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ABSTRACT 

Linear programming algorithms have been widely used in Decision Support Systems. 

These systems have incorporated linear programming algorithms for the solution of the 

given problems. Yet, the special structure of each linear problem may take advantage of 

different linear programming algorithms or different techniques used in these algorithms. 

In this paper, we propose a web-based DSS that assists decision makers in the solution of 

linear programming problems with a variety of linear programming algorithms and 

techniques. Two linear programming algorithms have been included in the DSS: (i) 

revised simplex algorithm and (ii) exterior primal simplex algorithm. Furthermore, ten 

scaling techniques, five basis update methods and eight pivoting rules have been 

incorporated in the DSS. All linear programming algorithms and methods have been 

implemented using MATLAB and converted to Java classes using MATLAB Builder JA, 

while the web interface of the DSS has been designed using Java Server Pages. 

 

Keywords: Decision Making, Web-based Decision Support Systems, Linear 

Programming, Revised Simplex Algorithm, Exterior Primal Simplex Algorithm. 

 

1. INTRODUCTION 

Web-based Decision Support Systems (DSS) are computerized information systems that 

provide decision support tools to managers or business analysts using only a thin-client Web 

Browser (Power & Kaparthi, 2002). Web-based DSS can assist a decision maker to: (i) 

retrieve, analyze and display data from large databases, (ii) provide access to a model, and 

(iii) establish communication and decision making in distributed teams (Power, 2000). In 

general, all types of DSS, communication-driven, knowledge-driven and document-driven 

(Bhargava et al., 2007), can be implemented as a web-based DSS (Power, 2000). 

Linear programming algorithms have been widely used in DSS for supplier selection 

(Ghodsypour & O'Brien, 1998), forest management planning systems (Lappi et al., 1996), 

assignment of parking spaces (Venkataramanan & Bornstein, 1991), schedule of student 

attendants (Lauer et al., 1994), portfolio robustness evaluation (Lourenço et al., 2012), 

optimality in open air reservoir strategies (Van Vuuren & Grundlingh, 2002), energy 

planning (Mavrotas, 2000) and water resource management (Faye et al., 1998) among 
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others. However, the special structure of each linear problem should be taken into 

consideration in order to take advantage of different linear programming algorithms and 

methods. 

This paper presents a web-based DSS that provides decision support tools to decision 

makers that want to solve their linear programming problems. The paper builds on the work 

of Ploskas et al. (2013). Ploskas et al. (2013) have implemented a web-based DSS that assists 

decision makers in the selection of the linear programming algorithm and basis update 

method for solving their linear programming problems. In this paper, we do not only take into 

consideration the basis update step, but go further to explore all different steps of the linear 

programming algorithms. The main difference from our previous paper (Ploskas et al., 2013) 

is that here we include ten scaling techniques, five basis update methods and eight pivoting 

rules; the user can select any combination of these methods to be included in the 

execution of the linear programming algorithm or let the DSS select the best combination 

for the selected linear programming problem. 

Two linear programming algorithms are incorporated in the DSS: (i) Revised Simplex 

Algorithm (Dantzig, 1953) and (ii) Exterior Primal Simplex Algorithm (Paparrizos et al., 

2003). The DSS also includes a variety of different methods for the different steps of these 

algorithms. More specifically, ten scaling techniques, five basis update methods and eight 

pivoting rules have been implemented in the DSS. The decision maker can either select 

the algorithm and the appropriate methods to solve a linear programming problem or 

perform a thorough computational study with all combinations of algorithms and methods 

in order to gain an insight on its linear programming problem. 

There are already linear programming solvers in the market that efficiently solve linear 

programming problems (LPs), but either they do not include so many scaling techniques, 

basis update methods and pivoting rules, either they do not allow the user to choose some 

of them. To the best of our knowledge, this is the first paper that implements a DSS for 

solving linear programming problems that include all these different methods for scaling, 

basis update and pivoting, and lets the user select the different combinations of the 

methods to be included in the execution of the linear programming algorithm. 

The rest of this paper is organized as follows. Section 2 presents the background of our 

work. In Section 3, ten widely-used scaling techniques that incorporated in the DSS are 

presented. Section 4 includes the presentation of the five basis update methods 

implemented in the DSS, while in Section 5 eight well-known pivoting rules that 

incorporated in the DSS are presented. Section 6 includes the analysis and design of the 

DSS, while in Section 7 the DSS is presented. Finally, the conclusions of this paper are 

outlined in Section 8. 

 

2. BACKGROUND 

Linear programming 

Linear programming is the process of minimizing or maximizing a linear objective 

function 
1

n

i i

i

z c x
=

=  to a number of linear equality and inequality constraints. Several 

methods are available for solving linear programming problems, among which the simplex 

algorithm is the most widely used. We assume that the problem is in its general form. 

Formulating the linear problem, we can describe it as shown in equation 1: 
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min            c

   Ax = b

                  x 0

T x

subject to



     (1) 

where ARmxn, (c, x)Rn, bRm, and T denotes transposition. We assume that A has full 

rank (rank(A)=m, m < n). The simplex algorithm searches for an optimal solution by moving 

from one feasible solution to another, along the edges of the feasible set. The dual problem 

associated with the linear problem in equation 1 is shown in equation 2: 

min            b

   A w +s = c

                  s 0

T

T

w

subject to



    (2) 

where w  Rm and s  Rn. Using a partition (B, N) equation 1 can be written as shown in 

equation 3: 

min            c

   A x +A x  = b

                  x , x 0

T T

B B N N

B B N N

B N

x c x

subject to

+



    (3) 

In the above equation, B is an mxm non-singular sub-matrix of A, called basic matrix or 

basis. The columns of A which belong to subset B are called basic and those which belong to 

N are called non basic. The solution of the linear problem 1 , 0B Nx b x−=  =  is called a basic 

solution. A solution ( , )B Nx x x= is feasible if x > 0. Otherwise the solution is infeasible. The 

solution of the linear problem in equation (2) is computed by the relation 
Ts c A w= − , where 

1( )T

Bw c B−=  are the simplex multipliers and s are the dual slack variables. The basis B is 

dual feasible if 0s  .  

Two linear programming algorithms have been implemented using MATLAB and 

incorporated in the DSS: (i) Revised Simplex Algorithm proposed by Dantzig (1953) and 

(ii) Exterior Primal Simplex Algorithm (EPSA) proposed by Paparrizos et al. (2003). 

Revised simplex algorithm 

A formal description of the revised simplex algorithm (Dantzig, 1953) is given below. 

Table 1: Revised Simplex Algorithm 

Step 0. (Initialization).  

Start with a feasible partition (B, N). Compute 
1

BA −
 and vectors xB, w and sN. 

Step 1. (Test of optimality). 

if 0s  then STOP. The linear problem (equation 3) is optimal. 

Step 2. (Choice of the entering/leaving variable). 

Choose the index l of the entering variable using a pivoting rule. Variable xl enters the basis. 

Compute the pivot column 
1

. .l B lh A A−=  

if 0lh  then STOP. The linear problem (equation 3) is unbounded. 

else 

    Choose the leaving variable xB[r] = xk using the following equation: 
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B r B i

il
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x h
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 
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 
  

Step 3. (Pivoting). 

Swap indices k and l. Update the new basis inverse 
1

BA
−

. Go to Step 1. 

Exterior primal simplex algorithm 

The algorithm starts with a primal feasible basic partition (B, N). Then, the following 

sets of indexes are computed: 

                           : 0jP j N s=               (4) 

                              : 0jQ j N s=               (5) 

If P =  then the current basis B and the corresponding solution xT = (xB, xN) is optimal 

for the primal problem. EPSA firstly defines the leaving and afterwards the entering variable. 

The leaving variable xB[r] = xk is computed using equation 6: 

                      
[ ] [ ]

[ ]

[ ] [ ]

min : 0
B r B i

B i

B r B i

x x
a d

d d

  
= =  
− −  

          (6) 

where d is an improving direction. This direction is constructed in such way that the ray 

{x + td : t > 0} crosses the feasible region of equation 1. The notation dB denotes those 

components from d which correspond to the basic variables. The dB is computed as shown in 

equation 7: 

          



−=
Pj

jB hd

                  (7) 

where hj = B-1 A.j. If dB ≥ 0, then the problem is unbounded. 

In order to compute the entering variable xl, the following ratios must first be calculated 

using equations 8 and 9: 

            
jQ

1 rj

rQ rj

ss
θ min : H 0   j P

H H

 −−  
= − =    

  

         (8) 

and 

            
2θ min : 0   

Q j

rj

rQ rj

s s
H j Q

H H

 − − 
= − =    

  

        (9) 

If θ1 ≤ θ2 then l = p, otherwise (e.g., θ1 > θ2) l = q. The non-basic variable xl enters the 

basis. A formal description of the EPSA is given below (Paparrizos et al., 2003). 

 

Table 2: Exterior Primal Simplex Algorithm 

Step 0. (Initialization).  

Start with a feasible partition (B, N). Compute B-1 and vectors xB, w and sN. Find the sets of 

indices P and Q using relations 4 and 5. Define an arbitrary vector λ = (λ1, λ2, ..., λ|P|) > 0 and 

compute s0 as follows: 

                                                                   0 j j

j P

s s


=                                               (10) 

and the direction dB from equation 7. 
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Step 1. (Termination test). 

i) (Optimilaty test). If P = , STOP. The problem is optimal. 

ii) (Leaving variable selection). If dB ≥ 0, STOP. If s0 = 0 the problem is optimal. If s0 

< 0 the problem is unbounded. Otherwise choose the leaving variable xB[r] = xk using equation 

6. 

Step 2. (Entering variable selection).  

Compute the row vectors: 

                                                    
1 1

. .( )  and ( )rP r p rQ r QH B A H B A− −= =                      (11) 

Compute the ratios θ1 and θ2 using relations 8 and 9. Determine the indices t1 and t2 such that 

P[t1] = p and Q[t2] = q. If θ1 ≤ θ2, set l = p, otherwise (θ1 > θ2) l = q. The non-basic variable xl 

enters the basis. 

Step 3. (Pivoting)  

Set B[r] = l. If θ1 ≤ θ2, set P ← P\{l} and Q ← Q  {k}. Otherwise, set Q[t2] = k. Using the 

new partition (B, N) where N = (P, Q), update the matrix B-1 and the vectors xB, w and sN. 

Also update d  as follows: 

                                                                      1
B Bd E d−=                                              (12) 

If lP set dB[r]  ← dB[r] + λl. Go to step 1. 

3. SCALING TECHNIQUES 

Preconditioning techniques can be applied to linear programming problems prior to the 

application of an optimization solver in order to improve their computational properties. 

Scaling is the most well-known and widely used preconditioning technique. Scaling is an 

operation in which the rows and columns of a matrix are multiplied by positive scalars; 

this operation leads to nonzero numerical values of similar magnitude. Scaling is used for 

the following reasons for (Tomlin, 1975): (i) the production of a compact representation 

of the bounds of the variables, (ii) the reduction of the number of the iterations, (iii) the 

simplification of the setup of the tolerances, (iv) the reduction of the condition number of 

the constraint matrix, and (v) the improvement of the numerical behavior of the linear 

programming algorithms.  

In the proposed DSS, we have implemented ten widely used scaling techniques: (i) 

arithmetic mean, (ii) de Buchet for the case p = 1, (iii) de Buchet for the case p = 2, (iv) 

entropy (Larsson, 1993), (v) equilibration, (vi) geometric mean, (vii) IBM MPSX 

(Benichou et al., 1977), (viii) Lp-norm for the case p = 1, (ix) Lp-norm for the case p = 2, 

and (x) Lp-norm for the case p = ∞ and de Buchet for the case p = ∞. 

Prior to the presentation of the aforementioned scaling techniques, some mathematical 

preliminaries and notations should be introduced. Let A be an m x n matrix. Let ri be the row 

scaling factor for row i and sj be the column scaling factor for column j. Let  N j | A 0
i ij
=  , 

where i = 1, ...,m, and  M | A 0
ijj i=  , where j = 1, ..., n. Let ni and mj be the cardinality 

numbers of the sets Ni and Mj, respectively. The scaled matrix is expressed as X = RAS, 

where R = diag(r1...rm) and S = diag(s1...sn). 

Arithmetic mean 

Arithmetic mean scaling method aims to reduce the variance between the nonzero 

elements of the coefficient matrix A. Each row and column is divided by the arithmet ic 
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mean of the elements in that specific row and column, respectively. The row and column 

scaling factors are presented in equation 13 and equation 14, respectively: 

i

i
i

ij

j N

n
r

A


 
 

=  
 
 


     (13) 

j

j

j

ij

i M

m
s

A


 
 

=  
 
 


     (14) 

de Buchet 

The de Buchet scaling model is formulated as shown in equation 15: 

( ) 
__

1/

( , 0)

( , )

min 1/

p

p

ij i j ij i j
r s

i j Z

A r s A r s




 
 +
 
 

    (15) 

where p is a positive integer and 
__

Z  is the number of the nonzero elements of matrix A. 

For the case p = 1, equation 15 is formulated as shown in equation 16. 

 ( )
__( , 0)

( , )

min 1/ij i j ij i j
r s

i j Z

A rs A rs




+             (16) 

The row and the column scaling factors for the case p = 1 are shown in equations 17 

and 18, respectively: 
1/2

1/
i i

i ij ij

j N j N

r A A
 

    
=    
    
         (17) 

1/2

1/
j j

j ij ij

i M i M

s A A
 

    
=      
    
      (18) 

For the case p = 2, equation 15 is formulated as shown in equation 19. 

( ) 
__

1/2

2

( , 0)

( , )

min 1/ij i j ij i j
r s

i j Z

A r s A r s




 
 +
 
 

               (19) 

The row and the column scaling factors for the case p = 2 are shown in equations 20 

and 21, respectively: 

( ) ( )
1/4

2 2

1/
i i

i ij ij

j N j N

r A A
 

    
=    
    
               (20) 

( ) ( )
1/4

2 2

1/
j j

j ij ij

i M i M

s A A
 

    
=      
    
               (21) 

Finally, for the case p = ∞, equation 15 is formulated as shown in equation 22. 

( )
__( , 0)

( , )

min max log ij i j
r s

i j Z

A rs




              (22) 



7 

The row and the column scaling factors for the case p = ∞ are shown in equations 23 

and 24, respectively: 

      ( )( ) 
1/2

1/ max min
ii

i ij ij
j Nj N

r A A


=              (23) 

     

1/2

1/ max min
jj

j ij ij
i Mi M

s A A


   
=    

   
              (24) 

Entropy 

The entropy model was first presented by Larsson (1993). This technique solves the model 

presented in equation 25, in order to identify a scaling X with all 0ijx   of magnitude one: 

( )( )

( )

__

( , )

__

min            log / 1

        1,...,

                       j 1,...,

                  X 0             ,

i

j

ij ij ij

i j Z

ij i

j N

ij j

i M

ij

X X A

subject to X n i m

X m n

i j Z







−

= =

= =

  






  (25) 

The row and column scaling factors are presented in equations 26 and 27, respectively: 

       /
i

i i ij

j N

r n A


=                         (26) 

      /
j

j j ij

i M

s m A


=                (27) 

Equilibration 

In this scaling technique, for each row of the coefficient matrix A the largest element 

in absolute value is found. Then, the specified row of matrix A and the corresponding 

element of vector b are multiplied by the inverse of the largest element. Then, for each 

column of the coefficient matrix A that does not include 1 as the largest element in 

absolute value, the largest element in absolute value is found, and the specified column of 

matrix A and the corresponding element of vector c is multiplied by the inverse of the 

largest element. Consequently, all the elements of matrix A will have values between -1 

and 1. 

Geometric mean 

Like the arithmetic mean scaling method, geometric mean also aims to reduce the 

variance between the nonzero elements of the coefficient matrix A. Each row and column 

is divided by the product of the square root of the maximum and minimum element in that 

row and column, respectively. The row and column scaling factors are presented in 

equation 28 and equation 29, respectively: 

      ( )
1/2

max min
ii

i ij ij
j Nj N

r A A
−


=          (28) 

     

1/2

max min
jj

j ij ij
i Mi M

s A A

−



 
=  
 

     (29) 
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IBM MPSX 

The method was proposed by Benichou et al. (1977) and was later adopted by IBM, 

which used this method in IBMs MPSX linear optimization solver. This method combines 

geometric mean and equilibration scaling techniques. Initially, geometric mean is 

performed four times or until the relation 30 is true. 

  ( ) ( )
__ __

2

__2 2

__

( , ) ( , )

1
/ij ij

i j Z i j Z

A A Z

Z



 

    
    − 
         

               (30) 

where 
__

  is the cardinality number of nonzero element of matrix A and ε is a 

tolerance, which is often set below ten. Then, the equilibration scaling technique is 

applied. 

Lp-norm 

The Lp-norm scaling model is formulated as shown in equation 31: 

( )
__

1/

( , 0)

( , )

min log

p

p

ij i j
r s

i j Z

A r s




 
 
 
 

      (31) 

where p is a positive integer and 
__

  is the cardinality number of nonzero element of 

matrix A. 

For the case p = 1, equation 31 is formulated as shown in equation 32. 

( )
__( , 0)

( , )

min log ij i j
r s

i j Z

A rs




      (32) 

The row and the column scaling factors for the case p = 1 are shown in equations 33 

and 34, respectively: 

 1/ |i ij ir median A j N=         (33) 

 1/ |j ij js median A i M=      (34) 

For the case p = 2, equation 32 is formulated as shown in equation 35. 

( )
__

1/2

2

( , 0)

( , )

min log ij i j
r s

i j Z

A r s




 
 
 
 

      (35) 

The row and the column scaling factors for the case p = 2 are shown in equations 36 

and 37, respectively: 

( )
1/

1/
i

i

n

i ij

j N

r A


=                (36) 

( )
1/

1/
j

j

m

i ij

i M

r A


=                (37) 

Finally, for the case p = ∞, the model and the row and scaling factors are equivalent to the 

de Buchet for the case p = ∞. 
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4. BASIS UPDATE METHODS 

The computation of the basis inverse is the most time-consuming step in linear 

programming algorithms and if these methods are not properly designed and implemented 

the basis inverse step can dictate the total execution time of the algorithm. However, this 

inverse does not have to be computed from scratch at each iteration, but updating methods 

can be applied. In the proposed DSS, we have implemented five widely used basis update 

methods: (i) Gaussian elimination, (ii) MATLAB's built-in function called inv, (iii) LU 

decomposition (Markowitz, 1957), (iv) Modification of the Product Form of the Inverse 

(Benhamadou, 2002), and (v) Product Form of the Inverse (Dantzig & Orchard-Hays, 

1954). 

Gaussian elimination 

Gaussian elimination is a method for solving systems of linear equations that can be 

used to compute the inverse of a matrix in simplex type algorithms. Gaussian elimination 

performs a forward substitution, which reduces the given matrix to a triangular or echelon 

form, and a back substitution, which calculates the solution of the given system of linear 

equations. Gaussian elimination with partial pivoting requires O(n3) time complexity. 

Gaussian elimination has been implemented using the mldivide operator of MATLAB. 

The new basis inverse using Gaussian elimination can be found using equation 38: 

( )
1

\B BA A I
−
=             (38) 

Built-in function inv of MATLAB 

The basis inverse can be computed using the built-in function of MATLAB called inv, 

which uses LAPACK routines to compute the basis inverse. This function is already 

compiled and optimized for MATLAB, so its execution time is smaller compared with the 

other relevant methods that compute the explicit basis inverse. The time-complexity, 

though, remains O(n3). 

LU decomposition 

LU decomposition method factorizes a matrix as the product of a lower L and an upper 

U triangular factors that can be used to compute the inverse of a matrix. In order to 

compute the L and U factors, the built-in function of MATLAB called lu has been used. 

LU decomposition requires O(n3) time complexity. 

Modification of the product form of the inverse 

The Modification of the Product Form of the Inverse (MPFI) updating scheme has been 

presented by Benhamadou (2002). The new basis inverse 1( )
B

A −  can be computed from 

the previous basis inverse 1( )BA −  using an outer product of two vectors and one matrix 

addition, as shown in equation 39: 

  ( ) ( ) ( )
1 1 1

.. BB B rr
A A v A

− − −
= +     (39) 

The outer product of equation 39 requires m2 multiplications and the addition of two 

matrices requires m2 additions. Hence, the time complexity of this basis updating scheme 

is Θ(m2). 
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Product form of the inverse 

The Product Form of the Inverse (PFI) updating scheme uses information only about 

the entering and leaving variables along with the current basis 1( )BA −  in order to update 

the new basis 1( )
B

A − . The new basis inverse can be updated at any iteration using equation 

40: 

  ( ) ( )
1 1 1 1( )B BB

A A E E A
− − − −= =     (40) 

where E-1 is the inverse of the eta-matrix and can be computed by the equation 41: 

1l rl

1 T

l l l rl

rl

ml rl

1 h / h

1
E I (h e )e 1/ h

h

h / h 1

−

− 
 
 
 = − − =
 
 
 − 

   (41) 

If the current basis inverse is computed using regular multiplication, then the time 

complexity of the PFI basis updating scheme is Θ(m3). 

5. PIVOTING RULES 

A critical step in the solution of a linear programming problem is the selection of the 

entering variable in each iteration, called pivoting or pricing. The key factor that will 

determine the number of the iterations that the linear programming algorithm performs is 

the pivoting rule (Maros & Khaliq, 2002). Good choices of the entering variable can lead 

to fast convergence to the optimal solution, while poor choices lead to more iterations.  In 

the proposed DSS, we have implemented eight widely used pivoting rules: (i) Bland’s rule 

(Bland, 1977), (ii) Dantzig’s rule (Dantzig, 1963), (iii) Greatest Increment Method (Klee & 

Minty, 1972), (iv) Least Recently Considered Method (Zadeh, 1980), (v) Partial Pricing rule, 

(vi) Queue rule, (vii) Stack rule, and (viii) Steepest Edge rule (Goldfarb & Reid, 1977). 

Bland's rule 

Bland's rule (Bland, 1977) selects as entering variable the first among the eligible ones, 

that is the leftmost among columns with negative relative cost coefficient. Although 

Bland's rule avoids cycling, it has been observed in practice that this pivoting rule can 

lead to stalling, a phenomenon where long degenerate paths are produced. 

Dantzig's rule 

The first pivoting rule that was used in the simplex algorithm is Dantzig's rule or 

largest coefficient rule (Dantzig, 1963). In this pivoting rule, the column lA  with the most 

negative 
___

lc  is selected as the entering variable. Dantzig's rule guarantees the largest 

reduction in the objective value per unit of non-basic variable 
___

lc  increase. Its worst-case 

complexity is exponential (Klee & Minty, 1972). However, Dantzig's rule is claimed as 

simple but powerful enough to guide simplex algorithm into short paths (Thomadakis, 

1994). 
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Greatest increment method 

Greatest Increment Method (Klee & Minty, 1972) selects as entering variable the 

variable with the largest total objective value improvement. Greatest Increment Method 

calculates the improvement of the objective value for each non-basic variable and then 

selects the variable that offers the largest improvement in the objective value. Although 

this pivoting rule can lead to fast convergence to the optimal solution, this advantage is 

eliminated by the additional computational cost per iteration. Gärtner (1995) constructed 

LPs that Greatest Increment Method showed exponential complexity. 

Least recently considered method 

In the first iteration of Least Recently Considered Method (Zadeh, 1980), the entering 

variable l is selected according to Bland's rule, i.e. the leftmost among columns with 

negative relative cost coefficient. In the next iterations, Least Recently Considered 

Method starts searching for the first eligible variable with index greater than l. If l n=  

then Least Recently Considered Method starts searching from the first column again. 

Least Recently Considered Method prevents stalling and it has been observed that it 

performs fairly well in practice (Thomadakis, 1994). However, its worst-case complexity 

has not been proved yet.  

Partial pricing rule 

Partial Pricing methods are variants of the standard rules that take only a part of non-

basic variables into account when searching for the entering variable. In the DSS 

presented in Section 7, we have implemented the partial pricing rule as variant for 

Dantzig's rule using static partial pricing, i.e. non-basic variables are divided into equal 

segments with predefined size and the pricing operation is carried out segment by 

segment. 

Queue rule 

Queue is a FIFO (First-In-First-Out) data structure, where the first element added to 

the queue is the first one to be removed. In the pivoting rule of queue, two queues are 

constrcuted; the first one holds the indices of the basic variables, while the other the 

indices of the non-basic variables. The entering and leaving variables are selected from 

the front of the corresponding queue. The variable, which is extracted from the front of 

the queue that holds the basic variables, is inserted to the end of the queue that holds the 

non-basic variables. Respectively, the variable, which is extracted from the front of the 

queue that holds the non-basic variables, is inserted to the end of the queue that holds the 

basic variables. 

Stack rule 

Stack is a LIFO (Last-In-First-Out) data structure, where the last element added to the 

stack is the first one to be removed. In the stack rule, the entering and leaving variables 

are selected from the top of the corresponding stack. The variable, which is extracted 

from the top of the stack that holds the basic variables, is inserted to the top of the stack 

that holds the non-basic variables. Respectively, the variable, which is extracted from the 

top of the stack that holds the non-basic variables, is inserted to the end of the stack that 

holds the basic variables. 
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Steepest edge rule 

Steepest Edge Rule or All-Variable Gradient Method (Goldfarb & Reid, 1977) selects 

as entering variable the variable with the most objective value reduction per unit distance. 

Although this pivoting rule can lead to fast convergence to the optimal solution, this 

advantage is debatable due to the additional computational cost per iteration. 

6. DECISION SUPPORT SYSTEM ANALYSIS AND DESIGN 

The decision making process that the policy maker can perform using the proposed DSS is 

presented in Figure 1. Initially, the decision maker formulates the given problem as a linear 

programming problem. In step 2, the decision maker gathers, validates and verifies the 

adequate data and the input data are uploaded to the DSS. Then, the decision maker either 

selects the desired algorithm and the appropriate methods to solve a linear programming 

problem or selects the option to perform a computational study with all combinations of 

algorithms and methods. Then, the algorithms' evaluation and execution step follows. In the 

last step, the results are presented and analyzed. Finally, the decision maker validates the 

results and considers if the provision of further feedback on the operation of the DSS is 

necessary; if so, the updated decision making process is performed again. 

 

 

Figure 1: Decision Making Process 

The interaction between the decision maker and the DSS is presented in Figure 2. The 

decision maker uploads the input file in the standardized mps format, selects the algorithms 

(RSM, EPSA), the scaling methods (arithmetic mean, de Buchet for the case p = 1, de Buchet 

for the case p = 2, entropy, equilibration, geometric mean, IBM MPSX, Lp-norm for the case 

p = 1, Lp-norm for the case p = 2, Lp-norm for the case p = ∞, de Buchet for the case p = ∞), 

the basis update methods (Gaussian elimination, MATLAB's built-in function called inv, LU 

decomposition, Modification of the Product Form of the Inverse, Product Form of the 

Inverse), the pivoting rules (Bland’s rule, Dantzig’s rule, Greatest Increment Method, Least 

Recently Considered Method, Partial Pricing Rule, Queue Rule, Stack Rule, Steepest Edge 

Rule) and presses the 'Report' button. Then, the DSS validates the input data and executes the 

algorithms for each combination of methods (scaling methods, basis update methods and 

pivoting rules). Then, it collects: (i) the total execution time, (ii) the time to perform the 

scaling, (iii) the time to perform the basis inverse, (iv) the time to perform the pivoting, (v) 

the number of iterations, and (vi) the objective value; and presents these results to the 

decision maker. Finally, the decision maker can export the results as a pdf file for further 

analysis. 
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Figure 2: Sequence Diagram 

Figure 3 presents the class diagram of the proposed DSS. InitialScreen is a boundary class 

that includes three methods that respond to the decision maker's action events: (i) upload 

input file, (ii) select algorithms, scaling methods, basis update methods and pivoting rules, 

and (iii) press 'Report' button. SimplexAlgorithm is an abstract class that includes the 

common attributes and methods of RevisedSimplexAlgorithm and 

ExteriorPrimalSimplexAlgorithm. Matrix A contains the constraints coefficients, vector c the 

objective function coefficients, vector b the right-hand side values, vector Eqin the type of 

constraints (equality or inequality), and variable minMax the type of the linear programming 

problem (minimization or maximization). Furthermore, SimplexAlgorithm class includes 

three methods that perform the scaling, the basis inverse and the pivoting according to the 

selected methods. RevisedSimplexAlgorithm and ExteriorPrimalSimplexAlgorithm classes 

override the abstract method executeAlgorithm of the SimplexAlgorithm and perform their 

unique steps for the solution of the linear programming problem.   

Scaling is an abstract class that includes the common attributes and methods of all 

different scaling methods. Matrix A again contains the constraints coefficients, vector c the 

objective function coefficients, vector b the right-hand side values, vector r the row scaling 

factors and vector s the column scaling factors. All the derived scaling classes override the 

abstract method scaling of the Scaling class and perform their steps to scale the linear 

programming problem.  

BasisUpdateMethod is an abstract class that includes the common attributes and methods 

of all different basis update methods. Matrix Ab contains the previous basis inverse, vector hl 

the pivot column, k the index of the leaving variable and m the number of the constraints. All 

the derived basis update classes override the abstract method inverse of the 

BasisUpdateMethod class and perform their steps to update the basis matrix.  

PivotingRule is an abstract class that includes the common attributes and methods of all 

different pivoting rules. Vector Sn contains the cost coefficients. All the derived pivoting 

classes override the abstract method pivoting of the PivotingRule class and perform their 

steps to make the pivoting step. Finally, some of the derived pivoting classes, like Steepest, 

contain some unique attributes, i.e. Steepest contains vector nonBasicList that holds the 

indices of the non-basic variables, matrix A the constraints coefficients and matrix Ab the 

basis matrix. 
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Figure 3: Class Diagram 

7. DECISION SUPPORT SYSTEM PRESENTATION 

Simplex type algorithms, scaling methods, basis update methods and pivoting rules have 

been implemented using MATLAB. Then, these algorithms and methods were converted to 

Java classes using the MATLAB Builder JA. The web interface of the DSS was designed 

using Java Server Pages (JSP). The DSS is a freeware and can be used mainly for academic 

purposes. The proposed DSS can be used to solve large-scale LPs. We have achieved to run a 

15,000 x 15,000 dense linear programming problem on a quad-processor Intel Core i7 3.4 

GHz with 32 Gbyte of main memory and 8 cores, a clock of 3700 MHz, running under 

Microsoft Windows 7 64-bit. Furthermore, we also managed to solve many medium- and 

large-scale Netlib problem set (optimal, Kennington and infeasible LPs) (Gay, 1985). 

The initial screen of the DSS is presented in Figure 4. The decision maker presses the 

'Browse' button in order to upload the file containing the LP in mps format. MPS is a well-

known file format for mathematical programming. After the upload of the input file, the 

decision maker can view useful information of the selected LP, like: (a) the filename, (b) the 

number of the constraints, (c) the number of the variables, (d) the number of the nonzeros in 

matrix A, and (e) the density of matrix A. Moreover, the decision maker selects the 

algorithms, the scaling methods, the basis update methods and the pivoting rules that will be 

included in the comparison. By pressing the 'Report' button a screen with a thorough report is 

presented (Figure 5). This screen includes the objective value, the number of the iterations, 

the total time, the times needed to perform the scaling and the basis update, and the number 

of iterations for each pivoting rule. Finally, the decision maker may export the report as a pdf 

file for further analysis. 
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Figure 4: Initial Screen of the proposed DSS 

 

 

Figure 5: Report Screen 

 

Many LPs of the Netlib set are real-world problems. Figures 4 and 5 present a case study 

for SCTAP3, which is a problem of the Netlib set. SCTAP3 is a problem in the optimization 

of the dynamic flow over a traffic network where congestion is modelled explicitly in the 

flow equations (Ho & Loute, 1981). This model, originally formulated in Merchant and 

Nemhauser (1978), is further studied in Ho (1980). SCTAP3 includes 2,480 variables with 

1,481 constraints. From the results that are presented in Figure 5, it is concluded that EPSA 

with the PFI updating method and the equilibration scaling technique is the best choice for 

the solution of this problem. 

The proposed DSS offers important managerial implications. Initially, the decision maker 

can formulate its problem as a linear programming problem. Problems that can be formulated 

as linear programming problems might refer to telecommunications, bio-informatics, supply 
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chain management, water management, resource allocation, etc. Furthermore, the decision-

policy maker can gain an insight of the best algorithm, scaling method, basis update method 

and pivoting rule that best suits the given problem. On the other hand, a limitation that exists 

on the proposed DSS is that some problems cannot be formulated as linear programming 

problems.  

8. CONCLUSIONS 

Many problems from different scientific fields can be formulated as linear programming 

problems. Many DSS that utilize linear programming algorithms exist, but they do not take 

into consideration the structure of the problem in order to suggest the best combination of the 

linear programming algorithm and the appropriate methods for each step of the algorithm. In 

this paper, we presented a web-based DSS that supports decision makers in the solution of 

linear programming problems with a variety of linear programming algorithms and 

techniques. More specifically, the decision maker has two choices: (i) either select which 

linear programming algorithm, scaling method, basis update method and pivoting rule will be 

used to solve the given problem, or (ii) perform a computational study with all combinations 

of algorithms and methods in order to export a detailed report and find the combination of 

algorithms and methods that best suits the given problem.  

In future work, we plan to enhance the DSS with an option that can exploit the structure of 

the input problem prior of the execution of the algorithms and propose to the decision maker 

the best suitable combination of algorithms and methods. Finally, we plan to present real 

application case studies on which the proposed DSS can be utilized. 
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