN2 445 534 4,449 -1.44E+03

E226 224 282 2,767 -1.88E+01

FFFFF800 525 854 6,235 5.56E+05

ISRAEL 175 142 2,358 -8.97E+05

LOTFI 154 308 1,086 -2.53E+01

SC50A 51 48 131 -6.46E+01

SC50B 51 48 119 -7.00E+01

SC105 106 103 281 -5.22E+01

SC205 206 203 552 -5.22E+01

SCAGR7 130 140 553 -2.33E+06

SCFXM1 331 457 2,612 1.84E+04

SCFXM2 661 914 5,229 3.67E+04

SCFXM3 991 1,371 7,846 5.49E+04

SCORPION 389 358 1708 1.88E+03

SCRS8 491 1,169 4,029 9.04E+02

SCTAP1 301 480 2,052 1.41E+03

SCTAP3 1,481 2,480 1,0734 1.42E+03

SHARE1B 118 225 1,182 -7.66E+04

SHARE2B 97 79 730 -4.16E+02

SHIP04L 403 2,118 8,450 1.79E+06

SHIP04S 403 1,458 5,810 1.80E+06

SHIP08L 779 4,283 17,085 1.91E+06

SHIP08S 779 2,387 9,501 1.92E+06

SHIP12L 1,152 5,427 21,597 1.47E+06

SHIP12S 1,152 2,763 10,941 1.49E+06

STOCFOR1 118 111 474 -4.11E+04

5 Decision Support System Analysis and Design

5.1 Object-Oriented Analysis

Figure 2 presents the decision making process that the decision-policy maker
can perform using the DSS. Firstly, decision maker formulates the problem un-
der examination as a linear programming problem. Then, the data acquisition,
validation and verification phase follows, so, the decision maker may upload the
input data to the DSS and select the algorithms and the basis update methods
to be evaluated, in the next step. Then, the algorithms evaluation and execution



A DSS for Basis Update on Simplex Type Algorithms 7

Table 2. Results of the Exterior and the Revised Simplex Algorithm Using Three
Different Updating Methods over the Netlib Set)

Name
EPSA-INV EPSA-PFI EPSA-MPFI RSM-INV RSM-PFI RSM-MPFI
Total Inverse Total Inverse Total Inverse Total Inverse Total Inverse Total Inverse

ADLITTLE 0.1872 0.0653 0.1746 0.0362 0.1544 0.0377 0.0936 0.0468 0.0312 0.0020 0.0468 0.0312
AFIRO 0.0312 0.0123 0.0162 0.0042 0.0268 0.0050 0.0010 0.0001 0.0010 0.0001 0.0010 0.0001
AGG 0.1092 0.0468 0.0772 0.0179 0.0932 0.0190 0.3432 0.2496 0.0780 0.0312 0.0936 0.0468
AGG2 0.2808 0.0312 0.2317 0.0176 0.2642 0.0187 1.0140 0.8736 0.2184 0.0780 0.2496 0.0624
AGG3 0.3432 0.0468 0.1647 0.0265 0.3193 0.0276 1.5912 1.4040 0.2652 0.0936 0.2652 0.1248

BANDM 0.7176 0.1716 0.6816 0.0885 0.6943 0.0948 1.7160 1.2012 0.6552 0.1404 0.6552 0.1560
BEACONFD 0.0312 0.0153 0.0280 0.0094 0.0219 0.0108 0.0312 0.0230 0.0312 0.0020 0.0156 0.0050

BLEND 0.0936 0.0780 0.0681 0.0425 0.0782 0.0507 0.0780 0.0624 0.0312 0.0156 0.0312 0.0016
DEGEN2 5.2884 2.9172 3.1063 1.8425 3.4833 2.072 17.0509 15.4285 5.7408 3.8844 6.4428 4.5864

E226 0.4056 0.1716 0.2470 0.1101 0.2967 0.1256 1.2324 1.1544 0.2808 0.2028 0.2496 0.1404
FFFFF800 1.2792 0.2496 0.7301 0.1408 0.9131 0.1497 1.9032 1.0608 1.1232 0.2808 1.1232 0.2808
ISRAEL 0.1404 0.0468 0.1081 0.0238 0.1189 0.0266 0.5616 0.5460 0.1092 0.0624 0.0936 0.0624
LOTFI 0.2496 0.0312 0.1869 0.0171 0.2117 0.0203 0.3276 0.1716 0.1716 0.0468 0.1716 0.0468
SC50A 0.0936 0.0624 0.0616 0.0341 0.0622 0.0364 0.0936 0.0780 0.0624 0.0030 0.0312 0.005
SC50B 0.6396 0.4836 0.4236 0.1847 0.4633 0.2048 0.5304 0.4056 0.2184 0.1092 0.1872 0.0780
SC105 0.0312 0.0156 0.0243 0.0083 0.0234 0.0088 0.0468 0.0034 0.0312 0.0020 0.0156 0.0050
SC205 0.0156 0.0068 0.0094 0.0032 0.0127 0.0036 0.0312 0.0180 0.0156 0.0020 0.0000 0.0030

SCAGR7 0.0936 0.0312 0.0618 0.0156 0.0782 0.0182 0.0936 0.0560 0.0780 0.0156 0.0780 0.0156
SCFXM1 0.9360 0.1716 0.671 0.1076 0.8369 0.1211 1.5756 0.9204 0.7956 0.1560 0.7956 0.1716
SCFXM2 7.0356 1.482 4.6819 0.8760 5.1343 1.0299 13.7281 8.7985 6.2556 1.3416 6.5052 1.716
SCFXM3 25.8338 7.6440 18.7696 3.0041 19.1410 3.2197 54.9748 38.5478 21.4813 5.2260 23.1661 6.9576

SCORPION 0.7488 0.0624 0.5746 0.0396 0.7092 0.0455 0.9360 0.2340 0.7644 0.0624 0.7332 0.0780
SCRS8 6.4740 1.1856 4.8940 0.4658 5.0458 0.5091 9.8281 5.3664 5.2416 0.8112 5.3040 0.9048
SCTAP1 0.1716 0.0780 0.1251 0.0341 0.1374 0.0390 0.4680 0.3744 0.1716 0.1248 0.1872 0.0624
SCTAP3 3.7752 2.2776 1.7438 1.0635 1.8615 1.1210 104.7391 103.5223 7.0356 5.9124 7.2072 6.2088

SHARE1B 0.2340 0.0312 0.2096 0.0155 0.2195 0.0181 0.3120 0.1560 0.1872 0.0156 0.1560 0.0468
SHARE2B 0.0624 0.0241 0.0339 0.0158 0.0464 0.0178 0.0468 0.0468 0.0312 0.0212 0.0312 0.0212
SHIP04L 5.8812 0.0936 5.5653 0.0465 5.7380 0.0510 5.4600 0.0312 5.4444 0.0156 5.4756 0.0468
SHIP04S 2.2308 0.0156 1.9913 0.0070 2.1237 0.0084 1.9188 0.0312 1.9188 0.0312 1.9032 0.0312
SHIP08L 25.163 0.2340 24.0501 0.0932 24.4794 0.1004 26.177 2.5896 23.8214 0.2340 23.9462 0.2964
SHIP08S 4.2432 0.1092 4.0686 0.0410 4.1066 0.0436 4.3680 0.5304 3.8688 0.0780 3.8688 0.0936
SHIP12L 55.3648 0.1716 55.0681 0.0787 55.2934 0.0852 59.1244 5.6628 53.8359 0.3588 53.9763 0.3588
SHIP12S 7.6440 0.0936 7.5187 0.0334 7.6120 0.0357 8.4709 1.4196 7.1292 0.0780 7.1448 0.0624

STOCFOR1 0.0468 0.0250 0.4180 0.0101 0.4271 0.0114 0.0624 0.0156 0.0468 0.0030 0.0312 0.005
Average 4.5846 0.5348 4.0231 0.2516 4.1244 0.2761 9.3803 5.6185 4.3286 0.5718 4.4172 0.6680

step follows. The last step includes the presentation and the analysis of the re-
sults. Finally, the decision maker validates the results and if necessary provides
feedback on the operation and the updated decision making process is performed
again.
The sequence diagram in Figure 3 shows the whole interaction between the
decision maker and the DSS in order to produce the report that will assist fur-
ther in the decision making process. The decision-policy maker interacts with
the initial screen of the DSS and uploads the input file, selects the algorithms
(RSM and\or EPSA) and basis update methods (full inverse and\or PFI and\or
MPFI) and presses the ’Report’ button. Then, the system validates the input
data and executes the RSM and EPSA algorithms for each basis update method,
collects the total execution time, the time to perform the basis inverse, the num-
ber of iterations and the objective value, and presents these results in the report



8 Ploskas et al.

Fig. 1. Average Total and Inverse Time of the Exterior and Revised Simplex Algorithm
Using Three Different Updating Methods over the Netlib Set

Fig. 2. Decision Making Process

screen. Finally, the decision maker can export the results as a pdf file.

Figure 4 presents the class diagram of the DSS. InitialScreen is a boundary
class that includes three methods responding to decision maker’s action events:
i) upload input file, ii) select algorithms and basis update methods, and iii)
press ’Report’ button. SimplexAlgorithm is an abstract class that incorporates
the common attributes and methods of RevisedSimplexAlgorithm and Exterior-
PrimalSimplexAlgorithm. Matrix A contains the constraints coefficients, vector
c the objective function coefficients, vector b the right-hand side values, vec-
tor Eqin the type of constraints (equality or inequality), and variable minMax
the type of problem (minimization or maximization). Moreover, the SimplexAl-
gorithm class includes three methods that perform the basis update methods
and an abstract method for the execution of the algorithms’ logic. Finally, the
RevisedSimplexAlgorithm and ExteriorPrimalSimplexAlgorithm classes override
the abstract method executeAlgorithm of the SimplexAlgorithm and perform
their steps for the solution of the linear programming problem.



A DSS for Basis Update on Simplex Type Algorithms 9

Fig. 3. Sequence Diagram

Fig. 4. Class Diagram



10 Ploskas et al.

5.2 DSS Presentation

As stated in the previous section, all algorithms and update methods have been
implemented using MATLAB. These algorithms have been converted to Java
classes using the MATLAB Builder JA. The web interface of the DSS has been
designed using jsp and multiple users can access it through a web browser.
The initial screen of the DSS is shown in Figure 5. The decision maker presses the
’Browse’ button in order to upload the file containing the LP in mps format. In
addition, the decision maker selects the algorithms and the basis update meth-
ods that will be included in the comparison. By pressing the ’Report’ button,
a screen with a report is presented, as shown in Figure 6. This screen includes
the objective value and the iterations made by each algorithm. Furthermore,
the total and the inverse time of each basis update method are presented both
as numerical values and in a illustrative figure. Finally, the decision maker can
export this report as a pdf file.
Many LPs of the Netlib set are real-world problems. Figures 5 and 6 present a
case study for SCRS8, which is a problem of the Netlib set. SCRS8 is a tech-
nological assessment model for the transition from fossil to renewable energy
resources in the United States [11] adapted from Manne [15]. SCRS8 includes
1, 169 variables with 491 constraints. From the results that are presented in 6,
it is concluded that EPSA with the PFI updating method is the best choice for
the solution of this problem.

The proposed web-based DSS offers important managerial implications. First,
decision makers can formulate the problem under examination as a linear pro-
gramming problem and get a thorough analysis. Problems that can be formulated
as linear programming problems include telecommunications, bio-informatics,
supply chain management, etc. Moreover, the decision-policy maker gets an
overview of the type of the algorithm and basis update method that best suits
to a specific problem.
Some limitations exist on the proposed DSS. Some problems cannot be for-
mulated as linear programming problems. A second potential limitation of the
proposed DSS is that it provides information only about the execution time of
the basis update step; information about the other steps of the simplex type al-
gorithms, like preconditioning techniques, scaling techniques and pivoting rules,
can also be incorporated to the DSS.

6 Conclusions

The basis inverse is a crucial step in simplex-type algorithms. The time taken
to perform the basis inverse dictates the total time of these algorithms. Hence,
the basis update method must be carefully selected. In this paper, we performed
a computational comparison of three basis update methods and incorporated
them on EPSA and RSM. The results showed that PFI scheme is faster than
MATLAB’s inv and MPFI. Furthermore, the percentage of the time to compute



A DSS for Basis Update on Simplex Type Algorithms 11

Fig. 5. Initial Screen of the web-based DSS

Fig. 6. Report of the Results



12 Ploskas et al.

the basis inverse to the total time is bigger in the RSM than EPSA.
However, there are some instances that MPFI scheme is faster than PFI and the
basis inverse time is bigger in EPSA than RSM. So, there isn’t any best algo-
rithm or best method for all instances. We have implemented a web-based DSS
in order to assist decision-policy makers in the selection of the algorithm and
basis update method to solve their LPs. All algorithms have been implemented
using MATLAB and converted to Java classes using the MATLAB Builder JA.
The web interface of the DSS has been designed using jsp and users can access
it through a web browser from their PC/laptop or their smart device.
In future work, we plan to enhance the DSS with other options that will give de-
cision maker the opportunity to control all the steps of simplex type algorithms.
More specifically, we plan to add preconditioning techniques, scaling techniques
and pivoting rules. Finally, we plan to present real application case studies that
the proposed DSS can be utilized.

References

1. Bartels, R.H., Golub, G.H.: The Simplex Method of Linear Programming Using
LU Decomposition. Communications of the ACM 12, 266–268 (1969)

2. Bhargava, H.K., Krishnan, R.: The World Wide Web: opportunities for operations
research and management science. INFORMS Journal on Computing 10, 359–383
(1998)

3. Bhargava, H. K., Power, D. J., Sun, D.: Progress in Web-based decision support
technologies. Decision Support Systems 43:4, 1083–1095 (2007)

4. Benhamadou, M.: On the Simplex Algorithm ’Revised Form’. Advances in Engi-
neering Software 33, 769–777 (2002)

5. Dantzig, G.B.: Computational Algorithm of the Revised Simplex Method. RAND
Report RM-1266. The RAND Corporation, Santa Monica, CA (1953)

6. Dantzig, G.B., Orchard-Hays, M.: The Product Form of the Inverse in the Simplex
Method. Math. Comp. 8, 64–67 (1954)

7. Forrest, J.H., Tomlin, J.A.: Updated Triangular Factors of the Basis to Maintain
Sparsity in the Product Form Simplex Method. Mathematical Programming 2,
263–278 (1972)

8. Gay, D.M.: Electronic Mail Distribution of Linear Programming Test Problems.
Mathematical Programming Society COAL Newsletter 13, 10–12 (1985)

9. Ghodsypour, S.H., O’Brien, C.: A decision support system for supplier selection us-
ing an integrated analytic hierarchy process and linear programming. International
Journal of Production Economics 56, 199–212 (1998)

10. Hernández, J., Zarate, P., Dargam, F., Delibašić, B., Liu, S., Ribeiro, R.: Decision
Support Systems Collaborative Models and Approaches in Real Environments.
Lecture Notes in Business Information Processing 121, Springer Berlin Heidelberg
(2012)

11. Ho, J.K.: Nested decomposition of a dynamic energy model. Management Science
23, 1022–1026 (1977)

12. Lappi, J., Nuutinen, T., Siitonen, M.: A linear programming software for multi-
level forest management planning. Management systems for a global economy with
global resource concerns, 470–482 (1996)



A DSS for Basis Update on Simplex Type Algorithms 13

13. Lauer, J., Jacobs, L.W., Brusco, M.J., Bechtold, S.E.: An interactive, optimization-
based decision support system for scheduling part-time, computer lab attendants.
Omega 22:6, 613–626 (1994)

14. Lourenço, J.C., Morton, A., Bana e Costa, C.A.: PROBEA multicriteria decision
support system for portfolio robustness evaluation. Decision Support Systems 54,
534–550 (2012)

15. Manne, A.S.: Sufficient conditions for optimality in an infinite horizon development
plan. Econometrica 38, 18–38 (1970)

16. Markowitz, H.: The Elimination Form of the Inverse and its Applications to Linear
Programming. Management Science 3, 255–269 (1957)

17. Ordóñez, F., Freund, R.: Computational experience and the explanatory value of
condition measures for linear optimization. SIAM J. Optimization 14:2, 307–333
(2003)

18. Paparrizos, K., Samaras, N., Stephanides, G.: An Efficient Simplex Type Algorithm
for Sparse and Dense Linear Programs. European Journal of Operational Research
148:2, 323–334 (2003)

19. Ploskas, N., Samaras, N.: A Computational Comparison of Basis Updating Schemes
for the Simplex Algorithm on a CPU-GPU System. Journal of Computational
Science, Paper under review (2013)

20. Power, D. J., Kaparthi, S.: Building Web-based decision support systems. Studies
in Informatics and Control 11:4, 291–302 (2002).

21. Reid, J.: A Sparsity-exploiting Variant of the Bartels-Golub Decomposition for
Linear Programming Base. Mathematical Programming 24, 55–69 (1982)

22. Suhl, L.M., Suhl, U.H.: A Fast LU Update for Linear Programming. Annals of
Operations Research 43:1, 33–47 (1993)

23. Venkataramanan, M.A., Bornstein, M.: A decision support system for parking
space assignment. Mathematical and computer modelling 15:8, 71–76 (1991)


