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A B S T R A C T

This study focused on the differentiation of Mediterranean honeys based on their geographical and botanical 
origin using FTIR-ATR spectroscopy combined with chemometrics. A total of 156 commercial honey samples, 
classified as thyme, pine, or polyfloral, were gathered from five Mediterranean countries, namely Greece, Malta, 
Spain, Tunisia, and Turkey. Melissopalynological and physicochemical analyses were performed to characterize 
the honey samples. The geographical and botanical origins were identified using Principal Component Analysis 
(PCA) in conjunction with Random Forest (RF) and Data-Driven Soft Independent Modeling of Class Analogies 
(DD-SIMCA). The analysis utilized the spectral range of 1800 – 750 cm− 1, preprocessed with the first derivative. 
Both one-class (DD-SIMCA) and multiclass (RF) classification techniques demonstrated high accuracy, exceeding 
90 % in most cases. Specifically, the best results in terms of differentiation of geographical origin using all 
samples were achieved by DD-SIMCA, yielding over 95 % accuracy for all countries, with the exception of Tunisia 
with an accuracy of 87 %. These findings highlight the robust predictive potential of FTIR-ATR spectroscopy 
combined with chemometric methods for determining both the geographical and botanical origins of honey. This 
methodology provides a fast, non-destructive tool for verifying the origin of Mediterranean honey, contributing 
to improved food traceability and supporting the honey industry.

1. Introduction

Honey, as defined by Council Directive 2001/110/EC, is a natural 
sweetener produced by Apis mellifera bees. It is regarded as a functional 
food due to its rich nutritional profile and diverse biological activities, 
including antioxidant, antimicrobial, and antiulcer properties (Afrin 
et al., 2020). The unique organoleptic and nutritional characteristics of 
honey have driven a growing demand for its consumption, resulting in 

increased production and imports within the European Union (EU im
ported 341,598 tons of honey in 2022, an increase of 110,000 tons 
compared to 2012 (FAO, 2022). However, fraudulent practices, such as 
mislabeling honey’s floral origin or adulterating it with external sugars, 
have emerged as critical issues of concern. Monofloral honey due to its 
distinctive organoleptic properties, typically commands a higher price 
than polyfloral honeys, making it a target for consumer deception. To 
address these issues, the European Union has recognized the need to 
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implement stringent measures to combat mislabeling and adulteration, 
aiming to enhance food traceability and protect consumers.

The identification of honey origin has traditionally relied on melis
sopalynology analysis combined with physical and chemical analyses, 
including moisture content, sugar profile, electrical conductivity etc. 
(Council Directive 2001/110/EC). Although these techniques are 
effective, they are often time-intensive, complex, and require skilled 
personnel. As a result, alternative approaches have been explored to 
more efficiently determine the botanical and geographical origin of 
honey. Recently, several studies have pointed out the effectiveness of 
spectroscopic techniques that focus on acquiring unique fingerprints 
rather than quantifying specific compounds for honey identification. 
Such studies utilized UV–vis spectroscopy (Ansari et al., 2018; de Souza 
et al., 2021; Dimakopoulou-Papazoglou et al., 2024), NIR spectroscopy 
(Guelpa et al., 2017; Huang et al., 2020), NMR (Bertelli et al., 2010; 
Rachineni et al., 2022), Raman spectroscopy (Oroian et al., 2018; Wu 
et al., 2022), fluorescence spectroscopy (Q. Chen et al., 2014; Yan et al., 
2022), and mass spectrometry (Dinca et al., 2015). Fourier Transform 
Infrared Spectroscopy (FTIR) has also been utilized to identify the origin 
and detect adulteration of honey (Cengiz and Durak, 2019; Gallardo-
Velázquez et al., 2009; Se et al., 2018). In addition, several studies have 
employed FTIR-ATR spectroscopy to identify the botanical origin of 
honey (Ciulu et al., 2021; David et al., 2022; Devi et al., 2018; Gok et al., 
2015; Kasprzyk et al., 2018; Orfanakis et al., 2021; Pauliuc et al., 2021; 
Svečnjak et al., 2017), whereas only a few have focused on determining 
its geographical origin (Formosa et al., 2020; Grabato et al., 2022; 
Guyon et al., 2021). Specifically, FTIR spectra in tandem with multi
variate statistical analysis has been successfully applied to classify the 
botanical origin of honey from various countries, including Croatia 
(Svečnjak et al., 2015), Greece (Orfanakis et al., 2021; Tsagkaris et al., 
2023), Italy (Ciulu et al., 2021), India (Devi et al., 2018), Poland 
(Kasprzyk et al., 2018), Romania (David et al., 2022; Guyon et al., 
2021), Turkey (Gok et al., 2015), etc., but there are no studies that 
include samples from various countries at the same time; thus, the 
identification of the geographical origin of the honey samples are pre
sented in this work.

The classification of honey based on its botanical and geographical 
origin has been effectively achieved through the integration of multi
variate analysis and machine learning techniques with various analyt
ical and innovative methodologies (Maione et al., 2019). According to 
the literature, spectral data has been successfully analyzed using prin
cipal component analysis (PCA) in combination with discriminant 
analysis algorithms, including linear discriminant analysis (LDA), par
tial least squares discriminant analysis (PLS-DA), and orthogonal partial 
least squares – discriminant analysis (OPLS-DA) (Ansari et al., 2018; L. 
Chen et al., 2012; David et al., 2022; Devi et al., 2018; Gan et al., 2016; 
Orfanakis et al., 2021). A widely-used machine learning algorithm for 
classification is Random Forest (RF), which employs an ensemble of 
decision trees trained on randomly selected subsets of features and data 
samples. This ensemble approach aggregates the outputs of all the in
dividual trees, thus allowing the model to capture a wide range of pat
terns in the data (Breiman, 2001). RF is a highly promising classification 
algorithm; however, there is only a limited number of studies exploring 
its application for honey identification (Batista et al., 2012; Ciulu et al., 
2021; Dimakopoulou-Papazoglou et al., 2023, 2024; Martinez-Castillo 
et al., 2020). Furthermore, Data-Driven Soft Independent Modeling of 
Class Analogies (DD-SIMCA) is a one-class classification method that can 
be effectively applied to honey discrimination. This supervised classifi
cation technique classifies new samples as belonging to the target class 
based on their degree of similarity to predefined decision criteria. By 
exclusively leveraging information from the target class to optimize the 
model, DD-SIMCA is particularly well-suited for determining whether or 
not a sample belongs to a specific class. Despite the good performance of 
DD-SIMCA, only a limited number of studies have reported its applica
tion in the literature (Ansari et al., 2018; de Souza et al., 2021; 
Dimakopoulou-Papazoglou et al., 2023, 2024; Roshan et al., 2013; 

Suhandy & Yulia, 2021).
To the best of our knowledge, no prior research has focused on 

differentiating the origin of honey in the Mediterranean region, 
considering both its geographical and botanical aspects. Therefore, the 
present study aimed to utilize state-of-the-art machine learning tech
niques, which allow for the simultaneous differentiation of both 
geographical and botanical origin of Mediterranean honey, in order to 
differentiate honey samples from five different Mediterranean countries 
according to their origin using melissopalynology, physicochemical 
analyses, and FTIR spectroscopy combined with multivariate statistical 
analysis. Furthermore, it was the first attempt to evaluate the efficacy of 
both one-class (DD-SIMCA) and multiclass (RF) classification techniques 
for determining honey origin.

2. Materials and methods

2.1. Honey samples

A total of 156 commercial honey samples were gathered either 
directly from beekeepers or from the market across different 
geographical regions of Mediterranean countries. In particular, honey 
samples were collected from Greece (46 samples: 26 thyme, 10 pine, and 
10 polyfloral), Tunisia (42 samples: 31 thyme and 11 polyfloral), Turkey 
(31 samples: 3 thyme, 10 pine, and 18 polyfloral), Spain (27 samples: 17 
thyme and 10 polyfloral), and Malta (10 samples: all polyfloral). All 
samples were harvested during the 2021–2022 season. The samples 
were placed in clean plastic containers and kept refrigerated until 
analysis.

2.2. Melissopalynological analysis

The melissopalynological analysis was conducted following the 
methods described by Louveaux et al. (1978) and Von Der Ohe et al., 
2004. Specifically, 10 g of each honey sample was centrifuged for 10 min 
at 2500 rpm, the supernatant liquid was decanted, and the sediment was 
dried at 40ºC before being mounted with Entellan Rapid (Merck KGaA, 
Madrid, Spain). At least 1200 pollen grains were counted and identified 
from two slides of each honey sample without any chemical treatment. 
The pollen slides were examined at 400x and 1000x magnification to 
identify the pollen types using a light microscope (Nikon Labophot-2 
microscope; Nikon, Tokyo, Japan).

2.3. Physicochemical analysis

Most physicochemical analyses (except for water activity) were 
performed according to the Harmonized Methods of the International 
Honey Commission (IHC Methods, 2009).

Water content (humidity) and total sugars were determined 
following Chataway (1932) and Wedmore (1955). An Abbe-type 
refractometer (Zuzi, mod. 325, Navarra, Spain) was used, obtaining 
the corresponding percentage of water from the Chataway table.

Hydroxymethilfurfural (HMF) determination was made according to 
White method (White, Jr, 1979). A Pharmacia Biotech Ultrospec-3000 
(Uppsala, Sweden) spectrophotometer was used. Results are expressed 
in HMF milligrams per kg of honey.

Electrical conductivity was measured at 20 ◦C in a 20 % (w/v) so
lution of honey (dry matter basis) in deionized water using a Crison 
model 524 conductimeter (Crison Instruments, Barcelona, Spain), ac
cording to Vorwohl (1964). The results were expressed in microSiemens 
per cm (μS/cm).

Measurement of water activity was made by means of a Novasina 
IC.500 AW-LAB apparatus (Lachen, Switzerland).

To obtain the sugar profile, fructose, glucose, sucrose, and maltose 
contents were determined by HPLC (High Pressure Liquid Chromatog
raphy) with RI-detection (Varian ProStar, Prostar 350 refraction index 
detector) using an analytical column containing amine modified silica 
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gel (Agilent, Microsorb 100–3 NH2, SS 150 ×4.6 mm) (IHC Methods, 
2009). The mobile phase (isocratic) was acetonitrile:water (80:20, v/v), 
while the flow was set at 1.3 ml/min.

2.4. ATR-FTIR spectroscopy

Prior to spectral analysis, honey samples were liquified at 40 ◦C for 
1 hour in a water bath to ensure the dissolution of any crystals and 
remove the bubbles. The spectra of honeys were acquired in the mid- 
infrared region of 4000 – 500 cm− 1 using a Fourier-transform infrared 
spectrometer (FTIR 6700 series, JASCO, Tokyo, Japan) fitted with 3- 
reflection ATR diamond (MIRacle ATR, Pike Technologies, Madison, 
Wisconsin, U.S.). A drop of the honey samples was applied to the ATR 
surface and spectra were recorded at room temperature with a resolu
tion of 2 cm− 1 and 32 scans using Spectra Manager (V.2, Jasco, Tokyo, 
Japan). Prior to every measurement, a background air spectrum was 
recorded and then subtracted from the spectra of individual samples. 
The ATR crystal was subjected to a cleaning process using isopropanol 
and drying prior to analyzing the next sample. Five spectra were 
collected per sample, and the resultant average spectrum was used for 
the interpretation of honey’s chemical composition and the construction 
of the chemometric models.

2.5. Spectra pre-processing and chemometric analysis

Before building classification models, various pre-processing tech
niques were evaluated for their effectiveness in removing systematic 
baseline variations from the FTIR spectra. These techniques included 
standard normal variate (SNV), Savitzky–Golay smoothing, and de
rivatives (first and second derivatives calculated with a second order 
polynomial and 11-point window size). Additionally, mean centering 
was performed during the preprocessing stage. The most relevant 
wavelengths were identified by selecting those that yielded the highest 
accuracy during cross-validation iterations.

For the classification models, two approaches were used: a multiclass 
classification method using Random Forest (RF) algorithm, and a one- 
class classification technique using Data Driven - Soft Independent 
Modelling of Class Analogies (DD-SIMCA). A cross-validation approach 
was implemented across all methods, where 80 % of the honey samples 
were randomly designated as the training set, and the remaining 20 % 
were reserved for the test set to perform internal validation. A 10-fold 
cross-validation strategy was utilized. For model construction, RF uti
lized the training dataset comprising 80 % of honey samples from 
multiple classes, with classes defined either by honey type or country of 
origin for botanical or geographical classification, respectively. In 
contrast, Data-Driven Soft Independent Modeling of Class Analogies 
(DD-SIMCA) focused on building models for single-class prediction, 
targeting a specific geographical or botanical origin, using 80 % of the 
honey samples from a particular class as the training set. All models 
were tested at a 5 % significance level (α=0.05). In the case of RF, model 
performance metrics were accuracy, precision, recall, and F1-score, 
while for DD-SIMCA, accuracy, sensitivity, and specificity were used, 
as described in Dimakopoulou-Papazoglou et al. (2024).

Chemometrics analyses, regarding Principal Component Analysis 
(PCA) and RF were conducted in Python using the scikit-learn module, 
while DD-SIMCA models were implemented using a MATLAB code 
available at https://github.com/yzontov/dd-simca.

2.6. Data analysis

Descriptive statistical analysis to determine the average value of the 
analyzed data was performed. The Data Normality Test and the Kol
mogorov–Smirnov Test of Normality were used to assess the normal 
distribution of the data. In addition, Kruskal–Wallis one-way variance 
analysis was conducted to test the hypotheses and Pearson Product 
Moment Correlation Coefficient analysis was used to evaluate the 

relationships between variables. The analysis of the data in the present 
study was conducted using IBM SPSS Statistics (version 26.0) predictive 
analytics software.

3. Results and discussion

3.1. Melissopalynology analysis

Pollen analysis provides a detailed picture of the botanical profile of 
honey samples, which is essential for classifying their botanical origin as 
they must meet specific thresholds according to EU legislation. As 
specified in (Greek Directive 127/2004) Greek Directive 127/2004, 
thyme honey must have a minimum of 18 % thyme pollen grains to be 
recognized as monofloral thyme honey. Thyme Greek honey samples 
showed a mean value of 48 % thyme pollen grains (Thymus spp.), fol
lowed by Tunisian honey samples with 27 %, Spanish with 24 %, and 
Turkish with 19 %. The highest concentration of thyme pollen in Greek 
thyme honeys aligns with findings by Karabagias et al. (2017), who 
studied thyme honeys originated from Greece, Spain, Marocco, and 
Egypt. Additionally, the pollen composition of Greek samples was 
widely represented by Lamiaceae, Asteraceae, Ericaceae, Oleaceae, 
Cistaceae (Cistus spp.), and Rosaceae pollen types, while Apiaceae, 
Fabaceae, and Myrtaceae were found in over 50 % of the samples. Pollen 
from Thymus capitatus, Cistus spp., Olea europaea L., and Erica spp. was 
detected in all honey samples. The occurrence of pollen from 
non-nectar-producing plants, such as Olea europaea and Cistus spp., in 
Greek thyme honey can be attributed to the abundant pollen presence 
and dispersal. Olea europaea and Cistus spp. pollen was also found in 
Spanish thyme honeys but less often than in Greek samples. The wide
spread cultivation of these plants in the Mediterranean explains their 
presence in thyme honey from Greece (Thrasyvoulou and Manikis, 
1995; Tsigouri et al., 2004), Spain (Terrab et al., 2004), and Italy (Di 
Marco et al., 2017). Mediterranean plant families such as Cistaceae, 
Myrtaceae, and Apiaceae were identified in all countries, rendering 
these pollen types potential markers for Mediterranean thyme honeys. 
Differences in pollen were observed within Mediterranean thyme honey 
samples, as depicted in the microscope images in Fig. 1. In this sense, 
Greek samples were characterized by the presence of Ericaceae pollen, 
which was absent in samples from the other countries. Only Spanish 
thyme honeys included Echium plantagineum pollen, while Acacia pollen 
was present only in Tunisian thyme honey. Finally, pollen in Turkish 
samples was characterized by a combination of Asteraceae family, 
Taraxacum spp. and Carduus spp. with presence over 20 % and 10 %, 
respectively.

The majority (>90 %) of the world’s pine honeydew honey is pro
duced in Greece and Turkey. The insect Marchalina hellenica, which in
habits Pinus brutia, is only found in these countries (Duru et al., 2021; 
Karabagias et al., 2014). Honeydew honey is distinguished by the 
presence of honeydew elements, including microscopic algae and fungal 
spores (Özkök et al., 2018). Microscopic examination of all the samples 
showed the presence of fungal spores, with the most frequently observed 
genera being Alternaria, Coleosporium, and Cladosporium, among others, 
consistent with findings by Dimou et al. (2006) for Greek pine honeydew 
honeys. Furthermore, in the present study, Turkish samples showed a 
lower honeydew element-to-pollen grain (HDE/P) ratio compared to 
Greek honeys. Pine honeydew honey produced in Turkey and Greece 
could potentially be distinguished by their HDE/P ratio and pollen 
composition. The HDE/P ratio for Greek samples averaged 10.6, while 
for Turkish samples 7.4. Both ratios are classified as ‘high density su
perior quality pine honey’ (Louveaux et al., 1978; Sorkun, 2008). Dif
ferences in pollen composition were also noted between the two 
countries. Greek samples contained Ericaceae pollen, similar to thyme 
honeys, as well as Castanea sativa, which were absent in Turkish pine 
honeydew honeys. In contrast, Turkish samples were characterized by 
pollen from the Asteraceae family (Taraxacum spp. and Carduus spp.) 
with concentrations exceeding 10 %.
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For the polyfloral samples collected from five Mediterranean coun
tries, i.e., Spain, Greece, Malta, Tunisia, and Turkey, common and 
distinct pollen types were observed, suggesting potential geographical 
markers within the Mediterranean region. Representative microscope 
images of polyfloral honeys from these countries are shown in Fig. 2. As 
with the monofloral honeys described above, Myrtaceae and Cistaceae 
families were found in all the samples. Leguminosae or Fabaceae 
(Plantago spp. and Trifolium spp.) were also observed in most of the 
samples together with Asteraceae (Helianthus annuus, Taraxacum spp. 
and Carduus spp.) but showing differences in the frequency and per
centage in the pollen composition. Echium plantagineum was only found 
in Spanish samples, suggesting it as a potential botanical and 
geographical marker for Spanish honeys. Similarly, Greek and Tunisian 
samples showed values exceeding 15 % for Castanea sativa, which could 
serve as a marker for honeys from these countries. Turkish samples had a 
high diversity, with an average of at least seventeen different pollen 
types. Polyfloral honeys did not display a predominant pollen type, 
though the Myrtaceae family commonly represented the highest per
centage (>20 %) across countries, except in Turkey, where it was lower 
than in other countries.

The pollen analysis provides a detailed picture of the botanical 
composition of honey samples. A principal component analysis (PCA) 
was performed using all samples to understand similarities and differ
ences between the honey samples (Fig. 3). The PCA shows a clear sep
aration of the varietal-country groups. Thyme pollen type (Thymus spp.) 
is responsible for the separation of groups along PC1, with highest 
amount of thyme pollen indicated in Greek honey samples. Polyfloral 
honeys from Turkey seem to have the lowest amounts of Thymus spp. 
and a special composition compared to polyfloral honeys from other 
countries. Pine pollen type (Pinus spp.) influences the separation along 
PC2 with higher values for Greek than for Turkish pine samples.

3.2. Physicochemical analysis

Water content (humidity), total sugars, and water activity are in
dicators of proper maturation of honey and are generally not related to 
botanical or geographical origin. For this project, these determinations 
have been carried out to evaluate the quality of the honey samples. In 
fact, humidity is the most important determination at the time of 
commercialization in view of possible fermentation of honey. According 
to European regulations EC/2001/110, the maximum allowable hu
midity for honey is 20 %. Fig. 4 shows the average values of humidity, 
total sugar contents and water activity per country. The average hu
midity levels for all countries were below 18 %, preventing unwanted 
fermentation, except for Maltese honeys, which may be influenced by 
local climatic conditions.

The electrical conductivity is a parameter linked to the botanical 
origin, and it differs differencing between nectar honeys and honeydew 
honeys. However, there are no established conductivity ranges for 
different monofloral honeys. All thyme honey samples in this study 
exhibited electrical conductivities below 800 µS/cm, which align with 
the threshold set for nectar-origin honeys (European regulation: 
(EU/2014/63, 2014)). Fig. 5 presents the box plot obtained by applying 
the Kruskal-Wallis test for independent samples to the electrical con
ductivity data of thyme honeys. The median conductivity values were 
similar across the four countries, with Tunisia, Spain, Greece, and 
Turkey showing values of 348, 397, 381, and 356 µS/cm, respectively. 
These medians align with the average value of 400 µS/cm reported by 
the International Honey Commission for European thyme honey (Oddo 
et al., 2004). Regarding the value ranges, Spain is the one with the 
greatest dispersion of values (294–673 µS/cm), with Tunisia being the 
geographical origin that shows the narrowest range (204–527 µS/cm). 
The data distribution for Spain was positively skewed, whereas Greece 
showed a negatively skewed distribution (range: 165–575 µS/cm). In 
Turkey (range: 241–513 µS/cm) and Tunisia, distributions were 
observed to be positively and negatively skewed, respectively.

Fig. 1. Optical microscope images for Thymus spp. monofloral honeys from: a) Spain, b) Greece, c) Tunisia, and d) Turkey (1Thymus spp.; 2Ericaceae family; 3Echium 
plantagineum; 4Acacia spp.; 5Asteraceae family).
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Most samples from the five countries were under the criterion of 
40 mg/kg for hydroxymethylfurfural (HMF) that is established by the 
European normative on quality of honey. However, five samples from 
Tunisia (ThTN2, ThTN8, ThTN9, ThTN10, and PfTN10) exceeded this 
limit, likely due to the country’s climatic conditions. As shown in Fig. 4, 
the average HMF content for the Tunisian samples was higher than the 
samples from the other countries, which had similar average values.

In almost all types of honeys, the main monosaccharide present in 
honeys is fructose followed by glucose. The concentrations of these 
carbohydrates, along with their ratio, have been used as indicator for 
honey authentication, and are particularly important for the food in
dustry to ensure the quality of honey. The mean concentrations of sugars 
(fructose, glucose, sucrose, and maltose) in the analyzed honey samples 
are shown in Table 1. For the monofloral thyme honey, the highest 
fructose concentration was presented in Turkish samples, followed by 
Greek, Tunisian, and Spanish. For polyfloral and monofloral pine hon
eys, no significant differences in sugar composition were observed.

3.3. FTIR spectra

Fig. 6 shows the original ATR-FTIR spectra of representative honey 
samples, namely thyme, pine, and polyfloral, in the spectral region of 
4000 – 500 cm− 1. Spectral analysis enabled the identification of 

characteristic absorption bands specific to honey, providing insights into 
its unique features which can be used to determine its origin.

The broad band from 3500 – 3000 cm− 1, peaking at 3293 cm− 1, is 
attributed to the O–H stretching vibration due to the water content 
(Anjos et al., 2015; Gok et al., 2015; Svečnjak et al., 2017). The 3000 – 
2800 cm− 1 range, and specifically at 2932 cm− 1, is linked to C–H 
stretching vibration due to the presence of carbohydrates 
(Gallardo-Velázquez et al., 2009), along with C–H stretching in car
boxylic acids and NH3 stretching of free amino acids, which are at low 
concentrations in honey (Anjos et al., 2015; Gok et al., 2015; Tewari and 
Irudayaraj, 2004).

The 1700 – 1600 cm− 1 region, with a peak at 1643 cm⁻¹ , is associ
ated mainly with O–H stretching and bending vibrations of water, C––O 
stretching of carbohydrates and N–H bending of amide I of proteins, 
which are present at small amounts in honey (Ciulu et al., 2021; Gal
lardo-Velázquez et al., 2009; Kędzierska-Matysek et al., 2023; Tahir 
et al., 2017). The spectra region of 1550 – 1175 cm− 1 is attributed to 
C–H, C–O, and C––C deformations, mainly from carbohydrates, pheno
lics, and flavonols (Gok et al., 2015; Tahir et al., 2017). In particular, the 
peaks at 1414 cm− 1 and 1344 cm− 1 are related to O–H bending of the 
C–OH group and O–CH and C–CH deformation vibrations in carbohy
drate structures (Gallardo-Velázquez et al., 2009; Kędzierska-Matysek 
et al., 2023; Svečnjak et al., 2017). The peak at 1255 cm− 1 is due to C–C 

Fig. 2. Optical microscope images for polyfloral honeys from: a) Spain, b) Greece, c) Tunisia, d) Turkey, and e) Malta (6Myrtaceae family; 7Cistaceae family; 
8Fabaceae family; 9Castanea sativa; 3Echium plantagineum; 5Asteraceae family).
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stretching in the carbohydrate structure (glucose and fructose) and the 
deformation of CH2 (Svečnjak et al., 2017).

The spectral region of 1175 – 950 cm− 1 represents the C–O and C–C 
skeletal stretching vibrations of carbohydrates (Svečnjak et al., 2017). 
Specifically, the band at 1146 cm− 1 is attributed to stretching C–H 

vibration or stretching C–O vibration in carbohydrate structures, while 
at 1100 cm− 1 relates to stretching of the C–O band of the C–O–C linkage. 
According to the literature, the peak at 1148 cm− 1 is characteristic of 
sucrose, the peaks at 1087 cm⁻¹ and 1043 cm⁻¹ indicate the presence of 
glucose and fructose, while the peaks at 983 cm⁻¹ and 965 cm⁻¹ are 

Fig. 3. Principal component analysis of pollen types in honey samples with scores plot (a) and loadings plot (b). Scores are colored according to the varietal-country 
combination (Pf: polyfloral, Pi: pine, Th: thyme, ES: Spain, GR: Greece, MT: Malta, TR: Turkey, TN: Tunisia).

Fig. 4. Average values of humidity (a), total sugar content (b), water activity (c), and HMF (d) for honey samples per country.
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associated with fructose (Anjos et al., 2015; Pauliuc et al., 2021; Vîjan 
et al., 2023). Moreover, the peak at 990 cm− 1 reflects the stretching of 
C–O bonds associated with glycosidic linkages (Wang et al., 2010).

The 950 – 750 cm− 1 region, corresponds to the anomeric region of 
carbohydrates, which is distinctive for each sugar (Gok et al., 2015). 
Within the 950 – 850 cm− 1, the absorption bands are attributed to the 
skeletal C–C vibrations of the carbon backbone in monosaccharides. The 
band at 918 cm− 1 is due to the C–H bending in carbohydrates, while at 
865 cm− 1 are assigned to skeletal C–C stretching vibrations of fructose 
(Svečnjak et al., 2017). Additionally, bands at 817 and 775 cm− 1 are 
linked to C–C–H deformation in carbohydrates, specifically of fructose.

The spectral region of 1800 – 750 cm− 1 provides the most detailed 
and valuable information regarding the chemical composition of honey 
samples. In this range, small variations in the intensity of bands asso
ciated with different sugar fractions, as well as phenolic content were 
observed. Therefore, this specific spectral range, which serves as a 
chemical fingerprint of honey, was selected for determining its 
geographical and botanical origin using multivariate statistical analysis. 
This approach has been successfully demonstrated in previous studies by 
Orfanakis et al. (2021) and Svečnjak et al. (2017).

3.4. Classification methods – chemometrics

Subtle variations in the chemical composition of honey samples, as 
revealed by FTIR spectra, can be effectively analyzed and leveraged to 
determine their botanical and geographical origins using multivariate 
statistical analysis. To assess the effect of different preprocessing 
methods (first- and second-derivative transformation with and without 
SNV) on various spectral ranges (4000 – 750 cm− 1 and 1800 – 
750 cm− 1), we evaluated the total variance explained by the first five 
principal components (PC) (Table 2). The results show that using the 
first derivative on the 1800–750 cm⁻¹ spectral range gives the best 
performance, explaining nearly 96 % of the total variance. Based on 
these findings, the first-derivative transformation was used in all the 
computational results that follow.

After removing systematic bias using preprocessing, PCA was 
initially applied to explore and visualize similarities and differences 
among the honey samples. PCA serves as a dimensionality reduction 
technique that calculates PCs, which account for the variability within 
the original variables. For classification purposes, the optimal number of 
PCs were then used to develop classification models, specifically using 
Random Forest (RF) and DD-SIMCA.

The score and loading plots of the first two PCs from the PCA analysis 
for distinguishing the geographical origin of thyme, pine, and polyfloral 
honey samples are depicted in Fig. 7. For thyme honey samples, clear 
differentiation was achieved (Fig. 7.1.a), with five PCs explaining 
95.7 % of the variance. A strong differentiation was noted for pine 
honey samples also, since their originating from only two geographic 

Fig. 5. Distribution of electrical conductivity (µS/cm) of thyme (a) and polyfloral (b) honey samples by country.

Table 1 
Sugar composition of the honey types according to the varietal-country combi
nation (Th: thyme, Pi: pine, Pf: polyfloral, ES: Spain, GR: Greece, MT: Malta, TR: 
Turkey, TN: Tunisia).

Samples Fructose 
(%)

Glucose 
(%)

Sucrose 
(%)

Maltose 
(%)

F/G F+G

ThGR 38.3 
± 3.9

28.2 
± 2.6

0.5 ± 0.7 1.6 ± 1.7 1.3 
± 0.3

65.0 
± 8.1

ThES 36.1 
± 2.1

25.7 
± 2.5

0.1 ± 0.2 3.7 ± 3.0 1.4 
± 0.1

61.8 
± 3.9

ThTN 36.3 
± 3.0

29.2 
± 2.3

2.8 ± 2.0 5.1 ± 1.9 1.2 
± 0.1

65.5 
± 5.0

ThTR 41.1 
± 0.8

26.0 
± 0.3

0.0 ± 0.0 5.0 ± 0.2 1.6 
± 0.0

67.0 
± 1.0

PiGR 34.6 
± 5.0

26.3 
± 4.6

0.1 ± 0.3 0.0 ± 0.0 1.3 
± 0.1

60.8 
± 9.4

PiTR 32.4 
± 1.4

24.3 
± 1.0

0.0 ± 0.0 3.0 ± 4.1 1.3 
± 0.0

56.7 
± 2.2

PfGR 35.7 
± 5.2

28.9 
± 1.9

0.1 ± 0.2 1.1 ± 0.2 1.3 
± 0.0

64.6 
± 5.9

PfES 35.7 
± 4.8

29.1 
± 2.7

0.2 ± 0.1 1.3 ± 2.8 1.2 
± 0.2

64.7 
± 4.2

PfTN 35.6 
± 3.1

29.3 
± 3.2

2.6 ± 2.1 4.7 ± 2.0 1.1 
± 0.1

64.9 
± 5.4

PfTR 38.7 
± 1.3

30.7 
± 1.7

0.0 ± 0.0 0.3 ± 1.2 1.3 
± 0.1

69.5 
± 2.3

PfMT 35.9 
± 1.8

32.4 
± 2.2

2.4 ± 1.4 3.5 ± 0.9 1.1 
± 0.1

68.4 
± 2.5

Fig. 6. Typical FTIR spectra of thyme, pine, and polyfloral honey samples.
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locations, Greece, and Turkey (Fig. 7.2.a), making it easier to obtain 
good results. Furthermore, a clear geographical distinction was achieved 
among polyfloral honey samples from the five Mediterranean countries, 
with the first five PCs explaining 94.7 % of the variance (Fig. 7.3.a). As 
shown in the loading plots (Figs. 7.1.b, 7.2.b, and 7.3.b), the spectral 
region that most significantly affects the analysis is 1200 – 750 cm− 1, 
related to skeletal stretching vibrations and the anomeric region of 
carbohydrates, while the 1600 – 1700 cm− 1 region also has a secondary 
but notable impact.

In terms of differentiating the botanical origins of Greek honeys, 
thyme honey is clearly distinguishable from pine honey, as shown in 
Fig. 8. Polyfloral honeys, although also differentiated, exhibit some 
similarities with thyme honey. As expected, and confirmed by pollen 
analysis, polyfloral honeys contain a diverse array of pollen types, dis
playing some common pollen types as those found in thyme honey. 
(Fig. 9)

3.4.1. Determination of geographical origin
To identify the geographical origin of honey samples, both one-class 

classification (DD-SIMCA) and multiclass classification (RF) methods 
were utilized. When the Random Forest (RF) algorithm was applied to 
classify all honey samples based on their geographical origin, the model 
achieved an accuracy of approximately 68 %, with precision, recall, and 
F1-score values of 62 %, 62 %, and 61 %, respectively. These metrics 

were derived from the confusion matrix, comparing predicted versus 
actual values on the validation set. Accuracy represents the overall 
proportion of correct predictions made by the model, while precision 
indicates the proportion of true positives among all predicted positives, 
making it particularly valuable when minimizing false positives is crit
ical. Recall, also known as sensitivity, assesses the model’s effectiveness 
in identifying all actual positive cases, calculated as the ratio of correctly 
predicted positive observations to the total number of actual positives. 
The F1-score combines precision and recall into a single metric, serving 
as their harmonic mean to provide a balanced measure of the model’s 
performance (Dimakopoulou-Papazoglou et al., 2024).

As the metrics of the general model were relatively low, separate RF 
models were developed for individual honey types, leading to improved 
results (Table 3). Specifically, the model developed to predict the 
geographical origin of thyme honeys (from Greece, Spain, and Tunisia) 
achieved an accuracy of 83.6 %. The corresponding model for pine 
honeys originating from Greece and Turkey demonstrated even higher 
performance, attaining an accuracy of 92.5 %. The high values of 
model’s performance criteria for pine honeys (Table 3) is attributed on 
one hand to the fewer geographical origins and on the other hand to 
distinct honeydew elements (e.g., fungal spores, hyphae, algae, and wax 
particles) unique to each region (Dimou et al., 2006; Duru et al., 2021; 
Karabagias et al., 2014), which were reflected in the FTIR spectra. 
Regarding the model developed from thyme honeys, higher accuracy 

Table 2 
Principal Component Analysis for thyme honeys using various preprocessing techniques: R² of first three components and total variance explained by first five 
components.

Spectral range Preprocessing technique PC1 PC2 PC3 Cumulative (PC1-PC5)

4000–750 cm− 1 1st derivative 68.20 % 10.58 % 8.66 % 92.77 %
4000–750 cm− 1 SNV, 1st derivative 69.42 % 10.61 % 7.57 % 92.49 %
4000–750 cm− 1 2nd derivative 26.52 % 12.49 % 3.19 % 47.26 %
4000–750 cm− 1 SNV, 2nd derivative 26.65 % 12.46 % 3.12 % 47.28 %
1800–750 cm− 1 1st derivative 71.49 % 11.03 % 8.45 % 95.90 %
1800–750 cm− 1 SNV, 1st derivative 74.38 % 10.95 % 6.11 % 95.61 %
1800–750 cm− 1 2nd derivative 32.53 % 18.33 % 4.34 % 61.36 %
1800–750 cm− 1 SNV, 2nd derivative 33.66 % 17.22 % 4.16 % 61.42 %

Fig. 7. Score plots (a) and loading plots (b) of the first two components for the discrimination of geographical origin of thyme (1), pine (2), and polyfloral (3) honey 
samples from PCA of FTIR spectral data pre-processed with 1st derivative in the range of 1800–750 cm− 1 (ES: Spanish, GR; Greek, MT: Maltese, TN: Tunisian and 
TR: Turkish).
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and improved metrics compared to the general model were recorded due 
to the better representation of characteristic compounds in the FTIR 
spectra, including carbohydrate, phenolic compounds, etc., shaped by 
local flora. Specifically, thyme honeys contain a minimum of 18 % of 
thyme pollen grains, while the full pollen grains spectrum was directly 
affected by the geographical origin of where the hives were located, as 
described previously in the melissopalynology analysis. In contrast, the 
RF model for the discrimination of polyfloral honeys from Greece, Malta, 
Spain, Tunisia, and Turkey achieved only 68.5 % accuracy, with per
formance comparable to the general model. This limited improvement is 
due to the heterogeneous composition of polyfloral honeys, which 
contain a mix of compounds from various floral sources, that do not 
facilitate their better differentiation.

Generally, using DD-SIMCA models, a specific class can be predicted, 
such as determining whether a honey sample originates from a partic
ular country or a specific combination of country and floral type. DD- 
SIMCA models were constructed to classify honeys from Greece, 
Malta, Spain, Tunisia, and Turkey using all honey samples, achieving an 
accuracy of 97.2 %, 95.4 %, 96.8 %, 86.8 %, and 96.7 %, respectively, 
as shown in Table 4. The performance of the DD-SIMCA models were 
assessed based on accuracy, sensitivity, and specificity, with specificity 
measuring the proportion of correctly identified negative observations 
relative to the total number of actual negatives.

When assessing the geographical origin of thyme honeys separately, 
DD-SIMCA models achieved accuracies of 95.2 %, 95.4 %, and 88.9 % 
for Greek, Spanish, and Tunisian thyme honeys, respectively. The ac
curacy of these models showed a slight improvement; however, sensi
tivity and specificity declined when the validation set included all honey 
samples instead of being limited to thyme honey samples. This result 
was anticipated, as the inclusion of a larger number of samples for model 
validation inherently increased variability (Table 4). The acceptance 
plot of validation for Greek thyme honeys (Fig. 9.1.b) shows that three 
out of 26 Greek thyme samples were misclassified. However, no thyme 
honey samples from other origins were incorrectly classified as Greek. 
Similarly, for Spanish thyme honeys, two out of 17 Spanish samples 
were misclassified, while none of the other thyme honeys were incor
rectly classified as Spanish (Fig. 9.2.b). In contrast, as illustrated in the 
acceptance plot of validation for the Tunisian thyme honey DD-SIMCA 

model (Fig. 9.3.b) three Tunisian thyme honeys were misclassified and 
one Greek thyme sample were misclassified as Tunisian one. Conse
quently, the sensitivity values were 89.6 %, 82.9 %, and 90.7 %, and the 
specificity values were 100 %, 100 %, and 93.7 % for thyme honeys 
from Greece, Spain, and Tunisia, respectively (Table 4).

Regarding the models constructed to classify pine honey, the accu
racy was 89.2 % for Greek and 85.0 % for Turkish honeys, when using 
only pine honeys, while the accuracy values improved to 99.1 % and 
98.8 % respectively, when the validation set included all honey samples. 
According to specificity metrics, no samples from other classes were 
misclassified as pine honey in either model. However, one original 
Turkish pine sample and two Greek pine samples were misclassified, 
reducing the sensitivity of the models (Table 4). Increasing the number 
of pine honey samples for validation could improve both accuracy and 
sensitivity, while adding non-target class samples enhanced overall 
model accuracy (Table 4).

For polyfloral honeys, DD-SIMCA models resulted in a validation 
accuracy of 97.4 %, 99.0 %, 90.0 %, 94.5 %, and 92.3 % for honeys 
from Greece, Spain, Malta, Tunisia, and Turkey, respectively, using only 
polyfloral honey samples. Based on sensitivity and specificity values, it 
was more likely for an original polyfloral sample to be misclassified 
compared to another honey type being incorrectly classified as a specific 
origin or type.

The DD-SIMCA models for identifying the botanical and geograph
ical origin of honeys based on FTIR spectra demonstrated superior ac
curacy compared to models developed using UV–vis spectra 
(Dimakopoulou-Papazoglou et al., 2024), as FTIR spectra provide more 
comprehensive information about the composition of the samples. 
Additionally, good performance in classifying honey by geographical 
origin was also observed by Formosa et al. (2020), who analyzed Mal
tese and foreign honey samples (from Greece, Italy, Sicily, France, 
Estonia, and others) using PLS-DA, and by Guyon et al. (2021), who 
differentiated French and Romanian honey samples using SIMCA.

3.4.2. Determination of botanical origin
Predictive models were developed to determine the botanical origin 

of honey using Greek thyme, pine, and polyfloral honey samples. RF was 
applied as a multiclass classification technique, achieving a validation 
accuracy of 73.3 %, with precision, recall, and F1-score values of 
64.8 %, 64.0 %, and 61.9 %, respectively. The relatively low accuracy of 
the RF model was attributed to the misclassification of some polyfloral 
samples as thyme honeys. This was expected, as polyfloral honeys are 
derived from a variety of blossoms and trees, including Thymus species 
(Lamiaceae). Hence, by removing the polyfloral samples from the clas
sification model, the accuracy of the binary classification model 
improved to 95.7 %, with an increase in precision, recall, and F1-score. 
Ciulu et al. (2021) also reported good performance of RF to identify the 
botanical origin of honeys using FTIR spectra from Italy (Sardinia), and 
specifically from strawberry-tree, asphodel, thistle, and eucalyptus. 
Additionally, the effectiveness of RF for botanical classification using 
UV–vis spectroscopy has also been reported by Dimakopoulou-Papazo
glou et al. (2024).

Subsequently, DD-SIMCA models were developed to predict each 
class separately. For thyme honeys, the validation accuracy was 84.6 % 
when tested against the remaining Greek honey samples. However, 
some polyfloral samples were misclassified as thyme honeys, a pattern 
also observed in the PCA plot (Fig. 8), indicating similarities in the FTIR 
spectra of polyfloral and thyme honeys. In contrast, when building a 
model to predict polyfloral honeys, the validation accuracy increased to 
91.6 %. The model for pine honeys achieved the highest accuracy of 
95.7 %, likely due to the distinct composition of pine honey compared to 
other types. Similarly, the good performance of SIMCA was demon
strated by Guyon et al. (2021), who successfully differentiated honey 
samples from acacia, colza, linden, and sunflower origins with high 
accuracy in samples from France and Romania. These findings align 
with previous studies that utilized alternative models for classifying 

Fig. 8. PCA analysis of FTIR spectral data pre-processed with 1st derivative in 
the range of 1800–750 cm− 1 for the differentiation of botanical origin of Greek 
honeys (Pf: polyfloral, Pi: Pine, Th: Thyme honeys).

D. Dimakopoulou-Papazoglou et al.                                                                                                                                                                                                         Journal of Food Composition and Analysis 144 (2025) 107778 

9 



honey based on botanical origin. Orfanakis et al. (2021) utilized 
OPLS-DA to distinguish polyfloral and honeydew honeys from Greece 
(Creta) and achieve the high classification accuracy of 91.2 % and 
82.6 %, respectively, using the spectral range 4000 – 2400 cm− 1 and 
1900 – 400 cm− 1. Similarly, Tsagkaris et al. (2023) demonstrated 
effective discrimination among different monofloral honeys (blossom, 
cotton, thyme, honeydew, and citrus) using PLS-DA and OPLS-DA.

4. Conclusions

This study demonstrated that FTIR spectroscopy combined with 
chemometrics can effectively classify Mediterranean honeys based on 
their botanical and geographical origins. The honey samples analyzed 
originated from various Mediterranean countries, including Greece, 
Spain, Tunisia, Malta, and Turkey, and came from different botanical 
sources: thyme, pine, and polyfloral. The spectral region of 1800 – 

Fig. 9. Acceptance plot of the training (1.a, 2.a, and 3.a) and validation (1.b, 2.b, and 3.b) sets from DD-SIMCA models using the FTIR spectra pre-processed with 1st 
derivatives for Greek, Spanish, and Tunisian thyme honeys (Acceptance plot for training set: training samples are represented by green circles, with extreme samples 
shown as orange circles between the green and red lines. Acceptance plot for validation set: target class honey samples are shown as green circles, while non-target 
class samples appear as red circles.).

Table 3 
Results obtained from Random Forest for identifying the geographical and 
botanical origin of honeys using FTIR spectra.

Samples used for analysis Accuracy Precision Recall F1- 
score

Discrimination of geographical origin
All honey samples 68.00 % 61.70 % 62.02 % 60.83 %
Only thyme honeys 83.57 % 86.53 % 84.33 % 84.74 %
Only pine honeys 92.50 % 95.00 % 92.50 % 92.00 %
Only polyfloral honeys 68.46 % 63.83 % 61.40 % 60.92 %
Discrimination of botanical origin
All honey samples 74.19 % 77.65 % 68.00 % 70.47 %
Only Greek honeys 73.33 % 64.82 % 64.00 % 61.90 %
Only Greek honeys (thyme and 

pines)
95.71 % 96.67 % 95.50 % 94.96 %
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750 cm⁻¹ was the most useful for the classification of the samples using 
Random Forest (for multiclass classification) and DD-SIMCA model (for 
one-class classification). These techniques successfully discriminated 
the geographical and botanical origins of the samples, achieving an 
accuracy exceeding 90 % in most cases. The findings underscore that 
FTIR spectroscopy, being highly sensitive to the overall chemical 
composition of samples, provides reliable results for determining the 
botanical and geographical origins of honey when combined with 
multivariate statistical analysis. This quick, non-destructive method, 
coupled with user-friendly chemometric techniques, can be a promising 
analytical tool in the honey industry, enhancing food traceability.

However, there are a few limitations to consider. Factors like sea
sonal changes or environmental conditions, which can affect the 
composition of honey, were not considered in this study. These variables 
could influence the consistency of the results. Additionally, while the 
study included honeys from different Mediterranean countries and floral 
sources, the overall number of samples was relatively small. Including 
more samples from a wider range of regions and plant origins would 
make the models more robust and reliable.
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Duru, M.E., Taş, M., Çayan, F., Küçükaydın, S., Tel-Çayan, G., 2021. Characterization of 
volatile compounds of Turkish pine honeys from different regions and classification 
with chemometric studies. Eur. Food Res. Technol. 247 (10), 2533–2544. https:// 
doi.org/10.1007/s00217-021-03817-8.

EU Council Directive 2001/110/EC of 20 December 2001 relating to honey. Off J Eur 
Commun Legis 10:47–52 (2002). Available: https://eur-lex.europa.eu/legal-content 
/EN/TXT/PDF/?uri=CELEX:32001L0110&from=EN.

EU Council Directive 2014/63/EU of 15 May 2014 relating to honey (2014). Available: 
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014L0063.

FAO 2022 〈https://www.fao.org/faostat/en/#data/TCL〉.
Formosa, J.P., Lia, F., Mifsud, D., Farrugia, C., 2020. Application of ATR-FT-MIR for 

tracing the geographical origin of honey produced in the Maltese islands. Foods 9 
(6). https://doi.org/10.3390/foods9060710.

Gallardo-Velázquez, T., Osorio-Revilla, G., Loa, M.Z., Rivera-Espinoza, Y., 2009. 
Application of FTIR-HATR spectroscopy and multivariate analysis to the 
quantification of adulterants in Mexican honeys. Food Res. Int. 42 (3), 313–318. 
https://doi.org/10.1016/j.foodres.2008.11.010.

Gan, Z., Yang, Y., Li, J., Wen, X., Zhu, M., Jiang, Y., Ni, Y., 2016. Using sensor and 
spectral analysis to classify botanical origin and determine adulteration of raw 
honey. J. Food Eng. 178, 151–158. https://doi.org/10.1016/j. 
jfoodeng.2016.01.016.

Gok, S., Severcan, M., Goormaghtigh, E., Kandemir, I., Severcan, F., 2015. Differentiation 
of Anatolian honey samples from different botanical origins by ATR-FTIR 
spectroscopy using multivariate analysis. Food Chem. 170, 234–240. https://doi. 
org/10.1016/j.foodchem.2014.08.040.

Grabato, J.R., Pilario, K.E., Micor, J.R.L., Mojica, E.-R.E., 2022. Geographical and 
entomological differentiation of Philippine honey by multivariate analysis of FTIR 
spectra. J. Food Compos. Anal. 114, 104853. https://doi.org/10.1016/j. 
jfca.2022.104853.

Greek directive 127, /2004, Government Gazette B-239/23-2-2005; Annex II, article 67 
of Greek Food Code (Classification of monofloral honeys). Available: 〈https://www. 
aade.gr/sites/default/files/2020-03/67a-iss1.pdf〉.

Guelpa, A., Marini, F., Plessis, A., Slabbert, R., Manley, M., 2017. Verification of 
authenticity and fraud detection in South African honey using NIR spectroscopy. 
Food Control 73. https://doi.org/10.1016/j.foodcont.2016.11.002.

Guyon, F., Logodin, E., Magdas, D.A., Gaillard, L., 2021. Potential of FTIR- ATR diamond 
in discriminating geographical and botanical origins of honeys from France and 
Romania. Talanta Open 3, 100022. https://doi.org/10.1016/j.talo.2020.100022.

Huang, F., Song, H., Guo, L., Guang, P., Yang, X., Li, L., Zhao, H., Yang, M., 2020. 
Detection of adulteration in Chinese honey using NIR and ATR-FTIR spectral data 
fusion. Spectrochim. Acta A Mol. Biomol. Spectrosc. 235. https://doi.org/10.1016/j. 
saa.2020.118297.

IHC Methods. (2009). International Honey Commission. Harmonized Methods. 〈htt 
ps://www.ihc-platform.net/ihcmethods2009.pdf〉.

Karabagias, I.K., Badeka, A., Kontakos, S., Karabournioti, S., Kontominas, M.G., 2014. 
Characterisation and classification of Greek pine honeys according to their 
geographical origin based on volatiles, physicochemical parameters and 
chemometrics. Food Chem. 146, 548–557. https://doi.org/10.1016/j. 
foodchem.2013.09.105.

Karabagias, I.K., Louppis, A.P., Karabournioti, S., Kontakos, S., Papastephanou, C., 
Kontominas, M.G., 2017. Characterization and classification of commercial thyme 
honeys produced in specific Mediterranean countries according to geographical 
origin, using physicochemical parameter values and mineral content in combination 
with chemometrics. Eur. Food Res. Technol. 243 (5), 889–900. https://doi.org/ 
10.1007/s00217-016-2803-0.

Kasprzyk, I., Depciuch, J., Grabek-Lejko, D., Parlinska-Wojtan, M., 2018. FTIR-ATR 
spectroscopy of pollen and honey as a tool for unifloral honey authentication. The 
case study of rape honey. Food Control 84, 33–40. https://doi.org/10.1016/j. 
foodcont.2017.07.015.

Kędzierska-Matysek, M., Teter, A., Florek, M., Matwijczuk, A., Niemczynowicz, A., 
Matwijczuk, A., Czernel, G., Skałecki, P., Gładyszewska, B., 2023. Use of 
physicochemical, FTIR and chemometric analysis for quality assessment of selected 
monofloral honeys. J. Apic. Res. 62 (4), 863–872. https://doi.org/10.1080/ 
00218839.2021.1900637.

Louveaux, J., Maurizio, A., Vorwohl, G., 1978. Methods of Melissopalynology. BEE 
World 59 (4), 139–157. https://doi.org/10.1080/0005772X.1978.11097714.

Maione, C., Barbosa, F., Barbosa, R.M., 2019. Predicting the botanical and geographical 
origin of honey with multivariate data analysis and machine learning techniques: a 

review. Comput. Electron. Agric. 157, 436–446. https://doi.org/10.1016/j. 
compag.2019.01.020.

Martinez-Castillo, C., Astray, G., Mejuto, J.C., Simal-Gandara, J., 2020. Random forest, 
artificial neural network, and support vector machine models for honey 
classification. eFood 1 (1), 69–76. https://doi.org/10.2991/efood.k.191004.001.
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