
Journal of Global Optimization
https://doi.org/10.1007/s10898-021-01085-0

Review and comparison of algorithms and software
for mixed-integer derivative-free optimization

Nikolaos Ploskas1 · Nikolaos V. Sahinidis2,3

Received: 1 July 2020 / Accepted: 20 August 2021
© The Author(s) 2021

Abstract
This paper reviews the literature on algorithms for solving bound-constrained mixed-
integer derivative-free optimization problems and presents a systematic comparison of
available implementations of these algorithms on a large collection of test problems. Thir-
teen derivative-free optimization solvers are compared using a test set of 267 problems. The
testbed includes: (i) pure-integer and mixed-integer problems, and (ii) small, medium, and
large problems covering a wide range of characteristics found in applications. We evaluate
the solvers according to their ability to find a near-optimal solution, find the best solution
among currently available solvers, and improve a given starting point. Computational results
show that the ability of all these solvers to obtain good solutions diminishes with increasing
problem size, but the solvers evaluated collectively found optimal solutions for 93% of the
problems in our test set. The open-source solvers MISO and NOMAD were the best per-
formers among all solvers tested. MISO outperformed all other solvers on large and binary
problems, while NOMAD was the best performer on mixed-integer, non-binary discrete,
small, and medium-sized problems.

Keywords Derivative-free optimization algorithms · Mixed-integer optimization · Direct
search methods · Surrogate models · Stochastic methods

B Nikolaos V. Sahinidis
nikos@gatech.edu

1 Department of Electrical and Computer Engineering, University of Western Macedonia, Kozani,
Greece

2 H. Milton Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology,
Atlanta, GA, USA

3 School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-021-01085-0&domain=pdf
http://orcid.org/0000-0003-2087-9131

Journal of Global Optimization

1 Introduction

We consider the following bound-constrained mixed-integer problem:

min f (x)

s.t. l j ≤ x j ≤ u j ∀ j ∈ {1, . . . , n}
x j ∈ R ∀ j ∈ Ic

x j ∈ Z ∀ j ∈ Iz (1)

where n is the number of variables, Iz ⊆ {1, . . . , n} is the set of the discrete variables,
Ic := {1, 2, . . . , n} \ Iz is the set of the continuous variables, l j , u j ∈ R for all j ∈ Ic, and
l j , u j ∈ Z for all j ∈ Iz . We assume that algebraic expressions of f and its derivatives are
unavailable, so we treat these problems as black-box optimization problems.

Algorithms for optimization problems in the absence of derivatives have a long history
and are known as derivative-free optimization (DFO) algorithms [10,16]. The majority of
DFO algorithms address the problem in which Iz = ∅, i.e., all variables are continuous.
We refer to Rios and Sahinidis [62] for a recent review of DFO algorithms for continuous
problems.As previous comparative studies ofDFOalgorithmswere limited to a small number
of algorithms and problems, the work of [62] filled a gap in the DFO literature by providing
a systematic comparison of 22 DFO implementations on a test set of 502 unconstrained or
bound-constrained problems. In the current paper, we seek to extend the results of [62] from
the continuous to the mixed-integer case.

The bound-constrained mixed-integer derivative-free optimization (MIDFO) problem is
of interest because there are many applications that require it, including software tuning
[41,63], optimizing the circuitry configuration of heat exchangers [58], optimal design of
integrated circuits [15], access point communication problems [23], and groundwater supply
and hydraulic capture community problems [22].

Several papers consider bound-constrained MIDFO problems. The first such algorithm
was proposed by Audet and Dennis [7]. Abramson et al. [1] extended the Mesh Adaptive
Direct Search (MADS) method of [9] to mixed-variable optimization problems. Recently,
Audet et al. [11] also extended the MADS method to handle integer variables. Liuzzi et
al. [42–44] used line searches and proved global convergence of their MIDFO algorithm.
Newby andAli [57] proposed an extension of the BOBYQAalgorithm [60] tomixed-variable
programming. Other approaches based on surrogate models were proposed in [17,19,25,29,
36,38,53,54,61]. Additionally, various heuristics have been proposed for solving bound-
constrained MIDFO problems [13,37,40,64].

Many of the above-cited works compare several DFO solvers in the context of specific
applications or small collections of test problems. However, a systematic comparison of
solvers on a large collection of problems is missing. The aim of this paper is to fill this void
in the literature. We first discuss recent algorithmic developments in this field, followed by
a software comparison. In this comparison, we investigate which solver is more likely to
obtain global or near-global solutions on mixed-integer and pure-integer problems. We also
investigate how the quality of the solutions obtained changes as the problem size is increased.

We adopt the classification of Rios and Sahinidis [62] and classify DFO algorithms as
model-based and direct-search, depending on whether they build surrogate models or not.
We also classify them as global and local, depending on whether they seek global solutions
or not. Finally, we classify them as stochastic and deterministic, depending on whether they
use random search strategies or not.

123

Journal of Global Optimization

The remainder of this paper is organized as follows. Section 2 reviews algorithms for
MIDFO. Section 3 gives a brief overview of software for bound-constrained MIDFO. In
Sect. 4, we illustrate the search strategies employed by various solvers with two simple
examples. Extensive computational experience with thirteen solvers is presented in Sect. 5.
A total of 267 test problems were used, including 176 pure-integer problems and 91 mixed-
integer problems. These problems were used to test the solvers using the same starting points
and bounding boxes.Conclusions fromour study are drawn inSect. 6. TheOnline Supplement
provides a complete listing of the test problems and model statistics, the average- and best-
case performance for each derivative-free optimization solver, the best solutions found by
each solver, and the problems for which starting points were improved by each solver.

2 MIDFOmethods

Due to the mixed-integer nature of Problem (1), multiple definitions of a local minimum can
be given. Let us introduce

X := {
x ∈ R

n : l ≤ x ≤ u
}

Z := {
x ∈ R

n : x j ∈ Z, j ∈ Iz
}

where X is a compact set, hence l j and u j cannot be infinite, for i = 1, 2, . . . , n.
Local optimality is defined in terms of local neighborhoods. This is well-defined for

continuous variables. For integer variables, a local neighborhood must be defined by the
user. A local minimum depends on the notion of the local neighborhood we use. Hence, we
summarize different definitions of local neighborhoods with respect to the continuous and
integer variables [3,42,47]. Given a point x ∈ R

n and ρ > 0, let us define

Bc (x, ρ) = {
x ∈ R

n : xz = xz, ‖xc − xc‖2 ≤ ρ
}

and

Nz (x) = {
x ∈ R

n : xc = xc, ‖xz − xz‖2 = 1
}

where xc = [x]i∈Ic and xz = [x]i∈Iz .
Now we can define a local minimum point for Problem (1).

Definition 1 (Local minimum point) A point x∗ ∈ X is a local minimum of Problem (1) if
there exists an ε > 0 such that

f (x∗) ≤ f (x), ∀x ∈ Bc(x
∗; ε) ∩ X

f (x∗) ≤ f (x), ∀x ∈ Nz(x
∗) ∩ X (2)

Every point x ∈ Nz (x∗) ∩ X , with x 	= x∗, such that f (x) = f (x∗), satisfies (2).
Next, we introduce the definitions of stationary and strong stationary points. We assume

that f : R
n → R is a continuously differentiable function with respect to x j , j ∈ Ic.

Definition 2 (Stationary point)A point x∗ ∈ X ∩Z is a stationary point of Problem (1) when
it satisfies the following

�c f
(
x∗)� (

x − x∗)
c ≥ 0, ∀x ∈ X (3)

f
(
x∗) ≤ f (x), ∀x ∈ Nz

(
x∗) ∩ X (4)

where �c f (x) denotes the gradient of the function with respect to the continuous variables.

123

Journal of Global Optimization

Definition 3 (Strong stationary point) A point x∗ ∈ X ∩ Z is a strong stationary point of
Problem (1) when it is a stationary point, and ∀x ∈ Nz (x∗) ∩ X such that f (x) = f (x∗),
it holds that

�c f (x)� (x − x)c ≥ 0, ∀x ∈ X (5)

f (x) ≤ f (x), ∀x ∈ Nz (x) ∩ X (6)

Finally, Newby and Ali [57] present a definition of an improved local minimum, a “com-
bined local optimum”.

Definition 4 (Combined local minimum point) A point x∗ ∈ X is a local minimum of
Problem (1) if there exists an ε > 0 such that

f (x∗) ≤ f (x), ∀x ∈ Bc(x
∗; ε) ∩ X (7)

f (x∗) ≤ f (x), ∀x ∈ Ncomb(x
∗) ∪ Nz(x

∗) (8)

whereNcomb(x∗) is the set of the smallest local minima on each feasible continuousmanifold
on which Nz(x∗) has a point.

For problems that are convex when integrality is relaxed, any point that is a combined
local minimum will also be a local minimum. The converse is not true; local minima are not
always combined local minima [57].

Equipped with the above definitions we can now proceed to discuss algorithms and their
optimality properties.

2.1 Local search algorithms

In Hooke and Jeeves [30], direct search is defined as the sequential examination of trial
solutions generated by a certain strategy. Based on whether or not these methods operate on
simplices, Conn et al. [16] classify direct search algorithms into simplicial methods such as
the Nelder–Mead algorithm [55], and directional methods such as the generalized pattern
search algorithm [72]. The main advantages of these methods are their simplicity, flexibility,
and reliability. On the other hand, direct local search methods are highly dependent on the
initial point and can be trapped in local minima.

The first algorithm for MIDFO was proposed by Audet and Dennis [7]. These authors
developed a direct search algorithm for problems with bounds on continuous and categorical
variables. The algorithm explores the search space of the continuous variables using a gen-
eralized pattern search (GPS) method. In the absence of discrete variables, the algorithm of
Audet and Dennis reduces to the method proposed by Lewis and Torczon [39] for continuous
problems. For the discrete variables, the algorithm of Audet andDennis evaluates all points in
a user-defined discrete neighborhood. The polling step of the algorithm includes three stages.
The first stage is identical to the typical polling in pattern search algorithms for continuous
variables only (the discrete variables are held fixed). The second stage is the natural gener-
alization to the discrete variables using a set of neighbors. The last stage (extended polling)
performs a continuous poll around promising points found during the discrete polling in order
to improve the quality of the limit points. In this way, extended polling will be carried out
at more iterations, which may cost more function evaluations, but should give a better local
minimizer.

Several authors have extended the Audet and Dennis algorithm to handle more general
problems. Using a filter approach, Abramson et al. [3] extended the algorithm to handle

123

Journal of Global Optimization

general constraints for continuous variables. Sriver et al. [69] extended the algorithm to
linearly-constrained mixed-integer problems with a stochastic objective function. Lucidi et
al. [47] generalized the approach to solving linearly-constrained mixed-integer problems.
Instead of applying pattern search to the continuous variables, Lucidi et al. [47] update the
continuous variables using a continuous local search.

Abramson et al. [1] extended the MADSmethod [9] to mixed-variable optimization prob-
lems with general constraints for continuous variables. This was achieved in a relatively
straightforward manner, similar to the work of Audet and Dennis [7], which extended the
GPSmethods to bound-constrainedmixed-integer problems. Abramson et al. also use contin-
uous, discrete, and extended poll steps. Recently, Audet et al. [11] also extended the MADS
method [9] to handle integer variables by harmonizing the minimal granularity of variables
with the finest mesh containing all trial points.

Liuzzi et al. [42] presented three variants of a direct search algorithm for bound-constrained
mixed-integer problems. All variants perform a continuous and discrete search. The main
difference between these variants is the strategy used in the discrete search procedure. The
first algorithm explores the search space of the discrete variables using a method similar
to the one proposed in [48]. The main difference is that Liuzzi et al. include a sufficient
decrease condition governed by a control parameter, which is reduced during the optimization
process. The second algorithm removes the sufficient decrease condition on the discrete
variables and updates the iterate by choosing the coordinate that yields the largest objective
function reduction. The third algorithmperforms amore extensive investigation of the discrete
neighborhoods by means of a local search procedure. Essentially, it uses a discrete search
procedure that is similar to the one used in the first algorithm, but also performs an extended
polling step if a point with a sufficient decrease is not found. The last algorithm is convergent
to strong stationary points. Additionally, Liuzzi et al. [43] extended the approach presented in
[42] to handle general constraints using the sequential quadratic penalty approach presented
in [45]. Liuzzi et al. [44] also proposed an algorithmic framework to handle integer variables
based on primitive directions and nonmonotone line searches. These three variants, along
with other algorithms, are available in the Derivative-Free Library (DFL) [46]. This library
includes several algorithms for continuous andmixed-integer, local and global derivative-free
optimization.

Vicente [73] considers a slightly different but related problem. Vicente worked with
implicit and densely discrete black-box optimization problems, i.e., problems that are char-
acterized by the existence of an implicit and unknown discrete set where optimization points
are first projected (the projection operator ‘projects’ the values to nearby values where it is
possible or desirable to evaluate the real function) before the objective function is evaluated.
The algorithm proposed by Vicente is a modified direct search.

Newby and Ali [57] proposed an extension of the BOBYQA algorithm [60] for mixed-
variable programming. Their algorithm is a model-based local search. It uses quadratic
approximations and integer local search, with guaranteed convergence to a “combined local
optimum”, which they defined as an improved local optimum.

Finally, Porcelli and Toint [59,71] proposed a directional direct search algorithm for
mixed-variable optimization problems, including those with ordinal categorical variables.
The proposed algorithm implements a mesh-based direct search that aligns the poll points
to respect the integer constraints. A recursive call of the algorithm reduces the number of
integer variables by fixing a subset of these variables.

123

Journal of Global Optimization

2.2 Global search algorithms

Holmström et al. [29] extended Response Surface Methods (RSMs) based on kriging [49]
and Radial Basis Functions (RBFs) to solve mixed-integer constrained black-box problems
that have an expensive objective function and inexpensive general constraints. Hemker et
al. [25] replaced the black-box portions of the objective function by a stochastic surrogate
model. Davis and Ierapetritou [19] proposed a surrogate model-based algorithm for mixed-
integer problems with binary variables that contain black-box functions. They combine a
branch-and-bound algorithm with a kriging surface. Global information is obtained using
kriging models that are used to identify promising neighborhoods for local search. Local
RSMs are optimized to refine the lower and upper bounds. Kleijnen et al. [36] proposed a
method for solving pure-integer constrained nonlinear problems using krigingmetamodeling.
Kriging is used to approximate global input and output functions per output type implied by
the simulation model, while pure-integer nonlinear programming techniques are utilized to
estimate the optimal solution based on kriging models.

Müller et al. [53] developed a surrogate model-based algorithm, called SO-MI, for expen-
sive mixed-integer black-box optimization problems with general constraints. They use an
RBF surrogate model to select candidate points for both continuous and integer decision
variables. The objective function and the constraints are then evaluated at these points. In
each iteration, the method selects four new sampling sites. Four different strategies are used
to select the candidate points of each sampling site. Müller et al. [54] extended their method
for solving pure-integer black-box optimization problems with general constraints. The pro-
posed algorithm, called SO-I, consists of two phases. The first phase is used to find a feasible
solution, while the second phase continues evaluating candidate points until a stopping crite-
rion is met. Müller et al. [51] extended their work in [53] by implementing a new algorithm,
called MISO, which allows various sampling strategies and adds a local search in order to
find high accuracy solutions.

Recently, Costa and Nannicini [17] proposed to generate and iteratively refine an RBF
surrogate model of the objective function by exploiting a noisy but less expensive oracle
to accelerate convergence to the optimum of the exact oracle. Larson et al. [38] proposed
a model-based approach for the global optimization of black-box convex integer problems,
where an underestimator that does not require access to gradients of the objective was used.
The proposed underestimator uses secant linear functions that interpolate the objective func-
tions at previously evaluated points. The underestimator is used to generate new candidate
points until global optimality has been certified.

Finally, various heuristics have been proposed for solving bound-constrained MIDFO
problems. Cao et al. [13] proposed an evolutionary programming technique for handling
integer variables. Schlüter et al. [64] extended to the mixed-integer case the ant colony
optimization metaheuristic for continuous search domains proposed by Socha and Dorigo
[67]. Liao et al. [40] also extended an ant colony optimization algorithm for continuous
optimization to tackle mixed-integer problems. Laguna et al. [37] proposed a black-box
metaheuristic known as scatter search for pure-integer optimization problems with general
constraints.

2.3 Milestones in the field

Table 1 presents a timeline of major accomplishments in the continuous and discrete DFO
from 1961 to the present. In the continuous DFO literature, the Hooke–Jeeves [30] and

123

Journal of Global Optimization

Nelder–Mead [55] algorithmswere the dominant approaches in the 1960s and 1970s. Genetic
algorithms were proposed in 1975 [26], and many algorithms in this category have been
applied to black-box problems since then. The first textbook dedicated to DFO appeared
only in 2009. Researchers have been developing new DFOmethods for continuous problems
for over five decades now.

On the other hand, DFO algorithms that handle integer variables were not introduced until
2000. Some genetic algorithms were applied to black-box problems with integer variables
(e.g. [14,24]) but the first algorithm dedicated to MIDFO was proposed in 2000 [7]. In
the same year, an evolutionary programming technique for handling integer variables was
proposed [13]. The first use of surrogate models in mixed-integer DFO was introduced in
2008 [25,29], and since then, the emphasis in MIDFO has shifted towards the development
of methods based on surrogate models. As seen in Table 1, these developments have led to a
strong recent interest in MIDFO. Table 2 lists the top-cited works in the MIDFO literature.
These numbers are strong but low in comparison to the number of citations received for
papers in the continuous DFO area, suggesting that MIDFO is nowhere close to being a
mature area. Yet, as the next section details, a large number of software implementations
have emerged that can be used in applications.

3 Mixed-integer derivative-free optimization solvers

This section discusses software implementations of bound-constrained mixed-integer
derivative-free optimization algorithms reviewed in Sect. 2. All these implementations can
handle both continuous and integer variables, and some of them can also handle constraints.
Our aim here is to provide pointers for practitioners interested in these codes and describe
the main features of each implementation. We selected solvers that are available either as
open-source or commercial tools and can handle discrete variables explicitly. We used all
solvers with reported computational experience in the literature for this class of problems.

3.1 BFO

Brute ForceOptimizer (BFO) [71] is an open-sourceMATLAB implementation for nonlinear
bound-constrained derivative-free optimization and equilibrium computations with continu-
ous and discrete variables. BFO implements a direct search method. It starts by generating a
sequence of feasible iterates whose objective function values are decreasing. In an attempt to
find a new point with a lower objective function value, the objective function is evaluated at
a finite number of points on a mesh in the neighborhood of the current iterate. The best of the
improving points becomes the next iterate [59]. Discrete variables can be handled as integers
or according to user-specified discrete lattices. BFO also provides checkpointing and restart
facilities. Finally, BFO can be automatically trained on a set of instances in order to identify
its own optimal algorithmic parameters.

3.2 DAKOTA solvers

Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) [5] is a project
at the Sandia National Laboratories. DAKOTA is written in C++ and it is open-source. The
initial scope ofDAKOTAwas to create a toolkit of black-box optimizationmethods.However,
it was later expanded to include additional optimization methods and other engineering

123

Journal of Global Optimization

Table 1 Timeline of innovation in continuous and discrete DFO

Continuous DFO Discrete DFO

(1952) Coordinate search algorithm [21]
(1961) Hooke and Jeeves algorithm [30]

(1962) Simplex-based algorithm [68]

(1965) Nelder–Mead simplex algorithm [55]

(1969) First use of trust-regions [75]

(1975) Genetic algorithms [26]

(1979) Hit-and-run algorithms [12]

(1983) First use of simulated annealing [35]

(1991) Implicit filtering [76]

(1995) Particle swarm algorithm [20,34]

(1997) Generalized pattern search [72]

(1999) Multilevel coordinate search [31]

(2000) First MIDFO algorithm [7]

(2000) First use of evolutionary
algorithms [13]

(2003) Nonsmooth convergence analysis [8]
(2004) Incorporation of filters [3] and simplex
derivatives [18] in pattern search

(2006) The MADS algorithm [9]

(2008) First use of radial basis
functions [29]

(2008) First use of stochastic
surrogate models [25]

(2009) First textbook dedicated to
derivative-free optimization [16]

(2009) Extension of the MADS
algorithm [1]

(2009) First use of ant colony
optimization [64]

(2012) Linesearch-type algorithms
[42]

(2014) Scatter search algorithm [37]

(2015) Extension of a linesearch
algorithm to general constraints
[43]

(2015) Quadratic surrogate models
[57]

(2017) Second textbook dedicated to
derivative-free optimization [10]

(2017) A directional direct search
algorithm [59]

(2019) Convexity exploitation [38]

123

Journal of Global Optimization

Table 2 Citations of top-cited works in mixed-integer DFO

Publication Year appeared Citationsa

Audet and Dennis [7] 2000 210

Abramson, Audet, Chrissis, and Walston [1] 2009 138

Schlüter, Egea, and Banga [64] 2009 201

Liao, Socha, de Oca, Stützle, and Dorigo [40] 2013 182

Müller, Shoemaker, and Piché [53] 2013 151

aFrom Google Scholar on 15 March 2021

applications, including the design of experiments and nonlinear least squares. DAKOTA
includes several algorithms for continuous andmixed-integer, local and global derivative-free
optimization. Two solvers are available for solvingmixed-integer derivative-free optimization
problems:1

1. DAKOTA/MADS: an implementation of the mesh adaptive direct-search algorithm.
2. DAKOTA/SOGA: a global optimization method that implements a single-objective

genetic algorithm.

3.3 DFL solvers

Derivative-Free Library (DFL) [46] is an open-source software library for derivative-free
optimization. It includes several algorithms for continuous and mixed-integer, local and
global derivative-free optimization. Two solvers in this collection are available for solving
mixed-integer derivative-free optimization problems:

1. DFLBOX: a derivative-free linesearch algorithm for bound-constrained mixed-integer
nonlinear programming [42]. As discussed in Sect. 2.1, DFLBOX [42] consists of a
continuous and a discrete search procedure that calculates the step sizes.

2. DFLGEN: a derivative-free linesearch algorithm for general constrained mixed-integer
nonlinear programming [43]. DFLGEN extends DFLBOX using a sequential quadratic
penalty approach [45].

DFLBOX and DFLGEN source codes are in Fortran.

3.4 MIDACO

Mixed Integer Distributed Ant Colony Optimization (MIDACO) [66] is a global evolutionary
algorithm based on the ant colony optimization metaheuristic for continuous search domains
proposed by Socha andDorigo [67]. Its extension tomixed-integer domains is due to Schlüter
et al. [64]. MIDACO can solve general constrained mixed-integer nonlinear programming
problems by applying the oracle penaltymethod [65].MIDACO’s source code is inC and For-
tran and provides interfaces to other programming languages as well. MIDACO is available
under TOMLAB [28], a commercial optimization framework.

1 DAKOTA/EA cannot be used to solve pure-integer derivative-free optimization problems, so it is not con-
sidered here.

123

Journal of Global Optimization

3.5 MISO

MISO [52] is an open-source MATLAB implementation of the mixed-integer surrogate opti-
mization framework presented in [51]. MISO can solve expensive black-box optimization
problems with mixed-integer variables. It uses cheap surrogate models to approximate the
expensive objective function and to decide at which points in the variable domain the expen-
sive objective function should be evaluated. The framework combines different sampling
strategies and local search to obtain highly-accurate solutions.

3.6 NOMAD

NOMAD [2] is an open-source C++ implementation of the LTMADS [9] andORTHOMADS
[4] methods. NOMAD is designed to solve nonlinear, nonsmooth, noisy optimization prob-
lems. It can handle categorical variables using a special step, the extended poll. NOMAD
also includes a variable neighborhood search metaheuristic [6], a strategy to escape from
local optima.

3.7 SNOBFIT

SNOBFIT [56] is an open-source MATLAB implementation of the branch-and-fit algorithm
proposed by Huyer and Neumaier [32]. It combines global and local search by branching
and local fits. Even though SNOBFIT was designed to handle only continuous variables, it
offers an option that can be set to fix the resolution in the search space. When this option is
set equal to 1, SNOBFIT will then search for integers only.

3.8 TOMLAB solvers

TOMLAB [28] is a commercial optimization platform and modeling language for solving
optimization problems inMATLAB. It provides access to several derivative-free optimization
solvers, the following of which were tested:2,3

– TOMLAB/GLCDIRECT [28, pp. 112–117]: an implementation of the DIRECT
algorithm [33]. TOMLAB/GLCDIRECT is a Fortran implementation of TOMLAB/
GLCSOLVE.

– TOMLAB/GLCFAST [28]: a fast and efficient implementation of the DIRECT algorithm
[33].

– TOMLAB/GLCSOLVE [28, pp. 118–122]: a MATLAB implementation of the DIRECT
algorithm [33].

– TOMLAB/MSNLP [27, pp. 9–10]: amultistart heuristic algorithmdesigned to find global
optima of smooth constrained nonlinear programs.

2 TOMLAB/EGO, TOMLAB/ARBFMIP, and TOMLAB/GLCCLUSTER cannot be used to solve pure-
integer derivative-free optimization problems, so they are not considered here.
3 TOMLAB/RBFSOLVE is using TOMLAB/GLCCLUSTER, so it is also not considered.

123

Journal of Global Optimization

Fig. 1 Solver search strategy on st_e36. Red and blue hues represent high and low objective function values,
respectively. The global minimum is located at [5.5, 25] and is marked with a magenta circle. Solvers that
require a starting point were given the same starting point, which is located at [3.5, 17] and is marked with
a green circle. The points evaluated by each solver are marked with white crosses, and the final solution is
marked with a red circle

4 Illustrative examples

In this section, we present two illustrative examples in order to provide insights into the search
strategies that are employed by the different mixed-integer DFO solvers. Each solver was
limited to 2500 function evaluations. The first example was derived from problem st_e36
inMINLPLib version 2 [74]. The original problem has two variables, one continuous and one
integer, and two constraints. Since we are interested in solving bound-constrained mixed-
integer problems, we omitted the constraints. The bound-constrained version of the problem
is as follows:

min 2x21 + 0.008x32 − 3.2x1x2 − 2x2
s.t. 3 ≤ x1 ≤ 5.5

15 ≤ x2 ≤ 25
x1 ∈ R, x2 ∈ Z

Figure 1 illustrates the search strategies of the thirteen derivative-free optimization solvers
for the modified st_e36. All solvers were able to find the global optimum or a solution
very close to the global optimum (within 0.0001%). The ability of most solvers to find the
global optimum on small mixed-integer problems is also demonstrated in the computational
study in Sect. 5. BFO, DAKOTA/MADS, DFLBOX, DFLGEN, and NOMAD performed
less than 123 function evaluations. DAKOTA/SOGA performed 988 function evaluations,
while MIDACO, MISO, SNOBFIT, and TOMLAB solvers reached the limit (2500 function
evaluations). It is evident that global solvers need a relatively large amount of function
evaluations that cover the entire search space, while local solvers terminate quickly. Also
evident is the fact that deterministic solvers, such as TOMLAB/DLCDIRECT search over a
pattern whereas stochastic solvers, such as TOMLAB/MSNLP, make random moves.

123

Journal of Global Optimization

Fig. 2 Solver search strategy on synthetic example with large search domain. Red and blue hues represent
high and low objective function values, respectively. The global minimum is marked with a magenta circle.
Solvers that require a starting point were given the same starting point, which is located at [−755, 255] and is
marked with a green circle. The points evaluated by each solver are marked with white crosses and the final
solution is marked with a red circle

We also constructed for experimentation the following examplewith two integer variables:

min 15.71x21 − log(1500.37 + x1) − 78.54x22 + log(2500.37 + x2)
s.t. −800 ≤ x1 ≤ 1200

−1500 ≤ x2 ≤ 500
x1, x2 ∈ Z

The global optimum for this problem occurs at x1 = 0 and x2 = −1500. Many solvers
are unable to find this point due to the large size of the search domain. Such problems
are very common in practice and in the test library that we used in the computational
experiments of this paper. Figure 2 illustrates the search strategies of the thirteen derivative-
free optimization solvers for this problem. DAKOTA/SOGA, MIDACO, MISO, NOMAD,
SNOBFIT, TOMLAB/GLCDIRECT, TOMLAB/GLCFAST, and TOMLAB/GLCSOLVE
found the global optimum or a solution very close to it (within less than 5% difference).
BFO, DAKOTA/MADS, DFLBOX, DFLGEN, and TOMLAB/MSNLP improved the solu-
tion of the starting point locally. DAKOTA/MADS, DFLBOX, DFLGEN, and NOMAD
performed less than 79 function evaluations. DAKOTA/SOGA performed 921 function eval-
uations, BFO performed 1492 function evaluations, while MIDACO, MISO, SNOBFIT, and
TOMLAB solvers reached the limit (2500 function evaluations). It is again clear that global
solvers need a relatively large number of function evaluations and cover the entire search
space, while local solvers, except for BFO, terminate quickly. Most local solvers usually ter-
minate quickly after improving the solution of the starting point locally. Although NOMAD
is regarded as a local solver, it includes techniques to escape local minima. That enables it
to find solutions near the global optimum.

123

Journal of Global Optimization

5 Computational comparisons

This section presents a systematic comparison of thirteen available implementations of
derivative-free optimization algorithms on bound-constrained mixed-integer problems. The
testbed includes: (i) pure-integer and mixed-integer problems, and (ii) small, medium, and
large problems covering a wide range of characteristics found in applications. We evaluate
the solvers according to their ability to find a near-optimal solution, find the best solution
among currently available solvers, and improve a given starting point.

5.1 Experimental setup

Since most derivative-free optimization solvers are designed for low-dimensional uncon-
strained problems, we consider problems with a maximum of 500 variables with bounds
only. The thirteen derivative-free optimization solvers presented in Sect. 3 were tested on 267
problems from theMINLPLib 2 library. Most of the original problems from theMINLPLib 2
library have constraints. In this paper, we are interested in solving bound-constrained mixed-
integer problems, so we omitted the constraints. We also eliminated the variables that were
redundant after eliminating the constraints. Moreover, we also used 79 continuous problems
from the MINLPLib 2 library and imposed integrality constraints on the variables in order
to have a representative sample of non-binary discrete problems. Table S1 in the Online
Supplement provides a complete listing of the test problems and model statistics. We used
the general-purpose global optimization solver BARON [70] to obtain the global solution of
each problem.

The computational experiments were performed on an Intel Xeon CPU W-2123 with 32
GB of main memory and a clock of 3.6 GHz, running under Centos 7 64-bit. All solvers were
tested using a limit of 2500 function evaluations for each run. All solvers require variable
bounds except for NOMAD. For problems with missing bounds in the problem formulation,
we restricted all variables to the interval [−10, 000, 10, 000]. Whenever starting points were
required, they were drawn from a uniform distribution from the box-bounded region. We
generated five random starting points for each problem. Solvers that use the provided start-
ing point (BFO, DAKOTA/MADS, DFLBOX, DFLGEN, MIDACO, NOMAD, SNOBFIT,
TOMLAB/MSNLP) ran once from each of the five different starting points. The same ran-
domly generated starting points were used for all solvers. MISO supplements the provided
starting point with a set of points sampled via its default sampling strategy, i.e., symmetric
Latin hypercube sampling. DAKOTA/SOGA, does not use the provided starting points but
uses randomly chosen starting points, thus it was also ran five times. All other solvers that do
not use the provided starting point and are deterministic solvers (TOMLAB/GLCDIRECT,
TOMLAB/GLCFAST, TOMLAB/GLCSOLVER) were ran once.

In order to assess the quality of the solutions obtained by different solvers, we compared
the solution obtained by the derivative-free optimization solvers against the globally optimal
solution for each problem. A solver was considered to have successfully solved a problem
if it returned a solution with an objective function value within 1% or 0.01 of the global
optimum, whichever was larger. Since we performed five runs for each solver that utilizes
the provided starting point, starting each time from a different starting point, we compared
the average- and best-case behavior of each solver. Finally, we used the default algorithmic
parameters for each solver, i.e., we did not tune solvers in any way to the problems at hand.
Table 3 lists the specific versions of solvers used in this computational study.

123

Journal of Global Optimization

Table 3 Derivative-free
optimization solvers used in this
computational study

Solver Version

BFO 2

DAKOTA/MADS 6.13

DAKOTA/SOGA 6.13

DFLBOX –

DFLGEN –

MIDACO 8.7

MISO –

NOMAD 3.9.1

SNOBFIT 2.1

TOMLAB/GLCDIRECT 8.7

TOMLAB/GLCFAST 8.7

TOMLAB/GLCSOLVE 8.7

TOMLAB/MSNLP 8.7

5.2 Computational results

Tables S2–S14 in the Online Supplement provide for each solver the median over the five
optimization runs. Tables S15–S26 present the best-case performance out of all five runs. For
each solver, we report the execution time, the number of iterations (function evaluations), the
solution, and the optimality gap (% difference between solution returned by the solver and
the global solution). A dash (“–”) is used when the optimality gap is larger than or equal to
100%. In order to compare the quality of solutions returned, we compared the average- and
best-case behavior of each solver. For the average-case behavior, we compared solvers using
themedian objective function value over the five different runs. For the best-case comparison,
we compared the best solution found by each solver after all five runs. Best-case behavior is
presented in the figures and analyzed below unless explicitly stated otherwise. The figures
in this subsection are performance profiles [50] and present the fraction of problems solved
by each solver within an optimality tolerance of 1%. The figures in Section B of the Online
Supplement present the fraction of problems forwhich each solver achieved a solution as good
as the best solution among all solvers, without regard to the global solution of the problems.
When multiple solvers achieved the same solution, they were all credited as having the best
solution among the solvers.

Figure 3 presents the fraction of problems solved by each solver. The horizontal axis
shows the progress of a solver as the number of function evaluations gradually reaches 2500.
If we only consider the solutions obtained by the solvers at the 2500 function evaluation
limit, the best solvers, NOMAD and MISO, solved 77% and 76% of the problems, respec-
tively. SNOBFIT solved 69% of the problems, while DAKOTA/MADS solved 56% of the
problems. Most of the remaining solvers were able to solve more than 32% of the problems.
TOMLAB/MSNLP had the worst performance, solving only 12% of the problems. Only
four solvers could find an optimal solution for more than half of the problems. It is evident
that most solvers can solve only a small number of problems. Next, we investigate the per-
formance of solvers on different subsets of problems, dividing the problems based on the
number and type of variables involved (mixed-integer or pure-integer).

123

Journal of Global Optimization

Fig. 3 Fraction of problems solved as a function of allowable number of function evaluations

Fig. 4 Fraction of pure-integer problems solved as a function of allowable number of function evaluations

The test set includes 176 pure-integer problems and 91 mixed-integer problems. Figure 4
presents the fraction of pure-integer problems solved by each solver within the optimal-
ity tolerance. MISO found the optimal solution on 85% of the problems, while NOMAD
found the optimal solution 73% of the problems. SNOBFIT and DAKOTA/MADS found
the optimal solution on 66% and 59% of the problems, respectively. DAKOTA/SOGA,
MIDACO, and TOMLAB solvers found the optimal solution on 40−42% of the problems.
BFO found the optimal solution on 33% of the problems, while DFLBOX, DFLGEN, and
TOMLAB/MSNLP had the worst performance, solving only less than 24% of the pure-
integer problems. MISO is clearly the best solver for solving these pure-integer problems.
DFLBOX,DFLGEN, and TOMLAB/MSNLP are not good options for solving this collection
of pure-integer problems.

123

Journal of Global Optimization

Fig. 5 Fraction of binary problems solved as a function of allowable number of function evaluations

Fig. 6 Fraction of non-binary discrete problems solved as a function of allowable number of function evalua-
tions

We also study the performance of algorithms on binary and non-binary discrete problems.
The test set includes 78 binary and 74 non-binary discrete problems. Figures 5 and 6 present
the fraction of binary and non-binary discrete problems, respectively, solved by each solver
within the optimality tolerance. MISO outperforms all other solvers on binary problems.
More specifically, MISO can solve 81% of the binary problems, almost twice as many as
the second best performers, DAKOTA/SOGA and NOMAD, can solve. All other solvers can
solve less than 39% of binary problems. DAKOTA/MADS, MISO, NOMAD, and SNOBFIT
are the best performers on non-binary discrete problems, solving 80−92% of the problems.
MIDACO can solve 51% of these problems, while all other solvers can solve less than 38%
of the problems.

Figure 7 presents the fraction of mixed-integer problems solved by each solver. NOMAD
leads over the entire range of function evaluations, finding an optimal solution on 84%

123

Journal of Global Optimization

Fig. 7 Fraction of mixed-integer problems solved as a function of allowable number of function evaluations

of the problems. DFLBOX, DFLGEN, MISO, and SNOBFIT are also performing well in
this category, solving 60−74% of the problems. Contrary to their poor performance on
pure-integer problems, DFLBOX and DFLGEN are able to solve a significant number of
mixed-integer problems. On the other hand, DAKOTA/SOGA performed much better on
pure-integer problems (solved 31% of the problems) than on mixed-integer problems (solved
13% of the problems). DAKOTA/SOGA had the worst performance, solving only 16% of the
problems. NOMAD is the best solver for solving this collection of mixed-integer problems,
followed by DFLBOX, DFLGEN, MISO, and SNOBFIT.

The computational results show that only two solvers can solve more than half of the
problems. One factor that may significantly impact solver performance is the problem size.
To investigate the effect of size on problem performance, we divided the problem set into
three categories: (i) small problems with one to ten variables, (ii) medium problems with 11
to 50 variables, and (iii) large problems with 51 to 500 variables. The problem set includes
52 small problems, 102 medium problems, and 113 large problems.

Figure 8 presents the fraction of small problems solved by each solver within the optimal-
ity tolerance. Eight solvers were able to solve more than 84% of the problems with one to 10
variables. More specifically, DAKOTA/MADS and NOMAD found an optimal solution on
all of the problems. Additionally, DAKOTA/MADS solved all small problems in less than
178 function evaluations on average. SNOBFIT found an optimal solution on 97% of the
problems, while MIDACO and MISO found an optimal solution on 96% of the problems.
TOMLAB/GLCDIRECT, TOMLAB/GLCFAST, and TOMLAB/GLCSOLVE found an opti-
mal solution on 84% of the problems. TOMLA/MSNLP had the worst performance, only
solving 40% of the problems.

Figure 9 presents the fraction of medium problems solved by each solver within the
optimality tolerance. Similar to small problems, NOMAD was the best solver, solving 93%
of the problems with 11 to 50 variables. DAKOTA/MADS, MISO, and SNOBFIT are also
performing well, solving 82% and 85% of the problems, respectively. On the other hand,
TOMLAB/MSNLP had the worst performance on this collection by solving only 11% of the
problems.

123

Journal of Global Optimization

Fig. 8 Fraction of small problems (one to ten variables) solved as a function of allowable number of function
evaluations

Fig. 9 Fraction of medium problems (11 to 50 variables) solved as a function of allowable number of function
evaluations

Figure 10 presents the fraction of large problems solved by each solver. All solvers had
lower success rates for these problems in comparison to their performance for smaller prob-
lems. MISO was able to solve 59% of the problems, followed by NOMAD and SNOBFIT
that solved 51% and 43% of the problems, respectively. The remaining solvers solved fewer
than 28% of the problems. TOMLAB/MSNLP did not solve any of these problems.

5.3 Improvement from starting point

Moré and Wild [50] proposed a benchmarking procedure for derivative-free optimization
solvers that measures each solver’s ability to improve a starting point. For a given 0 ≤ τ ≤ 1
and starting point x0, a solver is considered to have successfully improved the starting point

123

Journal of Global Optimization

Fig. 10 Fraction of large problems (51 to 500 variables) solved as a function of allowable number of function
evaluations

if

fx0 − fsolver ≥ (1 − τ)(f (x0) − fL)

where f (x0) is the objective value at the starting point, fsolver is the solution reported by
the solver, and fL is the global solution. We used this measure to evaluate the best-case
performance of each solver. In other words, a problem was considered solved by a solver
if the best solution from the five runs improved the associated starting point by at least a
fraction of 1 − τ of the largest possible reduction. The starting points were drawn from a
uniform distribution from the box-bounded region.

Figure 11 presents the fraction of problems for which the starting point was improved.
NOMAD improved the starting points for 85% of the problems for τ = 1e−1, and its ability
to improve the starting points is slightly reduced for smaller values of τ . MISO improved the
starting points for 96% of the problems for τ = 1e−1, but its ability to improve the starting
points dropped considerably for smaller values of τ . SNOBFIT improved the starting points
for 80% of the problems for τ = 1e−1, and its ability to improve the starting points is slightly
reduced for smaller values of τ . DAKOTA/SOGA and MIDACO are also performing well
for τ = 1e−1 but they are not very efficient for larger values of τ .

In Section C of the Online Supplement, we present the fraction of problems for which
starting points were improved for each type of problem, i.e., (i) pure-integer and mixed-
integer problems, and (ii) small, medium and large problems. The results are very similar to
those in the figures of this section and demonstrate higher success rates for smaller problems.
More specifically, NOMAD leads over most values of τ in all categories. DAKOTA/SOGA
improved the starting points for larger values of τ , but its performance dropped considerably
for smaller values of τ .

5.4 Minimal sufficient set of solvers

The computational results revealed that MISO and NOMAD are clearly superior to other
MIDFO solvers for the problems considered in this study. However, neither solver was able

123

Journal of Global Optimization

Fig. 11 Fraction of problems for which starting points were improved within 2500 function evaluations vs. τ
values

to find an optimal solution for all our test problems. For instance,NOMADsolved only 51%of
the large problems, while MISO solved only 60% of the mixed-integer problems. Therefore,
it is worthwhile to find a minimal cardinality subset of the solvers capable of collectively
solving as many problems in our test set as possible. Toward this end, we considered the
best solution derived by each solver in the five runs. For each problem size, we first identify
all problems that can be solved. Then, we determine the smallest number of solvers that
collectively solve all these problems. A solver is not included in a minimally sufficient
set of solvers if the problems solved by this solver form a strict subset of the problems
solved by another solver. Figure 12 presents the minimum number of solvers required to
solve the problems in our collection broken down by problem type. BFO, DAKOTA/SOGA,
DFLBOX, MISO, NOMAD, and SNOBFIT collectively solve 93% of all problems and 92%
of the pure-integer problems. Finally, DFLBOX, NOMAD, and SNOBFIT collectively solve
95% of the mixed-integer problems. Interestingly, even though MISO is a very good solver
for all problem classes, it is not in the minimal set of solvers for the mixed-integer problems
because it is completely dominated by NOMAD for these problems. On the other hand,
MISO contributes the most on the solution of the pure-integer problems.

Figure 13 presents the minimum sufficient number of solvers as a function of problem
size. NOMAD solved all small problems and 93% of the medium problems, while MISO
solved 54% of the large problems. Finally, BFO, DFLBOX,MISO, NOMAD, and SNOBFIT
collectively solved 85% of the large problems.

5.5 Variance of the results

The previous figures were presented in terms of the best results among five problem instances
for each solver with a limit of 2500 function evaluations. In this subsection, we discuss the
variance of the results, as many solvers have varying performance as a function of the starting
point given as input and random seeds used in the computations. Although DAKOTA/SOGA
does not utilize the provided starting points, it was executed five times since it is a stochastic
solver. TOMLAB/GLCDIRECT, TOMLAB/GLCFAST, and TOMLAB/GLCSOLVERwere

123

Journal of Global Optimization

Fig. 12 Minimum sufficient number of solvers as a function of problem type

Fig. 13 Minimum sufficient number of solvers as a function of problem size

only run once since they do not utilize the provided starting points and they are deterministic
solvers.

The difference in scales of the global solutions and the range of values of the objective
function of the test problems make a direct comparison difficult. Therefore, we scale the
objective function values as follows:

fscaled = 1 − | fL − fsolver |
(1e−10 + | fL |)

where fsolver is a solution obtained by the solver and fL is the global solution. If fscaled < 0
(i.e., the optimality gap is larger than 100%), we set the scaled objective function value equal
to 0. Hence, the resulting scaled objective function value is in the interval [0, 1]. A value of
1 corresponds to the global solution, while a value of 0 corresponds to a solution with an
optimality gap of larger than or equal to 100%.

Figure 14 presents the average scaled best, mean, median, andworst results among the five
optimization instances for all test problems. BFO, DAKOTA/MADS, DFLBOX, DFLGEN,
MIDACO, MISO, NOMAD, SNOBFIT, and TOMLAB/MSNLP use the starting point pro-
vided, while the remaining solvers do not use it. As expected, most local solvers and global

123

Journal of Global Optimization

Fig. 14 Scaled results for the best, mean, median, and worst result among the five optimization instances for
each solver (larger values are better)

stochastic and hybrid solvers produce varying results in the different runs because of the
starting point given as input and the random seeds used in the computations. However, solu-
tion variability is small for all solvers, indicating that starting points and random seeds do
not significantly affect them. The solver with the largest variability is DAKOTA/MADS.

5.6 Computational effort

In this section, two metrics are considered in comparing the computational effort of differ-
ent solvers: (i) the number of functions evaluations required by each solver, and (ii) each
solver’s execution time (CPU time). By combining former analysis on solution quality and
computational effort, further analysis is then proposed to show solver efficiency in solving
the problems of the testbed. Depending on whether or not an evaluation of the objective func-
tion is time-consuming, different metrics are more important for obtaining a solution faster.
Since the test problems are algebraically and computationally simple and small, the total time
required for function evaluations for all runs was negligible. Most of the solvers’ execution
time was spent on processing function values and determining the sequence of iterates. In
cases where the evaluation of the objective function is not time-consuming, the execution
time of the solvers is more important. However, in applications where an evaluation of the
objective function requires a significant amount of time, the number of function evaluations
that the solvers perform is the factor that determines computational efficiency. Global opti-
mization methods will perform more iterations and will likely require more execution time
than local methods.

Tables 4 and 5 present the computational efficiency of the solvers in terms of function
evaluations and execution time. Table 4 shows that function evaluations of various solvers
differ greatly. MIDACO, MISO, SNOBFIT, and all TOMLAB solvers require more than
2000 function evaluations. In some cases, this is due to the solver performing a large number
of samples at early function evaluations. In other cases, solvers employ restart strategies to
minimize the likelihood of getting trapped in local solutions. As mentioned before, these

123

Journal of Global Optimization

Fig. 15 Efficiency of solvers as a function of the number of function evaluations

methods are global optimization methods and thus require more function evaluations. BFO,
DAKOTA/MADS, DAKOTA/SOGA, and NOMAD require 1400 to 2000 function evalu-
ations, while DFLBOX, and DFLGEN require fewer than 1138 function evaluations. On
the other hand, most solvers can find the best solution on relative few function evaluations.
DFLBOX, DFLGEN, and NOMAD find their best solution in less than 650 function evalu-
ations on average. In terms of execution time, all solvers, except for the DAKOTA solvers,
MISO, NOMAD, and SNOBFIT, need less than 43 seconds on average to solve the instances,
regardless of problem size. The DAKOTA solvers, MISO, NOMAD, and SNOBFIT require
considerably more time to solve the problems. DAKOTA, MISO, and SNOBFIT demand
CPU times that increase with problem size. Interestingly, NOMAD requires fewer iterations
for large than medium problems and solves large problems faster. Even though MIDACO
and TOMLAB solvers implement global optimization methods, they do not require much
time compared to other global methods like MISO, NOMAD, and SNOBFIT.

Figure 15 presents the efficiency of each solver in terms of the number of function evalua-
tions performed. The average number of function evaluations, represented by the horizontal
axis, presents the computational effort of each solver, while the vertical axis indicates the
quality of solutions in terms of the percentage of problems solved. Solvers that are located on
the upper left corner of the figure indicate good efficiency. Approaches found on the lower
right area indicate poor efficiency. BFO, DAKOTA/MADS, DAKOTA/SOGA, DFLGEN,
MIDACO, MISO, NOMAD, SNOBFIT, TOMLAB/GLCDIRECT, TOMLAB/GLCFAST,
and TOMLAB/GLCSOLVE required more than 1135 function evaluations and solved more
than 31% of the problems. The least efficient solver is TOMLAB/MSNLP, which required
2474 function evaluations on average and solved 12% of the problems. DFLBOX required
only 750 function evaluations on average and solved 38% of the problems. Figure 15 can also
be interpreted as a Pareto front, in which case DAKOTA/MADS, DFLBOX, and NOMAD
dominate all others.

Figure 16 presents the efficiency of each solver in terms of execution time. Even though
MISO solved 76% of the problems, it required 4385 seconds on average. Similarly, NOMAD
solved 77% of the problems, but it required 2229 seconds on average. DAKOTA/MADS
solved 56% of the problems requiring 1266 seconds on average, while SNOBFIT solved

123

Journal of Global Optimization

Ta
bl
e
4

C
om

pu
ta
tio

na
l
ef
fo
rt
of

so
lv
er
s
in

te
rm

s
of

fu
nc
tio

n
ev
al
ua
tio

ns
(t
ot
:
av
er
ag
e
to
ta
l
nu

m
be
r
of

fu
nc
tio

n
ev
al
ua
tio

ns
,
op

t:
av
er
ag
e
fu
nc
tio

n
ev
al
ua
tio

ns
by

w
hi
ch

be
st

so
lu
tio

n
w
as

fo
un

d)

So
lv
er

A
ll
pr
ob

le
m
s

Sm
al
lp

ro
bl
em

s
M
ed
iu
m

pr
ob

le
m
s

L
ar
ge

pr
ob

le
m
s

to
t

op
t

to
t

op
t

to
t

op
t

to
t

op
t

B
FO

18
98

17
88

14
30

12
47

16
82

15
80

23
09

22
25

D
A
K
O
TA

/M
A
D
S

14
30

12
47

15
2

77
94

4
78

7
24

59
22

01

D
A
K
O
TA

/S
O
G
A

19
77

17
97

13
02

10
41

19
70

17
48

22
95

21
90

D
FL

B
O
X

75
0

36
1

13
1

92
38

7
16

8
13

65
65

9

D
FL

G
E
N

11
36

48
2

23
7

11
3

84
1

24
1

18
18

86
9

M
ID

A
C
O

25
00

16
42

25
00

72
0

25
00

15
47

25
00

21
10

M
IS
O

24
98

10
84

24
92

67
7

25
00

80
9

25
00

15
18

N
O
M
A
D

17
30

64
9

58
6

63
22

51
41

2
17

87
11

32

SN
O
B
FI
T

24
64

61
8

23
73

52
24

71
46

3
25

00
10

18

T
O
M
L
A
B
/G

L
C
D
IR

E
C
T

21
62

10
65

23
11

86
2

22
91

12
45

19
79

99
5

T
O
M
L
A
B
/G

L
C
FA

ST
24

18
14

40
23

25
83

1
24

06
13

57
24

73
17

94

T
O
M
L
A
B
/G

L
C
SO

LV
E

24
74

12
35

23
77

88
7

24
96

13
74

25
00

12
69

T
O
M
L
A
B
/M

SN
L
P

24
74

13
47

23
77

87
3

24
96

13
93

25
00

15
24

123

Journal of Global Optimization

Ta
bl
e
5

C
om

pu
ta
tio

na
le
ff
or
to

f
so
lv
er
s
in

te
rm

s
of

av
er
ag
e
ex
ec
ut
io
n
tim

e
(s
)

So
lv
er

A
ll
pr
ob

le
m
s

Sm
al
lp

ro
bl
em

s
M
ed
iu
m

pr
ob

le
m
s

L
ar
ge

pr
ob

le
m
s

B
FO

16
12

13
21

D
A
K
O
TA

/M
A
D
S

12
66

11
22

8
27

81

D
A
K
O
TA

/S
O
G
A

69
3

68
24

7
13

82

D
FL

B
O
X

26
3

14
48

D
FL

G
E
N

42
6

33
68

M
ID

A
C
O

21
19

20
23

M
IS
O

43
85

11
20

17
23

82
90

N
O
M
A
D

22
29

10
42

36
13

15
26

SN
O
B
FI
T

20
8

57
81

39
1

T
O
M
L
A
B
/G

L
C
D
IR

E
C
T

19
18

18
20

T
O
M
L
A
B
/G

L
C
FA

ST
21

19
19

24

T
O
M
L
A
B
/G
L
C
SO

LV
E

22
20

21
25

T
O
M
L
A
B
/M

SN
L
P

21
18

19
23

123

Journal of Global Optimization

Fig. 16 Efficiency of solvers in terms of execution time

69% of the problems requiring 208 seconds. The best solvers in terms of time efficiency were
MIDACO, TOMLAB/GLCDIRECT, TOMLAB/GLCFAST, and TOMLAB/GLCSOLVE,
which solved 37−43% of the problems, requiring less than 23 seconds. BFO, DFLBOX,
and DFLGEN were less efficient than the aforementioned solvers as they solved more than
31% of the problems requiring less than 43 seconds. The remaining solvers were not very
efficient because of either large execution times (DAKOTA/SOGA) or the small fraction of
problems that they solved (TOMLAB/MSNLP).

6 Conclusions

Although significant progress has been made on the algorithmic and theoretical aspects of
derivative-free optimization over the past three decades, algorithms addressing problemswith
discrete variables have not yet attracted much attention. In order to assess the current state-
of-the-art in this area, in this paper, we presented a systematic comparison of thirteen mixed-
integer derivative-free optimization implementations on a large collection of test problems.
Our computational results show that the existing solvers cannot solve large problems and
pure-integer problems efficiently.

Figure 17 presents the fraction of problems solved to optimality by all solvers collectively.
Solvers were able to solve 93% of the problems. Mixed-integer problems are easier to be
solved to optimality than pure-integer problems. Solvers found the optimal solution for 95%
of the mixed-integer problems and 92% of the pure-integer problems. Moreover, non-binary
discrete problems are easier to be solved to optimality than binary problems. Solvers were
able to solve 85% and 99% of the binary and non-binary discrete problems, respectively.
Additionally, solvers are very efficient when solving problems with up to 50 variables. More
specifically, solvers found the optimal solution on all small problems (one to ten variables),
98% of the medium problems (11 to 50 problems), and 85% of the large problems (51 to 500
variables). Moreover, solvers found the optimal solution on 79% of the large pure-integer
problems.

123

Journal of Global Optimization

Fig. 17 Problems solved by all solvers collectively as a function of problem type and size

The open-source solvers MISO and NOMAD provided the best solutions among all the
solvers tested. MISO is the best performer on large and binary problems, while NOMAD
outperforms all solvers onmixed-integer, non-binary discrete, small, andmedium-sized prob-
lems. DAKOTA/MADS and SNOBFIT also performedwell onmost types of problems. BFO,
DFLBOX, MISO, NOMAD, and SNOBFIT collectively solve 93% of the problems used in
this study.

Overall, existing algorithms in this field are complementary in their performance. They
should be used collectively rather than individually. The collection of current solvers is
capable of solving most small and even medium-sized problems. Clearly, there is a need
for the development of algorithms and implementations for large-scale problems. Future
work should also investigate the computational performance of derivative-free optimization
algorithms on constrained problems.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10898-021-01085-0.

Acknowledgements We thank the anonymous referees, whose constructive comments helped improve our
manuscript.

Data availability All data generated or analyzed during this study are available from https://sahinidis.coe.
gatech.edu/bbo?q=midfo.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

https://doi.org/10.1007/s10898-021-01085-0
https://doi.org/10.1007/s10898-021-01085-0
https://sahinidis.coe.gatech.edu/bbo?q=midfo
https://sahinidis.coe.gatech.edu/bbo?q=midfo
http://creativecommons.org/licenses/by/4.0/

Journal of Global Optimization

References

1. Abramson, M.A., Audet, C., Chrissis, J.W., Walston, J.G.: Mesh adaptive direct search algorithms for
mixed variable optimization. Optim. Lett. 3, 35–37 (2009)

2. Abramson, M.A., Audet, C., Couture, G., Dennis, Jr., J.E., Le Digabel, S.: The Nomad project (Current
as of 15 March, 2021). http://www.gerad.ca/nomad/

3. Abramson, M.A., Audet, C., Dennis, J.E., Jr.: Filter pattern search algorithms for mixed variable con-
strained optimization problems.Department ofComputational andAppliedMathematics, RiceUniversity,
Tech. rep. (2004)

4. Abramson,M.A.,Audet,C.,Dennis, J.E., Jr., LeDigabel, S.:OrthoMADS: a deterministicMADS instance
with orthogonal directions. SIAM J. Optim. 20, 948–966 (2009)

5. Adams, B.M., Ebeida, M.S., Eldred, M.S., Geraci, G., Jakeman, J.D., Maupin, K.A., Monschke, J.A.,
Swiler, L.P., Stephens, J.A., Vigil, D.M., Wildey, T.M., Bohnhoff, W.J., Dalbey, K.R., Eddy, J.P., Hooper,
R.W., Hu, K.T., Hough, P.D., Ridgway, E.M., Rushdi, A.: DAKOTA, a multilevel parallel object-oriented
framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity anal-
ysis: version 6.5 user’s manual. Sandia National Laboratories, Albuquerque, NM and Livermore, CA
(2016). https://dakota.sandia.gov/

6. Audet, C., Béchard, V., Le Digabel, S.: Nonsmooth optimization through mesh adaptive direct search and
variable neighborhood search. J. Glob. Optim. 41, 299–318 (2008)

7. Audet, C., Dennis, J.E., Jr.: Pattern search algorithms for mixed variable programming. SIAM J. Optim.
11, 573–594 (2000)

8. Audet, C., Dennis, J.E., Jr.: Analysis of generalized pattern searches. SIAM J. Optim. 13, 889–903 (2003)
9. Audet, C., Dennis, J.E., Jr.: Mesh adaptive direct search algorithms for constrained optimization. SIAM

J. Optim. 17, 188–217 (2006)
10. Audet, C., Hare, W.: Derivative-free and Blackbox Optimization. Springer, Cham (2017)
11. Audet, C., Le Digabel, S., Tribes, C.: The mesh adaptive direct search algorithm for granular and discrete

variables. SIAM J. Optim. 29, 1164–1189 (2019)
12. Boneh, A., Golan, A.: Constraints’ redundancy and feasible region boundedness by random feasible point

generator (RFPG). In: Third European Congress on Operations Research (EURO III). Amsterdam (1979)
13. Cao, Y., Jiang, L., Wu, Q.: An evolutionary programming approach to mixed-variable optimization prob-

lems. Appl. Math. Model. 24, 931–942 (2000)
14. Chipperfield, A.J., Fleming, P.J., Fonseca, C.M.: Genetic algorithm tools for control systems engineering.

In: Proceedings of Adaptive Computing in Engineering Design and Control, vol. 128, p. 133 (1994)
15. Ciccazzo, A., Latorre, V., Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free robust optimization for circuit

design. J. Optim. Theory Appl. 164, 842–861 (2015)
16. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-free Optimization. SIAM, Philadel-

phia (2009)
17. Costa, A., Nannicini, G.: RBFOpt: an open-source library for black-box optimization with costly function

evaluations. Math. Program. Comput. 10, 597–629 (2018)
18. Custódio, A.L., Vicente, L.N.: Using sampling and simplex derivatives in pattern search methods. SIAM

J. Optim. 18, 537–555 (2007)
19. Davis, E., Ierapetritou, M.: A kriging based method for the solution of mixed-integer nonlinear programs

containing black-box functions. J. Glob. Optim. 43, 191–205 (2009)
20. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth

International Symposium on Micro Machine and Human Science, pp. 39–43. Nagoya, Japan (1995)
21. Fermi, E., Metropolis, N.: Numerical solution of minimum problem. Los Alamos Unclassified Report

LA–1492, Los Alamos National Laboratory, Los Alamos (1952)
22. Fowler, K., Reese, J., Kees, C., Dennis, J., Jr., Kelley, C., Miller, C., Audet, C., Booker, A., Couture, G.,

Darwin, R., Farthing, M., Finkel, D., Gablonsky, J., Gray, G., Kolda, T.: Comparison of derivative-free
optimization methods for groundwater supply and hydraulic capture community problems. Adv. Water
Resour. 31, 743–757 (2008)

23. García-Palomares, U., Costa-Montenegro, E., Asorey-Cacheda, R., González-Castaño, F.: Adapting
derivative free optimization methods to engineering models with discrete variables. Optim. Eng. 13,
579–594 (2012)

24. Gross, B., Roosen, P.: Total process optimization in chemical engineering with evolutionary algorithms.
Comput. Chem. Eng. 22, S229–S236 (1998)

25. Hemker, T., Fowler, K.R., Farthing, M.W., von Stryk, O.: A mixed-integer simulation-based optimization
approach with surrogate functions in water resources management. Optim. Eng. 9, 341–360 (2008)

26. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press (1975)

123

http://www.gerad.ca/nomad/
https://dakota.sandia.gov/

Journal of Global Optimization

27. Holmström, K., Göran, A.O., Edvall, M.M.: User’s guide for TOMLAB/OQNLP. Tomlab Optimization
(2007). http://tomopt.com

28. Holmström, K., Göran, A.O., Edvall, M.M.: User’s guide for TOMLAB 7. Tomlab Optimization (Current
as of 15 March, 2021). http://tomopt.com

29. Holmström, K., Quttineh, N.H., Edvall, M.M.: An adaptive radial basis algorithm (ARBF) for expensive
black-box mixed-integer constrained global optimization. Optim. Eng. 9, 311–339 (2008)

30. Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical problems. J. Assoc. Comput.
Mach. 8, 212–219 (1961)

31. Huyer, W., Neumaier, A.: Global optimization by multilevel coordinate search. J. Glob. Optim. 14, 331–
355 (1999)

32. Huyer, W., Neumaier, A.: SNOBFIT—stable noisy optimization by branch and fit. ACM Trans. Math.
Softw. 35, 1–25 (2008)

33. Jones, D.R.: The DIRECT global optimization algorithm. In: Floudas, C.A., Pardalos, P.M. (eds.) Ency-
clopedia of Optimization, vol. 1, pp. 431–440. Kluwer Academic Publishers, Boston (2001)

34. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Con-
ference on Neural Networks, pp. 1942–1948. Piscataway, NJ, USA (1995)

35. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680
(1983)

36. Kleijnen, J.P.C., Van Beers,W., Van Nieuwenhuyse, I.: Constrained optimization in expensive simulation:
novel approach. Eur. J. Oper. Res. 202, 164–174 (2010)

37. Laguna, M., Gortázar, F., Gallego, M., Duarte, A., Martí, R.: A black-box scatter search for optimization
problems with integer variables. J. Glob. Optim. 58, 497–516 (2014)

38. Larson, J., Leyffer, S., Palkar, P., Wild, S.: A method for convex black-box integer global optimization
(2019). arXiv:1903.11366

39. Lewis, R.M., Torczon, V.J.: Pattern search algorithms for bound constrained minimization. SIAM J.
Optim. 9, 1082–1099 (1999)

40. Liao, T., Socha, K., de Oca, M., Stützle, T., Dorigo, M.: Ant colony optimization for mixed-variable
optimization problems. IEEE Trans. Evol. Comput. 18, 503–518 (2013)

41. Liu, J., Ploskas, N., Sahinidis, N.: Tuning baron using derivative-free optimization algorithms. J. Glob.
Optim. 74(4), 611–637 (2019)

42. Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free methods for bound constrained mixed-integer optimiza-
tion. Comput. Optim. Appl. 53, 505–526 (2012)

43. Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free methods for mixed-integer constrained optimization
problems. J. Optim. Theory Appl. 164, 933–965 (2015)

44. Liuzzi, G., Lucidi, S., Rinaldi, F.: An algorithmic framework based on primitive directions and nonmono-
tone line searches for black-box optimization problems with integer variables. Math. Program. Comput.
12, 673–702 (2020)

45. Liuzzi, G., Lucidi, S., Sciandrone, M.: Sequential penalty derivative-free methods for nonlinear con-
strained optimization. SIAM J. Optim. 20, 2614–2635 (2010)

46. Lucidi, S.: DFL—derivative-free library (current as of 15 March, 2021). http://www.dis.uniroma1.it/
~lucidi/DFL/

47. Lucidi, S., Piccialli, V., Sciandrone, M.: An algorithm model for mixed variable programming. SIAM J.
Optim. 15, 1057–1084 (2005)

48. Lucidi, S., Sciandrone, M.: A derivative-free algorithm for bound constrained optimization. Comput.
Optim. Appl. 21, 119–142 (2002)

49. Matheron, G.: Principles of geostatistics. Econ. Geol. 58, 1246–1266 (1967)
50. Moré, J., Wild, S.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20, 172–191

(2009)
51. Müller, J.: Miso: mixed-integer surrogate optimization framework. Optim. Eng. 17, 177–203 (2016)
52. Müller, J.: Miso: mixed-integer surrogate optimization framework (current as of 15March, 2021). https://

optimization.lbl.gov/downloads#h.p_BjSaeAORU9gm
53. Müller, J., Shoemaker,C.A., Piché,R.: SO-MI: a surrogatemodel algorithm for computationally expensive

nonlinear mixed-integer black-box global optimization problems. Comput. Oper. Res. 40, 1383–1400
(2013)

54. Müller, J., Shoemaker, C.A., Piché, R.: SO-I: a surrogate model algorithm for expensive nonlinear integer
programming problems including global optimization applications. J. Glob. Optim. 59, 865–889 (2014)

55. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)
56. Neumaier, A.: SNOBFIT—stable noisy optimization by branch and FIT (current as of 15 March, 2021).

http://www.mat.univie.ac.at/~neum/software/snobfit/

123

http://tomopt.com
http://tomopt.com
http://arxiv.org/abs/1903.11366
http://www.dis.uniroma1.it/~lucidi/DFL/
http://www.dis.uniroma1.it/~lucidi/DFL/
https://optimization.lbl.gov/downloads#h.p_BjSaeAORU9gm
https://optimization.lbl.gov/downloads#h.p_BjSaeAORU9gm
http://www.mat.univie.ac.at/~neum/software/snobfit/

Journal of Global Optimization

57. Newby, E., Ali, M.M.: A trust-region-based derivative free algorithm for mixed integer programming.
Comput. Optim. Appl. 60, 199–229 (2015)

58. Ploskas, N., Laughman, C., Raghunathan, A., Sahinidis, N.: Optimization of circuitry arrangements for
heat exchangers using derivative-free optimization. Chem. Eng. Res. Des. 131, 16–28 (2018)

59. Porcelli, M., Toint, P.L.: BFO, a trainable derivative-free brute force optimizer for nonlinear bound-
constrained optimization and equilibrium computations with continuous and discrete variables. ACM
Trans. Math. Softw. 44, 1–25 (2017)

60. Powell, M.J.D.: The BOBYQA algorithm for bound constrained optimization without derivatives. Tech.
rep., Department of Applied Mathematics and Theoretical Physics, University of Cambridge (2009)

61. Rashid, K., Ambani, S., Cetinkaya, E.: An adaptive multiquadric radial basis function method for expen-
sive black-box mixed-integer nonlinear constrained optimization. Eng. Optim. 45, 185–206 (2013)

62. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of
software implementations. J. Glob. Optim. 56, 1247–1293 (2013)

63. Sauk, B., Ploskas, N., Sahinidis, N.: GPU parameter tuning for tall and skinny dense linear least squares
problems. Optim. Methods Softw. 35, 638–660 (2018)

64. Schlüter, M., Egea, J.A., Banga, J.R.: Extended ant colony optimization for non-convex mixed integer
nonlinear programming. Comput. Oper. Res. 36, 2217–2229 (2009)

65. Schlüter, M., Gerdts, M.: The oracle penalty method. J. Glob. Optim. 47, 293–325 (2010)
66. Schlüter, M., Munetomo, M.: MIDACO user guide. MIDACO-SOLVER (2016). http://www.midaco-

solver.com/
67. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Eur. J. Oper. Res. 185, 1155–

1173 (2008)
68. Spendley, W., Hext, G.R., Himsworth, F.R.: Sequential application for simplex designs in optimisation

and evolutionary operation. Technometrics 4, 441–461 (1962)
69. Sriver, T.A., Chrissis, J.W., Abramson, M.A.: Pattern search ranking and selection algorithms for mixed

variable simulation-based optimization. Eur. J. Oper. Res. 198, 878–890 (2009)
70. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math.

Program. 103, 225–249 (2005)
71. Toint, P.L., Porcelli, M.: BFO—brute-force optimizer (current as of 15March, 2021). https://sites.google.

com/site/bfocode/home
72. Torczon, V.J.: On the convergence of pattern search algorithms. SIAM J. Optim. 7, 1–25 (1997)
73. Vicente, L.N.: Implicitly and densely discrete black-box optimization problems. Optim. Lett. 3, 475–482

(2009)
74. Vigerske, S.: Minlplib 2. In: Proceedings of the XII Global OptimizationWorkshopMAGO, pp. 137–140

(2014)
75. Winfield, D.: Function and functional optimization by interpolation in data tables. Ph.D. thesis, Harvard

University, Cambridge, MA (1969)
76. Winslow, T.A., Trew, R.J., Gilmore, P., Kelley, C.T.: Simulated performance optimization of GaAs MES-

FET amplifiers. In: IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor
Devices and Circuits, pp. 393–402. Piscataway, NJ (1991)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://www.midaco-solver.com/
http://www.midaco-solver.com/
https://sites.google.com/site/bfocode/home
https://sites.google.com/site/bfocode/home

	Review and comparison of algorithms and software for mixed-integer derivative-free optimization
	Abstract
	1 Introduction
	2 MIDFO methods
	2.1 Local search algorithms
	2.2 Global search algorithms
	2.3 Milestones in the field

	3 Mixed-integer derivative-free optimization solvers
	3.1 BFO
	3.2 DAKOTA solvers
	3.3 DFL solvers
	3.4 MIDACO
	3.5 MISO
	3.6 NOMAD
	3.7 SNOBFIT
	3.8 TOMLAB solvers

	4 Illustrative examples
	5 Computational comparisons
	5.1 Experimental setup
	5.2 Computational results
	5.3 Improvement from starting point
	5.4 Minimal sufficient set of solvers
	5.5 Variance of the results
	5.6 Computational effort

	6 Conclusions
	Acknowledgements
	References

