
1

A Decision Support System for Solving Linear Programming

Problems

Nikolaos Ploskas, Nikolaos Samaras

 Department of Applied Informatics, School of Information Sciences, University of

Macedonia

156 Egnatia Str., 54006 Thessaloniki, Greece

ploskas@uom.gr, samaras@uom.gr

Jason Papathanasiou

Department of Business Administration, School of Business Administration, University of

Macedonia

156 Egnatia Str., 54006 Thessaloniki, Greece

jasonp@uom.gr

ABSTRACT

Linear programming algorithms have been widely used in Decision Support Systems.

These systems have incorporated linear programming algorithms for the solution of the

given problems. Yet, the special structure of each linear problem may take advantage of

different linear programming algorithms or different techniques used in these algorithms.

In this paper, we propose a web-based DSS that assists decision makers in the solution of

linear programming problems with a variety of linear programming algorithms and

techniques. Two linear programming algorithms have been included in the DSS: (i)

revised simplex algorithm and (ii) exterior primal simplex algorithm. Furthermore, ten

scaling techniques, five basis update methods and eight pivoting rules have been

incorporated in the DSS. All linear programming algorithms and methods have been

implemented using MATLAB and converted to Java classes using MATLAB Builder JA,

while the web interface of the DSS has been designed using Java Server Pages.

Keywords: Decision Making, Web-based Decision Support Systems, Linear

Programming, Revised Simplex Algorithm, Exterior Primal Simplex Algorithm.

1. INTRODUCTION

Web-based Decision Support Systems (DSS) are computerized information systems that

provide decision support tools to managers or business analysts using only a thin-client Web

Browser (Power & Kaparthi, 2002). Web-based DSS can assist a decision maker to: (i)

retrieve, analyze and display data from large databases, (ii) provide access to a model, and

(iii) establish communication and decision making in distributed teams (Power, 2000). In

general, all types of DSS, communication-driven, knowledge-driven and document-driven

(Bhargava et al., 2007), can be implemented as a web-based DSS (Power, 2000).

Linear programming algorithms have been widely used in DSS for supplier selection

(Ghodsypour & O'Brien, 1998), forest management planning systems (Lappi et al., 1996),

assignment of parking spaces (Venkataramanan & Bornstein, 1991), schedule of student

attendants (Lauer et al., 1994), portfolio robustness evaluation (Lourenço et al., 2012),

optimality in open air reservoir strategies (Van Vuuren & Grundlingh, 2002), energy

planning (Mavrotas, 2000) and water resource management (Faye et al., 1998) among

mailto:samaras@uom.gr
mailto:samaras@uom.gr

2

others. However, the special structure of each linear problem should be taken into

consideration in order to take advantage of different linear programming algorithms and

methods.

This paper presents a web-based DSS that provides decision support tools to decision

makers that want to solve their linear programming problems. The paper builds on the work

of Ploskas et al. (2013). Ploskas et al. (2013) have implemented a web-based DSS that assists

decision makers in the selection of the linear programming algorithm and basis update

method for solving their linear programming problems. In this paper, we do not only take into

consideration the basis update step, but go further to explore all different steps of the linear

programming algorithms. The main difference from our previous paper (Ploskas et al., 2013)

is that here we include ten scaling techniques, five basis update methods and eight pivoting

rules; the user can select any combination of these methods to be included in the

execution of the linear programming algorithm or let the DSS select the best combination

for the selected linear programming problem.

Two linear programming algorithms are incorporated in the DSS: (i) Revised Simplex

Algorithm (Dantzig, 1953) and (ii) Exterior Primal Simplex Algorithm (Paparrizos et al.,

2003). The DSS also includes a variety of different methods for the different steps of these

algorithms. More specifically, ten scaling techniques, five basis update methods and eight

pivoting rules have been implemented in the DSS. The decision maker can either select

the algorithm and the appropriate methods to solve a linear programming problem or

perform a thorough computational study with all combinations of algorithms and methods

in order to gain an insight on its linear programming problem.

There are already linear programming solvers in the market that efficiently solve linear

programming problems (LPs), but either they do not include so many scaling techniques,

basis update methods and pivoting rules, either they do not allow the user to choose some

of them. To the best of our knowledge, this is the first paper that implements a DSS for

solving linear programming problems that include all these different methods for scaling,

basis update and pivoting, and lets the user select the different combinations of the

methods to be included in the execution of the linear programming algorithm.

The rest of this paper is organized as follows. Section 2 presents the background of our

work. In Section 3, ten widely-used scaling techniques that incorporated in the DSS are

presented. Section 4 includes the presentation of the five basis update methods

implemented in the DSS, while in Section 5 eight well-known pivoting rules that

incorporated in the DSS are presented. Section 6 includes the analysis and design of the

DSS, while in Section 7 the DSS is presented. Finally, the conclusions of this paper are

outlined in Section 8.

2. BACKGROUND

Linear programming

Linear programming is the process of minimizing or maximizing a linear objective

function
1

n

i i

i

z c x
=

= to a number of linear equality and inequality constraints. Several

methods are available for solving linear programming problems, among which the simplex

algorithm is the most widely used. We assume that the problem is in its general form.

Formulating the linear problem, we can describe it as shown in equation 1:

3

min c

 Ax = b

 x 0

T x

subject to



 (1)

where ARmxn, (c, x)Rn, bRm, and T denotes transposition. We assume that A has full

rank (rank(A)=m, m < n). The simplex algorithm searches for an optimal solution by moving

from one feasible solution to another, along the edges of the feasible set. The dual problem

associated with the linear problem in equation 1 is shown in equation 2:

min b

 A w +s = c

 s 0

T

T

w

subject to



 (2)

where w  Rm and s  Rn. Using a partition (B, N) equation 1 can be written as shown in

equation 3:

min c

 A x +A x = b

 x , x 0

T T

B B N N

B B N N

B N

x c x

subject to

+



 (3)

In the above equation, B is an mxm non-singular sub-matrix of A, called basic matrix or

basis. The columns of A which belong to subset B are called basic and those which belong to

N are called non basic. The solution of the linear problem 1 , 0B Nx b x−=  = is called a basic

solution. A solution (,)B Nx x x= is feasible if x > 0. Otherwise the solution is infeasible. The

solution of the linear problem in equation (2) is computed by the relation
Ts c A w= − , where

1()T

Bw c B−= are the simplex multipliers and s are the dual slack variables. The basis B is

dual feasible if 0s  .

Two linear programming algorithms have been implemented using MATLAB and

incorporated in the DSS: (i) Revised Simplex Algorithm proposed by Dantzig (1953) and

(ii) Exterior Primal Simplex Algorithm (EPSA) proposed by Paparrizos et al. (2003).

Revised simplex algorithm

A formal description of the revised simplex algorithm (Dantzig, 1953) is given below.

Table 1: Revised Simplex Algorithm

Step 0. (Initialization).

Start with a feasible partition (B, N). Compute
1

BA −
 and vectors xB, w and sN.

Step 1. (Test of optimality).

if 0s  then STOP. The linear problem (equation 3) is optimal.

Step 2. (Choice of the entering/leaving variable).

Choose the index l of the entering variable using a pivoting rule. Variable xl enters the basis.

Compute the pivot column
1

. .l B lh A A−=

if 0lh  then STOP. The linear problem (equation 3) is unbounded.

else

 Choose the leaving variable xB[r] = xk using the following equation:

4

 []

[] []
min : 0B r

B r B i

il

il il

x x
x h

h h

 
= =  

 

Step 3. (Pivoting).

Swap indices k and l. Update the new basis inverse
1

BA
−

. Go to Step 1.

Exterior primal simplex algorithm

The algorithm starts with a primal feasible basic partition (B, N). Then, the following

sets of indexes are computed:

  : 0jP j N s=   (4)

  : 0jQ j N s=   (5)

If P =  then the current basis B and the corresponding solution xT = (xB, xN) is optimal

for the primal problem. EPSA firstly defines the leaving and afterwards the entering variable.

The leaving variable xB[r] = xk is computed using equation 6:

[] []

[]

[] []

min : 0
B r B i

B i

B r B i

x x
a d

d d

  
= =  
− −  

 (6)

where d is an improving direction. This direction is constructed in such way that the ray

{x + td : t > 0} crosses the feasible region of equation 1. The notation dB denotes those

components from d which correspond to the basic variables. The dB is computed as shown in

equation 7:




−=
Pj

jB hd

 (7)

where hj = B-1 A.j. If dB ≥ 0, then the problem is unbounded.

In order to compute the entering variable xl, the following ratios must first be calculated

using equations 8 and 9:

jQ

1 rj

rQ rj

ss
θ min : H 0 j P

H H

 −−  
= − =    

  

 (8)

and

2θ min : 0

Q j

rj

rQ rj

s s
H j Q

H H

 − − 
= − =    

  

 (9)

If θ1 ≤ θ2 then l = p, otherwise (e.g., θ1 > θ2) l = q. The non-basic variable xl enters the

basis. A formal description of the EPSA is given below (Paparrizos et al., 2003).

Table 2: Exterior Primal Simplex Algorithm

Step 0. (Initialization).

Start with a feasible partition (B, N). Compute B-1 and vectors xB, w and sN. Find the sets of

indices P and Q using relations 4 and 5. Define an arbitrary vector λ = (λ1, λ2, ..., λ|P|) > 0 and

compute s0 as follows:

 0 j j

j P

s s


= (10)

and the direction dB from equation 7.

5

Step 1. (Termination test).

i) (Optimilaty test). If P = , STOP. The problem is optimal.

ii) (Leaving variable selection). If dB ≥ 0, STOP. If s0 = 0 the problem is optimal. If s0

< 0 the problem is unbounded. Otherwise choose the leaving variable xB[r] = xk using equation

6.

Step 2. (Entering variable selection).

Compute the row vectors:

1 1

. .() and ()rP r p rQ r QH B A H B A− −= = (11)

Compute the ratios θ1 and θ2 using relations 8 and 9. Determine the indices t1 and t2 such that

P[t1] = p and Q[t2] = q. If θ1 ≤ θ2, set l = p, otherwise (θ1 > θ2) l = q. The non-basic variable xl

enters the basis.

Step 3. (Pivoting)

Set B[r] = l. If θ1 ≤ θ2, set P ← P\{l} and Q ← Q  {k}. Otherwise, set Q[t2] = k. Using the

new partition (B, N) where N = (P, Q), update the matrix B-1 and the vectors xB, w and sN.

Also update d as follows:

 1
B Bd E d−= (12)

If lP set dB[r] ← dB[r] + λl. Go to step 1.

3. SCALING TECHNIQUES

Preconditioning techniques can be applied to linear programming problems prior to the

application of an optimization solver in order to improve their computational properties.

Scaling is the most well-known and widely used preconditioning technique. Scaling is an

operation in which the rows and columns of a matrix are multiplied by positive scalars;

this operation leads to nonzero numerical values of similar magnitude. Scaling is used for

the following reasons for (Tomlin, 1975): (i) the production of a compact representation

of the bounds of the variables, (ii) the reduction of the number of the iterations, (iii) the

simplification of the setup of the tolerances, (iv) the reduction of the condition number of

the constraint matrix, and (v) the improvement of the numerical behavior of the linear

programming algorithms.

In the proposed DSS, we have implemented ten widely used scaling techniques: (i)

arithmetic mean, (ii) de Buchet for the case p = 1, (iii) de Buchet for the case p = 2, (iv)

entropy (Larsson, 1993), (v) equilibration, (vi) geometric mean, (vii) IBM MPSX

(Benichou et al., 1977), (viii) Lp-norm for the case p = 1, (ix) Lp-norm for the case p = 2,

and (x) Lp-norm for the case p = ∞ and de Buchet for the case p = ∞.

Prior to the presentation of the aforementioned scaling techniques, some mathematical

preliminaries and notations should be introduced. Let A be an m x n matrix. Let ri be the row

scaling factor for row i and sj be the column scaling factor for column j. Let  N j | A 0
i ij
=  ,

where i = 1, ...,m, and  M | A 0
ijj i=  , where j = 1, ..., n. Let ni and mj be the cardinality

numbers of the sets Ni and Mj, respectively. The scaled matrix is expressed as X = RAS,

where R = diag(r1...rm) and S = diag(s1...sn).

Arithmetic mean

Arithmetic mean scaling method aims to reduce the variance between the nonzero

elements of the coefficient matrix A. Each row and column is divided by the arithmet ic

6

mean of the elements in that specific row and column, respectively. The row and column

scaling factors are presented in equation 13 and equation 14, respectively:

i

i
i

ij

j N

n
r

A


 
 

=  
 
 


 (13)

j

j

j

ij

i M

m
s

A


 
 

=  
 
 


 (14)

de Buchet

The de Buchet scaling model is formulated as shown in equation 15:

() 
__

1/

(, 0)

(,)

min 1/

p

p

ij i j ij i j
r s

i j Z

A r s A r s




 
 +
 
 

 (15)

where p is a positive integer and
__

Z is the number of the nonzero elements of matrix A.

For the case p = 1, equation 15 is formulated as shown in equation 16.

 ()
__(, 0)

(,)

min 1/ij i j ij i j
r s

i j Z

A rs A rs




+ (16)

The row and the column scaling factors for the case p = 1 are shown in equations 17

and 18, respectively:
1/2

1/
i i

i ij ij

j N j N

r A A
 

    
=    
    
  (17)

1/2

1/
j j

j ij ij

i M i M

s A A
 

    
=      
    
  (18)

For the case p = 2, equation 15 is formulated as shown in equation 19.

() 
__

1/2

2

(, 0)

(,)

min 1/ij i j ij i j
r s

i j Z

A r s A r s




 
 +
 
 

 (19)

The row and the column scaling factors for the case p = 2 are shown in equations 20

and 21, respectively:

() ()
1/4

2 2

1/
i i

i ij ij

j N j N

r A A
 

    
=    
    
  (20)

() ()
1/4

2 2

1/
j j

j ij ij

i M i M

s A A
 

    
=      
    
  (21)

Finally, for the case p = ∞, equation 15 is formulated as shown in equation 22.

()
__(, 0)

(,)

min max log ij i j
r s

i j Z

A rs




 (22)

7

The row and the column scaling factors for the case p = ∞ are shown in equations 23

and 24, respectively:

 ()() 
1/2

1/ max min
ii

i ij ij
j Nj N

r A A


= (23)

1/2

1/ max min
jj

j ij ij
i Mi M

s A A


   
=    

   
 (24)

Entropy

The entropy model was first presented by Larsson (1993). This technique solves the model

presented in equation 25, in order to identify a scaling X with all 0ijx  of magnitude one:

()()

()

__

(,)

__

min log / 1

 1,...,

 j 1,...,

 X 0 ,

i

j

ij ij ij

i j Z

ij i

j N

ij j

i M

ij

X X A

subject to X n i m

X m n

i j Z







−

= =

= =

  






 (25)

The row and column scaling factors are presented in equations 26 and 27, respectively:

 /
i

i i ij

j N

r n A


=  (26)

 /
j

j j ij

i M

s m A


=  (27)

Equilibration

In this scaling technique, for each row of the coefficient matrix A the largest element

in absolute value is found. Then, the specified row of matrix A and the corresponding

element of vector b are multiplied by the inverse of the largest element. Then, for each

column of the coefficient matrix A that does not include 1 as the largest element in

absolute value, the largest element in absolute value is found, and the specified column of

matrix A and the corresponding element of vector c is multiplied by the inverse of the

largest element. Consequently, all the elements of matrix A will have values between -1

and 1.

Geometric mean

Like the arithmetic mean scaling method, geometric mean also aims to reduce the

variance between the nonzero elements of the coefficient matrix A. Each row and column

is divided by the product of the square root of the maximum and minimum element in that

row and column, respectively. The row and column scaling factors are presented in

equation 28 and equation 29, respectively:

 ()
1/2

max min
ii

i ij ij
j Nj N

r A A
−


= (28)

1/2

max min
jj

j ij ij
i Mi M

s A A

−



 
=  
 

 (29)

8

IBM MPSX

The method was proposed by Benichou et al. (1977) and was later adopted by IBM,

which used this method in IBMs MPSX linear optimization solver. This method combines

geometric mean and equilibration scaling techniques. Initially, geometric mean is

performed four times or until the relation 30 is true.

 () ()
__ __

2

__2 2

__

(,) (,)

1
/ij ij

i j Z i j Z

A A Z

Z



 

    
    − 
         

  (30)

where
__

 is the cardinality number of nonzero element of matrix A and ε is a

tolerance, which is often set below ten. Then, the equilibration scaling technique is

applied.

Lp-norm

The Lp-norm scaling model is formulated as shown in equation 31:

()
__

1/

(, 0)

(,)

min log

p

p

ij i j
r s

i j Z

A r s




 
 
 
 

 (31)

where p is a positive integer and
__

 is the cardinality number of nonzero element of

matrix A.

For the case p = 1, equation 31 is formulated as shown in equation 32.

()
__(, 0)

(,)

min log ij i j
r s

i j Z

A rs




 (32)

The row and the column scaling factors for the case p = 1 are shown in equations 33

and 34, respectively:

 1/ |i ij ir median A j N=  (33)

 1/ |j ij js median A i M=  (34)

For the case p = 2, equation 32 is formulated as shown in equation 35.

()
__

1/2

2

(, 0)

(,)

min log ij i j
r s

i j Z

A r s




 
 
 
 

 (35)

The row and the column scaling factors for the case p = 2 are shown in equations 36

and 37, respectively:

()
1/

1/
i

i

n

i ij

j N

r A


=  (36)

()
1/

1/
j

j

m

i ij

i M

r A


=  (37)

Finally, for the case p = ∞, the model and the row and scaling factors are equivalent to the

de Buchet for the case p = ∞.

9

4. BASIS UPDATE METHODS

The computation of the basis inverse is the most time-consuming step in linear

programming algorithms and if these methods are not properly designed and implemented

the basis inverse step can dictate the total execution time of the algorithm. However, this

inverse does not have to be computed from scratch at each iteration, but updating methods

can be applied. In the proposed DSS, we have implemented five widely used basis update

methods: (i) Gaussian elimination, (ii) MATLAB's built-in function called inv, (iii) LU

decomposition (Markowitz, 1957), (iv) Modification of the Product Form of the Inverse

(Benhamadou, 2002), and (v) Product Form of the Inverse (Dantzig & Orchard-Hays,

1954).

Gaussian elimination

Gaussian elimination is a method for solving systems of linear equations that can be

used to compute the inverse of a matrix in simplex type algorithms. Gaussian elimination

performs a forward substitution, which reduces the given matrix to a triangular or echelon

form, and a back substitution, which calculates the solution of the given system of linear

equations. Gaussian elimination with partial pivoting requires O(n3) time complexity.

Gaussian elimination has been implemented using the mldivide operator of MATLAB.

The new basis inverse using Gaussian elimination can be found using equation 38:

()
1

\B BA A I
−
= (38)

Built-in function inv of MATLAB

The basis inverse can be computed using the built-in function of MATLAB called inv,

which uses LAPACK routines to compute the basis inverse. This function is already

compiled and optimized for MATLAB, so its execution time is smaller compared with the

other relevant methods that compute the explicit basis inverse. The time-complexity,

though, remains O(n3).

LU decomposition

LU decomposition method factorizes a matrix as the product of a lower L and an upper

U triangular factors that can be used to compute the inverse of a matrix. In order to

compute the L and U factors, the built-in function of MATLAB called lu has been used.

LU decomposition requires O(n3) time complexity.

Modification of the product form of the inverse

The Modification of the Product Form of the Inverse (MPFI) updating scheme has been

presented by Benhamadou (2002). The new basis inverse 1()
B

A − can be computed from

the previous basis inverse 1()BA − using an outer product of two vectors and one matrix

addition, as shown in equation 39:

 () () ()
1 1 1

.. BB B rr
A A v A

− − −
= +  (39)

The outer product of equation 39 requires m2 multiplications and the addition of two

matrices requires m2 additions. Hence, the time complexity of this basis updating scheme

is Θ(m2).

10

Product form of the inverse

The Product Form of the Inverse (PFI) updating scheme uses information only about

the entering and leaving variables along with the current basis 1()BA − in order to update

the new basis 1()
B

A − . The new basis inverse can be updated at any iteration using equation

40:

 () ()
1 1 1 1()B BB

A A E E A
− − − −= = (40)

where E-1 is the inverse of the eta-matrix and can be computed by the equation 41:

1l rl

1 T

l l l rl

rl

ml rl

1 h / h

1
E I (h e)e 1/ h

h

h / h 1

−

− 
 
 
 = − − =
 
 
 − 

 (41)

If the current basis inverse is computed using regular multiplication, then the time

complexity of the PFI basis updating scheme is Θ(m3).

5. PIVOTING RULES

A critical step in the solution of a linear programming problem is the selection of the

entering variable in each iteration, called pivoting or pricing. The key factor that will

determine the number of the iterations that the linear programming algorithm performs is

the pivoting rule (Maros & Khaliq, 2002). Good choices of the entering variable can lead

to fast convergence to the optimal solution, while poor choices lead to more iterations. In

the proposed DSS, we have implemented eight widely used pivoting rules: (i) Bland’s rule

(Bland, 1977), (ii) Dantzig’s rule (Dantzig, 1963), (iii) Greatest Increment Method (Klee &

Minty, 1972), (iv) Least Recently Considered Method (Zadeh, 1980), (v) Partial Pricing rule,

(vi) Queue rule, (vii) Stack rule, and (viii) Steepest Edge rule (Goldfarb & Reid, 1977).

Bland's rule

Bland's rule (Bland, 1977) selects as entering variable the first among the eligible ones,

that is the leftmost among columns with negative relative cost coefficient. Although

Bland's rule avoids cycling, it has been observed in practice that this pivoting rule can

lead to stalling, a phenomenon where long degenerate paths are produced.

Dantzig's rule

The first pivoting rule that was used in the simplex algorithm is Dantzig's rule or

largest coefficient rule (Dantzig, 1963). In this pivoting rule, the column lA with the most

negative

lc is selected as the entering variable. Dantzig's rule guarantees the largest

reduction in the objective value per unit of non-basic variable

lc increase. Its worst-case

complexity is exponential (Klee & Minty, 1972). However, Dantzig's rule is claimed as

simple but powerful enough to guide simplex algorithm into short paths (Thomadakis,

1994).

11

Greatest increment method

Greatest Increment Method (Klee & Minty, 1972) selects as entering variable the

variable with the largest total objective value improvement. Greatest Increment Method

calculates the improvement of the objective value for each non-basic variable and then

selects the variable that offers the largest improvement in the objective value. Although

this pivoting rule can lead to fast convergence to the optimal solution, this advantage is

eliminated by the additional computational cost per iteration. Gärtner (1995) constructed

LPs that Greatest Increment Method showed exponential complexity.

Least recently considered method

In the first iteration of Least Recently Considered Method (Zadeh, 1980), the entering

variable l is selected according to Bland's rule, i.e. the leftmost among columns with

negative relative cost coefficient. In the next iterations, Least Recently Considered

Method starts searching for the first eligible variable with index greater than l. If l n=

then Least Recently Considered Method starts searching from the first column again.

Least Recently Considered Method prevents stalling and it has been observed that it

performs fairly well in practice (Thomadakis, 1994). However, its worst-case complexity

has not been proved yet.

Partial pricing rule

Partial Pricing methods are variants of the standard rules that take only a part of non-

basic variables into account when searching for the entering variable. In the DSS

presented in Section 7, we have implemented the partial pricing rule as variant for

Dantzig's rule using static partial pricing, i.e. non-basic variables are divided into equal

segments with predefined size and the pricing operation is carried out segment by

segment.

Queue rule

Queue is a FIFO (First-In-First-Out) data structure, where the first element added to

the queue is the first one to be removed. In the pivoting rule of queue, two queues are

constrcuted; the first one holds the indices of the basic variables, while the other the

indices of the non-basic variables. The entering and leaving variables are selected from

the front of the corresponding queue. The variable, which is extracted from the front of

the queue that holds the basic variables, is inserted to the end of the queue that holds the

non-basic variables. Respectively, the variable, which is extracted from the front of the

queue that holds the non-basic variables, is inserted to the end of the queue that holds the

basic variables.

Stack rule

Stack is a LIFO (Last-In-First-Out) data structure, where the last element added to the

stack is the first one to be removed. In the stack rule, the entering and leaving variables

are selected from the top of the corresponding stack. The variable, which is extracted

from the top of the stack that holds the basic variables, is inserted to the top of the stack

that holds the non-basic variables. Respectively, the variable, which is extracted from the

top of the stack that holds the non-basic variables, is inserted to the end of the stack that

holds the basic variables.

12

Steepest edge rule

Steepest Edge Rule or All-Variable Gradient Method (Goldfarb & Reid, 1977) selects

as entering variable the variable with the most objective value reduction per unit distance.

Although this pivoting rule can lead to fast convergence to the optimal solution, this

advantage is debatable due to the additional computational cost per iteration.

6. DECISION SUPPORT SYSTEM ANALYSIS AND DESIGN

The decision making process that the policy maker can perform using the proposed DSS is

presented in Figure 1. Initially, the decision maker formulates the given problem as a linear

programming problem. In step 2, the decision maker gathers, validates and verifies the

adequate data and the input data are uploaded to the DSS. Then, the decision maker either

selects the desired algorithm and the appropriate methods to solve a linear programming

problem or selects the option to perform a computational study with all combinations of

algorithms and methods. Then, the algorithms' evaluation and execution step follows. In the

last step, the results are presented and analyzed. Finally, the decision maker validates the

results and considers if the provision of further feedback on the operation of the DSS is

necessary; if so, the updated decision making process is performed again.

Figure 1: Decision Making Process

The interaction between the decision maker and the DSS is presented in Figure 2. The

decision maker uploads the input file in the standardized mps format, selects the algorithms

(RSM, EPSA), the scaling methods (arithmetic mean, de Buchet for the case p = 1, de Buchet

for the case p = 2, entropy, equilibration, geometric mean, IBM MPSX, Lp-norm for the case

p = 1, Lp-norm for the case p = 2, Lp-norm for the case p = ∞, de Buchet for the case p = ∞),

the basis update methods (Gaussian elimination, MATLAB's built-in function called inv, LU

decomposition, Modification of the Product Form of the Inverse, Product Form of the

Inverse), the pivoting rules (Bland’s rule, Dantzig’s rule, Greatest Increment Method, Least

Recently Considered Method, Partial Pricing Rule, Queue Rule, Stack Rule, Steepest Edge

Rule) and presses the 'Report' button. Then, the DSS validates the input data and executes the

algorithms for each combination of methods (scaling methods, basis update methods and

pivoting rules). Then, it collects: (i) the total execution time, (ii) the time to perform the

scaling, (iii) the time to perform the basis inverse, (iv) the time to perform the pivoting, (v)

the number of iterations, and (vi) the objective value; and presents these results to the

decision maker. Finally, the decision maker can export the results as a pdf file for further

analysis.

13

Figure 2: Sequence Diagram

Figure 3 presents the class diagram of the proposed DSS. InitialScreen is a boundary class

that includes three methods that respond to the decision maker's action events: (i) upload

input file, (ii) select algorithms, scaling methods, basis update methods and pivoting rules,

and (iii) press 'Report' button. SimplexAlgorithm is an abstract class that includes the

common attributes and methods of RevisedSimplexAlgorithm and

ExteriorPrimalSimplexAlgorithm. Matrix A contains the constraints coefficients, vector c the

objective function coefficients, vector b the right-hand side values, vector Eqin the type of

constraints (equality or inequality), and variable minMax the type of the linear programming

problem (minimization or maximization). Furthermore, SimplexAlgorithm class includes

three methods that perform the scaling, the basis inverse and the pivoting according to the

selected methods. RevisedSimplexAlgorithm and ExteriorPrimalSimplexAlgorithm classes

override the abstract method executeAlgorithm of the SimplexAlgorithm and perform their

unique steps for the solution of the linear programming problem.

Scaling is an abstract class that includes the common attributes and methods of all

different scaling methods. Matrix A again contains the constraints coefficients, vector c the

objective function coefficients, vector b the right-hand side values, vector r the row scaling

factors and vector s the column scaling factors. All the derived scaling classes override the

abstract method scaling of the Scaling class and perform their steps to scale the linear

programming problem.

BasisUpdateMethod is an abstract class that includes the common attributes and methods

of all different basis update methods. Matrix Ab contains the previous basis inverse, vector hl

the pivot column, k the index of the leaving variable and m the number of the constraints. All

the derived basis update classes override the abstract method inverse of the

BasisUpdateMethod class and perform their steps to update the basis matrix.

PivotingRule is an abstract class that includes the common attributes and methods of all

different pivoting rules. Vector Sn contains the cost coefficients. All the derived pivoting

classes override the abstract method pivoting of the PivotingRule class and perform their

steps to make the pivoting step. Finally, some of the derived pivoting classes, like Steepest,

contain some unique attributes, i.e. Steepest contains vector nonBasicList that holds the

indices of the non-basic variables, matrix A the constraints coefficients and matrix Ab the

basis matrix.

14

Figure 3: Class Diagram

7. DECISION SUPPORT SYSTEM PRESENTATION

Simplex type algorithms, scaling methods, basis update methods and pivoting rules have

been implemented using MATLAB. Then, these algorithms and methods were converted to

Java classes using the MATLAB Builder JA. The web interface of the DSS was designed

using Java Server Pages (JSP). The DSS is a freeware and can be used mainly for academic

purposes. The proposed DSS can be used to solve large-scale LPs. We have achieved to run a

15,000 x 15,000 dense linear programming problem on a quad-processor Intel Core i7 3.4

GHz with 32 Gbyte of main memory and 8 cores, a clock of 3700 MHz, running under

Microsoft Windows 7 64-bit. Furthermore, we also managed to solve many medium- and

large-scale Netlib problem set (optimal, Kennington and infeasible LPs) (Gay, 1985).

The initial screen of the DSS is presented in Figure 4. The decision maker presses the

'Browse' button in order to upload the file containing the LP in mps format. MPS is a well-

known file format for mathematical programming. After the upload of the input file, the

decision maker can view useful information of the selected LP, like: (a) the filename, (b) the

number of the constraints, (c) the number of the variables, (d) the number of the nonzeros in

matrix A, and (e) the density of matrix A. Moreover, the decision maker selects the

algorithms, the scaling methods, the basis update methods and the pivoting rules that will be

included in the comparison. By pressing the 'Report' button a screen with a thorough report is

presented (Figure 5). This screen includes the objective value, the number of the iterations,

the total time, the times needed to perform the scaling and the basis update, and the number

of iterations for each pivoting rule. Finally, the decision maker may export the report as a pdf

file for further analysis.

15

Figure 4: Initial Screen of the proposed DSS

Figure 5: Report Screen

Many LPs of the Netlib set are real-world problems. Figures 4 and 5 present a case study

for SCTAP3, which is a problem of the Netlib set. SCTAP3 is a problem in the optimization

of the dynamic flow over a traffic network where congestion is modelled explicitly in the

flow equations (Ho & Loute, 1981). This model, originally formulated in Merchant and

Nemhauser (1978), is further studied in Ho (1980). SCTAP3 includes 2,480 variables with

1,481 constraints. From the results that are presented in Figure 5, it is concluded that EPSA

with the PFI updating method and the equilibration scaling technique is the best choice for

the solution of this problem.

The proposed DSS offers important managerial implications. Initially, the decision maker

can formulate its problem as a linear programming problem. Problems that can be formulated

as linear programming problems might refer to telecommunications, bio-informatics, supply

16

chain management, water management, resource allocation, etc. Furthermore, the decision-

policy maker can gain an insight of the best algorithm, scaling method, basis update method

and pivoting rule that best suits the given problem. On the other hand, a limitation that exists

on the proposed DSS is that some problems cannot be formulated as linear programming

problems.

8. CONCLUSIONS

Many problems from different scientific fields can be formulated as linear programming

problems. Many DSS that utilize linear programming algorithms exist, but they do not take

into consideration the structure of the problem in order to suggest the best combination of the

linear programming algorithm and the appropriate methods for each step of the algorithm. In

this paper, we presented a web-based DSS that supports decision makers in the solution of

linear programming problems with a variety of linear programming algorithms and

techniques. More specifically, the decision maker has two choices: (i) either select which

linear programming algorithm, scaling method, basis update method and pivoting rule will be

used to solve the given problem, or (ii) perform a computational study with all combinations

of algorithms and methods in order to export a detailed report and find the combination of

algorithms and methods that best suits the given problem.

In future work, we plan to enhance the DSS with an option that can exploit the structure of

the input problem prior of the execution of the algorithms and propose to the decision maker

the best suitable combination of algorithms and methods. Finally, we plan to present real

application case studies on which the proposed DSS can be utilized.

REFERENCES

Benhamadou, M. (2002). On the simplex algorithm ‘revised form’. Advances in Engineering

Software, 33(11), 769-777.

Benichou, M., Gauthier, J. M., Hentges, G., & Ribiere, G. (1977). The efficient solution of

large-scale linear programming problems—some algorithmic techniques and computational

results. Mathematical Programming, 13(1), 280-322.

Bhargava, H. K., Power, D. J., & Sun, D. (2007). Progress in Web-based decision support

technologies. Decision Support Systems, 43(4), 1083-1095.

Bland, R. G. (1977). New finite pivoting rules for the simplex method. Mathematics of

Operations Research, 103-107.

Dantzig, G. B. (1953). Computational Algorithm of the Revised Simplex Method. RAND

Report RM-1266, The RAND Corporation, Santa Monica, CA.

Dantzig, G. B., & Orchard-Hays, W. (1954). The product form for the inverse in the simplex

method. Mathematical Tables and Other Aids to Computation, 64-67.

Dantzig, G. B. (1963). Linear Programming and Extensions. Princeton, NJ: Princeton

University Press.

Faye, R. M., Mora-Camino, F., Sawadogo, S., & Niang, A. (1998, October). An intelligent

decision support system for irrigation system management. In 1998 IEEE International

Conference on Systems, Man, and Cybernetics (Vol. 4, pp. 3908-3913). IEEE.

17

Gärtner, B. (1995). Randomized optimization by Simplex-type methods. Doctoral dissertation,

Freie Universität, Germany.

Gay, D. M. (1985). Electronic mail distribution of linear programming test problems. Math.

Program. Soc. COAL News, 13, 10-12.

Ghodsypour, S. H., & O'brien, C. (1998). A decision support system for supplier selection

using an integrated analytic hierarchy process and linear programming. International Journal

of Production Economics, 56, 199-212.

Goldfarb, D., & Reid, J. K. (1977). A practicable steepest-edge simplex

algorithm. Mathematical Programming, 12(1), 361-371.

Ho, J. K. (1980). A successive linear optimization approach to the dynamic traffic assignment

problem. Transportation Science, 14(4), 295-305.

Ho, J. K., & Loute, E. (1981). A set of staircase linear programming test problems.

Mathematical Programming, 20(1), 245-250.

Klee, V., & Minty, G. J. (1972). How Good is the Simplex Algorithm. In O. Shisha (Ed.),

Inequalities – III, New York and London: Academic Press Inc.

Lappi, J., Nuutinen, T., & Siitonen, M. (1996). A linear programming software for multilevel

forest management planning. In Management systems for a global economy with global

resource concerns, 470-482. Proceedings of the symposium on system analysis in forest

resources. Pacific Grove, CA.

Larsson, T. (1993). On scaling linear programs—Some experimental results.

Optimization, 27(4), 355-373.

Lauer, J., Jacobs, L. W., Brusco, M. J., & Bechtold, S. E. (1994). An interactive,

optimization-based decision support system for scheduling part-time, computer lab

attendants. Omega, 22(6), 613-626.

Lourenço, J. C., Morton, A., & Bana e Costa, C. A. (2012). PROBE–A multicriteria decision

support system for portfolio robustness evaluation. Decision Support Systems, 54, 534-550.

Markowitz, H. M. (1957). The elimination form of the inverse and its application to linear

programming. Management Science, 3(3), 255-269.

Maros, I., & Haroon Khaliq, M. (2002). Advances in design and implementation of

optimization software. European Journal of Operational Research, 140(2), 322-337.

Mavrotas, G. (2000). Multiple Objective Linear Programming under Uncertainty:

Development of a DSS and Application in Energy Planning. Unpublished doctoral

dissertation, National Technical University of Athens, Greece.

Merchant, D. K., & Nemhauser, G. L. (1978). A model and an algorithm for the dynamic

traffic assignment problems. Transportation Science, 12, 183-199.

18

Paparrizos, K., Samaras, N., & Stephanides, G. (2003). An efficient simplex type algorithm

for sparse and dense linear programs. European Journal of Operational Research, 148(2),

323-334.

Ploskas, N., Samaras, N., & Papathanasiou, J. (2013). A Web-Based Decision Support

System Using Basis Update on Simplex Type Algorithms. In Decision Support Systems II-

Recent Developments Applied to DSS Network Environments (pp. 102-114). Springer Berlin

Heidelberg.

Power, D. J. (2000). Web-based and model-driven decision support systems: concepts and

issues. In Americas Conference on Information Systems, Long Beach, California (Vol. 3, pp.

27-002).

Power, D. J., & Kaparthi, S. (2002). Building Web-based decision support systems. Studies in

Informatics and Control, 11(4), 291-302.

Thomadakis, M. E. (1994). Implementation and Evaluation of Primal and Dual Simplex

Methods with Different Pivot-Selection Techniques in the LPBench Environment A Research

Report. Texas: Texas A&M University.

Tomlin, J. A. (1975). On scaling linear programming problems. Math. Program. Stud., 4,

146-166.

Van Vuuren, J. H., & Grundlingh, W. R. (2001). An active decision support system for

optimality in open air reservoir release strategies. International Transactions in Operational

Research, 8(4), 439-464.

Venkataramanan, M. A., & Bornstein, M. (1991). A decision support system for parking

space assignment. Mathematical and Computer Modelling, 15(8), 71-76.

Zadeh, N. (1980). What is the worst case behavior of the simplex algorithm. Polyhedral

Computation, 48, 131-143.

