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Constraint Programming (CP) is a successful methodology for solving combinatorial

problems from various domains. Efficiently modeling the problem at hand as a Con-
straint Satisfaction Problem is a crucial, but difficult task in CP. Towards this, a re-

cent approach that is attracting increasing interest is Constraint Acquisition, i.e. the

(semi)automatic learning of constraints through examples of solutions and non-solutions.
This paper introduces a hybrid methodology that combines passive and active learning

strategies to acquire both global and fixed arity constraints. This hybrid approach lever-
ages the strengths of both techniques to address their individual limitations. Passive

learning rapidly learns constraints from example solutions, while active learning refines

and contextualizes constraints through user interaction. The core of the methodology
consists of a passive learning module where subsets of variables are compared against
global constraints and are validated using a CP solver. Constraints consistently present

across multiple solution sets are identified as global constraints that belong to the model.
Then, fixed arity constraints are refined through an active learning module with user in-

put. Experiments across various problem types, from simple to complex, demonstrate

the efficiency of the proposed hybrid methodology.
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1. Introduction

Constraint Programming (CP) is a successful methodology for solving combinatorial

problems from various domains in AI, OR, and computer science, such as scheduling,

resource allocation, and planning. Efficiently modeling the problem at hand as a

Constraint Satisfaction Problem (CSP) is a crucial, but difficult task in CP. A

CSP is modeled by defining variables, domains, and constraints. Variables represent

the elements of the problem, domains define possible values for the variables, and

constraints describe relationships between variables.

One of the main challenges in CP resides in the modeling phase, where precisely

defining the constraints is imperative yet laborious and error-prone because it de-

mands a high level of expertise from the modeler’s part. Hence, (semi-)automated

modeling is a research direction that is attracting a lot of interest, as it promises to

drastically reduce the required expert intervention. Constraint Acquisition (CA) is

one of the most promising approaches to (semi-)automated modeling.1,2

There are two types of learning approaches in CA. The first is passive learning

(PL), a technique that captures constraints by observing and analyzing example

solutions without requiring explicit user input. These solutions can come from pre-

viously solved instances of a problem, from historical datasets that contain records

of how similar problems were solved in the past, or they can be generated by sim-

ulating the problem scenario. PL mainly focuses on acquiring global constraints by

analyzing the available solutions and extracting common patterns among them.

On the other hand, there is active learning (AL), a technique that requires

explicit user input to acquire constraints. This input can be obtained by asking the

user, which may be a human or a software tool, to provide feedback on whether

an example (i.e. a set of variable assignments) is a solution or not. AL is useful for

acquiring fixed arity constraints, such as binary constraints, and thus can be used

to complete a basic model that has been acquired through PL or other means.

However, passive and active acquisition techniques have their respective limi-

tations. PL can use existing data to extract constraints, but in practice it cannot

converge to the target model but only approximate it, because it requires an expo-

nential number of examples in order to converge.3 Thus, the extracted model highly

depends on the quality and quantity of the existing data. On the other hand, AL

systems can converge to the target model that the user has in mind (under some

assumptions), but the amount of interaction, i.e. queries that have to be answered,

is quite high for human users. In addition, AL systems are, so far, unable to handle

global constraints because to do so, the set of constraints given as input to the AL

system, known as the bias, would need to have an exponential size.

The existing literature in CA either proposes only PL methods3–7 or only AL

methods,8–11 but no study combines these approaches to leverage their respective

strengths. In this paper, we present a novel hybrid CA method that integrates

both PL and AL techniques, resulting in a more efficient and effective constraint-

capturing method.
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Specifically, PL is first used to identify global constraints in the model. This is

done by extracting subsets of variables from the available solutions and validating

these against a list of global constraints that may potentially be present in the

model, following the way in which the PL system ModelSeeker operates.4 A novelty

in our approach to PL, is that apart from the known set of solutions and the list of

global constraints, the PL module is also given as input the full bias of fixed arity

constraints that are typically only used by AL systems. As the available solutions

are processed, this bias is filtered, removing constraints that violate solutions.

Once all the solutions have been processed and global constraints have been

learned, the AL module takes over in order to prove that specific fixed arity con-

straints belong to the problem. Crucially, the bias that is given as input to the

AL module, may now be of (much) smaller size, resulting in a significant reduction

in the number of queries that need to be posted to the user. Hence, we obtain a

tool that can learn global constraints and can acquire fixed arity constraints that

provably belong to the target model, requiring less user involvement than standard

AL methods.

To evaluate the effectiveness of the hybrid CA tool, we ran experiments on four

different types of problems. Specifically, Sudoku 9 × 9, GreaterThanSudoku 9 × 9,

the Warehouse Location Problem, and the Virtual Machines to Physical Machines

allocation problem in Data Centers. The experimental results demonstrate that our

method can learn all the constraints of these problems, significantly reducing the

number of queries and the runtime required, compared to running a state-of-the-art

AL method on its own. In addition, the hybrid method is able to acquire all the

binary constraints that are present in the models, whereas the PL method fails to

achieve this when run on its own.

The rest of the paper is structured as follows. Some background on CP and

CA is given in Section 2. In Section 3, we review the related work. In Section 4, we

present the proposed approach and the hybrid CA tool. An experimental evaluation

is given in Section 5. Finally, Section 6 concludes the paper.

2. Background

2.1. Fundamentals of CP

Constraint Programming (CP) is a declarative programming paradigm for modeling

and solving combinatorial problems with constraints. In CP, problems are modeled

as Constraint Satisfaction Problems (CSPs). A CSP12 is a triple P = (X,D,C),

which includes:

• a set of n variables X = {x1, x2, · · · , xn}, which denotes the problem’s

components,

• a set of n domains D = {D1, D2, · · · , Dn}, where Di ⊂ Z represents the

finite set of possible values for variable xi,

• a set of constraints C = {c1, c2, · · · , cm}.
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A constraint c can be defined as a pair (var(c), rel(c)), where var(c) is a subset of

X called the scope of the constraint, while rel(c) is a relation over the domains of

the variables contained in var(c), specifying the permissible assignments. The arity

of the constraint is given by |var(c)|. A solution S = {sx1
, sx2

, · · · , sxn
} to a CSP is

an assignment of values to all variables, where sxi ∈ Di for i = 1, 2, . . . , n and for all

cj ∈ C, the assignment S satisfies cj . The constraint set C[Y ], where Y ⊆ X, refers

to the set of constraints in C with a scope that is a subset of Y . The solution set of

a constraint set C includes all variable assignments that satisfy the constraints in

C and is denoted by sol(C). A constraint c ∈ C is considered redundant or implied

if it satisfies the condition sol(C) = sol(C \ c). That is, removing c from the set of

constraints does not change the solution set.

2.2. Fixed arity and global constraints

Fixed arity constraints are mathematical or logical expressions, or other relations,

that involve a fixed, usually small, number of variables. Fixed arity constraints

are called binary if they involve two variables. Typically, fixed arity constraints

encompass a range of mathematical operators, such as inequality ( ̸=), equality (=),

greater than (>), less than (<), less than or equal to (≤), and greater than or equal

to (≥). For example, xi ̸= xj is a common binary constraint.

Global constraints are constraints over sequences of variables with no fixed ar-

ity13 and typically have more complex semantics than fixed arity constraints. They

are called “global” because they involve a global view of the problem, taking into

account the relationships over sequences of variables. Global constraints are an im-

portant tool in CP for modeling and solving combinatorial optimization problems.

Global constraints are defined in terms of a set of parameters that specify their

semantics. These parameters include the set of variables involved in the constraint,

their domains, and any additional constraints or relationships between them.

Numerous global constraints have been defined, and most of them are described

in the ever-expanding global constraints catalog.14 So far, our hybrid CA system is

designed to handle, and potentially learn, the following global constraints (details

about them can be found in the on-line catalog): (1) allDifferent, (2) arithm,

(3) element, (4) allEqual, (5) notAllEqual, (6) circuit, (7) atMostNValues,

(8) atLeastNValues, (9) count, (10) sum, (11) max, (12) min, (13) lexChainLess,

(14) lexChainLessEq, (15) symmetric, (16) allDisjoint, (17) nValues, (18) tree.

For this study, we define the constraints allDifferent, count, and sum, as they

are the ones present in the problems used in our experimental study:

alldifferent Let X = {x1, x2, · · · , xn} be a set of variables. An alldifferent con-

straint on X requires that for any two variables xi and xj in X where i ̸= j, xi ̸= xj .

Such a constraint is semantically equivalent to the set of n × (n − 1)/2 binary ̸=
constraints on all pairs of the n variables. However, the non-binary representation

as a single alldifferent is preferable to its decomposition into binary constraints.15,16
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Count The count constraint,17 denoted as Count(X, v, c), is a global constraint

that involves a set of variables X = {x1, x2, · · · , xn} and two given values v and

c. The constraint specifies that exactly c variables from the set X should take the

value v.

Sum The sum constraint is a global constraint that involves a set of variables and

a target sum, which can be either a constant or a variable. The sum constraint

enforces that the sum of the variables’ values is different, less than, equal to, or

greater than the target sum. This can be expressed as:

sum({x1, ..., xn}, operator, z)

where operator can be any of ̸=, =, >, <, ≤, ≥.

2.3. Constraint Acquisition

Constraint Acquisition (CA) can be defined as the process of learning a set of

constraints C from a given set of examples E, where each example e ∈ E is a tuple

of variable assignments and is labeled as either positive (satisfying the constraints)

or negative (violating the constraints).3,18 In CA, the set of variables and domains

(X,D) is referred to as the vocabulary of the current problem and is the common

knowledge shared by the user and the system.

A (partial) example eY is an assignment on a set of variables Y ⊆ X. eY is

rejected by a constraint c if scope(c) ⊆ Y and the projection escope(c) of eY on the

variables in scope(c) is not in rel(c). An assignment eY is a partial solution if it is

accepted by all the constraints c ∈ C where scope(c) ⊆ Y . A complete assignment

that is accepted by all the constraints in C is a solution to the problem. A partial

assignment eY , which is accepted by C, is not necessarily part of a complete solution.

We say that the CA process has converged on the learned network CL ⊆ B

if CL agrees with E, i.e. satisfies all examples in E, and for every other network

C ⊆ B that agrees with E, we have sol(C) = sol(CL). It is possible that the

learned network CL may not correspond to the network that the user has in mind.

The target network CT represents all the constraints that are expected to accurately

capture the relationships between the variables in the problem.

In active acquisition, the learner interacts with the user dynamically while ac-

quiring the constraint network. In such systems, the basic query is to ask the user to

classify an example as a solution or not a solution. This ”yes/no” type of question

is called a (complete) membership query19 ASK(eX), asking the user whether an

assignment eX is a solution to CT. A partial query asks the user to classify a partial

example as a partial solution or not.

In active CA, apart from the vocabulary, the learner also receives a language Γ

comprising fixed arity constraint relations such as ̸=, =, >, <, ≥, and ≤. Utilizing

the vocabulary (X,D) and the constraint language Γ, AL systems formulate the

constraint bias B by generating a constraint for each relation in Γ and each fixed
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arity combination of variables. This bias includes all potential fixed arity (usually

binary) constraints relevant to the problem. We denote this constraint bias as B,

which represents the set of all potential fixed arity constraints for the problem. In

some cases, background knowledge may be available to the AL system. That is, the

learned network CL could be initialized with constraints that are already known to

the user.

Example 2.1.

Consider a problem consisting of 8 variables with domains {1, ..., 8}. The

vocabulary (X,D) given to the system would be X = {x1, ..., x8} and D =

{D(x1), ..., D(x8)} with D(xi) = {1, ..., 8}, as all the variables have the same do-

main. Assume that the problem the user has in mind has to satisfy the constraints

x1 ̸= x2, x1 ̸= x3 and x3 ̸= x4. So, the target network CT of this problem would be

the set {x1 ̸= x2, x1 ̸= x3, x3 ̸= x4}. Also, for simplicity assume that the language

(Γ) given to the system by the user contains only the binary relation {≠}. In this

case, the bias B would contain the given relation for all the possible scopes. As it

is a binary relation, B = {xi ̸= xj | 1 ≤ i < 8 ∧ i < j ≤ 8, i ̸= j}.
If an example e = {1, 1, 1, 2, 3, 4, 5, 6} is posted to the user to be classified as posi-

tive or negative then ASK(e) will be a complete membership query. If only a partial

assignment, for instance eY = {1, 1, 1, 2,−,−,−,−} with Y = {x1, x2, x3, x4}, is
posted to the user then eY will be a partial query. The answer of the user in both

cases will be negative, as there are constraints of CT that are violated.

In passive acquisition, the learner receives a set of examples and a list of, typi-

cally, global constraints. The input examples may be unstructured, but the common

assumption in the literature is that they are arranged in a (partially) structured

way,4 such as a 2-dimensional array or a list. A pattern refers to a recurrent or

characteristic arrangement, relationship, or sequence observed within a specific set

of variables. For example, in a Sudoku puzzle, a pattern might be observed in the

variables composing a row, a column, or a block. Candidate constraints are po-

tential relationships or conditions between variables that might hold true within a

given problem domain. In the context of CA, they are tentative constraints postu-

lated based on available information, but their validity has not been conclusively

determined. Candidate constraints are generated by matching the available global

constraints to patterns of variables.

For example, given a set of 9 variables X = {x1, x2, . . . , x9} arranged in a 3

× 3 matrix, the arrangements of variables in rows and columns are patterns that

can be investigated to identify constraints. Assuming that the only available global

constraint is alldifferent then the set of candidate constraints would include the

six alldifferent constraints on the rows and columns of the matrix (i.e. alldiffer-

ent(x1, x2, x3), alldifferent(x4, x5, x6), etc.).
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3. Related Work

We now provide an overview of existing works in both passive and active CA.

3.1. Passive learning algorithms

In machine learning, PL algorithms are characterized by using a static, predefined

dataset to train models. This approach does not involve iterative querying or in-

teraction with the environment for additional data during the training process.

PL is especially advantageous in situations where collecting new data is costly or

logistically challenging, allowing for the extraction of meaningful patterns and in-

sights without further data input. Numerous works have been proposed in the field

of constraint acquisition, employing PL approaches to effectively derive constraint

models from predefined datasets. ModelSeeker, proposed by Beldiceanu et al.,4 is an

innovative approach to learning constraint models from positive sets of examples,

utilizing the global constraint catalog.14 ModelSeeker searches for the most suitable

constraints from the catalog that are consistent with the provided solutions. It uses

various techniques to find the best combination of constraints, such as constraint

filtering, constraint composition, and constraint ranking. ModelSeeker, being a PL

approach, has some limitations. It may struggle to generate accurate models if the

input solutions are not representative or diverse, and it cannot handle fixed arity

constraints in an efficient way.

Bessiere et al.3 proposed a method for acquiring constraint networks called

CONACQ (CONstraint ACQuisition), using a clausal representation of the ver-

sion space CONACQ is only provided with a pool of examples, and it uses frequent

pattern-mining techniques to extract constraints from the solutions.

Prestwich et al.5 proposed a novel approach called Classifier-Based Constraint

Acquisition (CLASSACQ), which integrates machine learning with CA. This is done

by training a classifier to distinguish between solution and non-solution states, which

are then used to derive a constraint model. As an initial demonstration of the po-

tential of CLASSACQ, the authors derived a new CA method named BAYESACQ

from a Bernoulli Naive Bayes classifier. The authors also utilized the Bayesian hy-

pothesis testing connection to obtain an even faster CA method using the Sequential

Probability Ratio Test, which is not Bayesian but is related.

Prestwich et al.6 proposed an unsupervised learning method for CA called

MINEACQ, which is inspired by data mining techniques. The paper addresses the

data collection bottleneck that is incurred when preparing a dataset of known so-

lutions and non-solutions, which requires human effort. MINEACQ can learn con-

straints from positive-only, negative-only, and positive-negative data, and does not

require labels. A

COUNT-CP, introduced by Kumar et al.,7 is a constraint learner designed to

apply the concept of bounded expressions to learn CP constraints. This approach

is based on two key observations. In constraint models over finite domain integers,

constraints usually consist of Boolean expressions and numeric expressions with
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a comparison (e.g., x = y and x ≤ y). Boolean expressions in this context can

be seen as a special case of numeric expressions that are equal to 1. COUNT-CP

can efficiently learn CP constraints from given examples by searching for suitable

bounded numeric expressions that represent the constraints.

Prestwich et al.20 proposed a method for robust CA using sequential analy-

sis. They introduced SEQACQ (SEQuential analysis-based constraint ACQuisition)

which performs fast hypothesis testing by adaptive sampling of training instances.

It can learn redundant constraints that cause problems for version space methods.

This approach is also robust, and capable of accurately learning constraints even

when the data contains numerous errors.

3.2. Active learning algorithms

On the other side, AL is a methodology wherein machine learning models enhance

their accuracy by selectively querying unlabeled data instances for labeling, which

has been extensively documented and analyzed in the literature. Several key con-

tributions stand out in the literature. For instance, the works by Lewis and Gale

pioneered the use of uncertainty sampling methods, which select instances for which

the model has the least confidence in its predictions.21 Tong and Koller further de-

veloped these ideas by introducing support vector machines to AL, demonstrating

the effectiveness of using margin sampling techniques to choose the most informative

instances.22

Additionally, the Query-by-Committee approach, described by Seung et al., min-

imizes the version space of the model by querying instances about which a committee

of models disagrees the most.23 This method has been shown to efficiently reduce

the number of queries necessary to train a model effectively.

More recent advancements include the work of Freund et al. and Dasgupta, who

have contributed to the theoretical foundations of AL, providing bounds on the

label complexity and insights into the conditions under which active learning is

most beneficial.24,25 These studies help clarify when and why active learning can

significantly outperform passive learning.

The integration of AL into practical applications has also been highlighted by

Settles in his comprehensive survey, which not only reviews algorithms but also

discusses real-world applications, indicating a growing trend in the use of active

learning strategies in industry and academia.26 These works collectively showcase

the depth and breadth of AL research and underscore its importance in the ongoing

evolution of machine learning methodologies.

AL is also successfully used in constraint acquisition to acquire constraints.

Bessiere et al. proposed QuAcq (QuickAcquisition), an AL algorithm that interacts

with the user by asking them to classify partial queries.8 The algorithm begins

with an initial hypothesis about the constraint network, often starting with no

constraints (empty CL) or minimal information. In each iteration, QuAcq generates

a query, which is typically a partial assignment. This query is presented to the user
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or oracle, who is asked to evaluate whether the partial assignment is consistent or

inconsistent with the target constraint network. Based on the user feedback, the

algorithm updates its hypothesis about the constraint network by either adding a

new constraint to CL or by removing constraints from B. This process is repeated

iteratively until QuAcq has learned a sufficient number of constraints to represent

the target constraint network or when a predefined stopping criterion is met.

Arcangioli et al. proposed a method, called MultiAcq, that can learn the maxi-

mum number of constraints that are violated by a single negative example.9 They

also introduced several heuristics to balance the trade-off between the time required

and the number of queries generated. Both QuAcq and MultiAcq incur large num-

bers of queries and high CPU times for query generation. To address these issues,

Tsouros et al.10 proposed MQuAcq that combines the primary concept of MultiAcq

with QuAcq, resulting in a technique that acquires as many constraints as MultiAcq

does following a negative example, but with reduced complexity.

Tsouros et al.11 introduced MQuAcq-2, an enhanced CA algorithm that builds

upon MQuAcq by efficiently learning multiple constraints from negatively generated

queries. MQuAcq-2 leverages the structure of the learned network by concentrating

on specific violated constraints instead of conducting exhaustive searches in the

generated examples. Also, when a constraint is obtained from a negative example,

the entire scope of that constraint is eliminated from the example. Although this

does not guarantee the discovery of all violated constraints, it can still identify

several of them. The main advantage of MQuAcq-2 is its ability to learn multiple

constraints from negatively generated queries more efficiently than its predecessors.

Recently, Tsouros et al.27 addressed two key challenges in CA systems: The

excessive number of user queries required and the system’s inability to manage

large sets of constraints in B. They introduced GROWACQ, a bottom-up method

that reduces user wait times and query counts using a probability-driven approach

to optimize query creation. Their method outperformed existing CA techniques,

reducing query counts by up to 60% and handling much larger constraint sets.

4. Hybrid constraint acquisition

In our proposed methodology, CA is achieved through a synergistic integration of PL

and AL techniques. The following subsections provide an overview of the hybrid CA

framework, followed by a more detailed description of the PL and AL components.

But first, it is important to understand the advantages and disadvantages of PL

and AL, which are the fundamental building blocks of our method.

Passive Learning PL has some important advantages. It is highly scalable, mak-

ing it suitable for situations where a large amount of data is available. As PL does

not require interaction, it is more efficient, in terms of human resources, than AL.

Also, it can efficiently learn global constraints. However, PL has its drawbacks, with

the main one being that convergence to the target network requires an exponential
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number of examples, but in practice only a relatively small number of examples

will be available. This means PL does not guarantee that the learned constraints,

be they global or fixed arity, are indeed part of the target model. If the available

data is not representative of the problem space, the learned constraints may not

accurately capture the target network. It is important to note that, following the

literature, we operate under the assumption that any global constraints identified

by PL are considered learned. Also, the solution set provided as input to the system

is treated as complete and final. In practice, these assumptions are rather restric-

tive as newly obtained solutions that were not part of the initial training set may

invalidate constraints that were considered learned. Lifting these assumptions is an

interesting direction for future work.

Active Learning AL on the other hand, usually leads to more robust constraints

because it actively queries the user to label the most informative examples as posi-

tive or negative. Also, the learned constraints provably belong to the target model,

under the assumption that the user answers all queries correctly (which is a stan-

dard assumption in the CA literature). However, AL is not without problems. The

process requires a lot of input from the user, which can be time-consuming and

overwhelming. Also, AL cannot learn global constraints, as this would require a

bias of exponential size. AL also operates under certain assumptions, with a basic

one being that once a constraint is considered learned, no generated example should

contradict it. This means that all the fixed arity constraints that have been inserted

to CL, at any step of the learning process, are considered valid and no query will

be generated to invalidate them.

Given these considerations, we propose a hybrid approach that combines PL and

AL, in a process depicted in Figure 1, to achieve more effective CA by reducing the

learning time and improving the accuracy of constraint learning. Roughly, the PL

component extracts initial constraints from the given solution data, while the AL

component interacts with the user to refine and improve the learned model.

Our method starts by receiving positive examples of a problem as input, as shown

in Figure 1. In the first step, we preprocess this set of examples. This involves ex-

amining the format in which the examples are stored (e.g. lists, matrices, structured

format) to select suitable patterns for the PL process, as detailed in Subsection 4.1,

and mapping the problem’s variables to the assignments in the examples. This is a

standard step in PL systems such as ModelSeeker and COUNT-CP.

The second step generates the Bias B, which encompasses all potential fixed

arity constraints relevant to the problem. For instance, for the case of binary con-

straints, for each pair of variables we generate and add to the Bias the following

constraints: ̸=, =, >, <, ≥, and ≤. This step is standard for AL methods but not

PL ones, as the latter focus on learning global constraints. Adding this step to the

PL component of our hybrid method is a novelty of our approach.

In Step 3 of Figure 1, the candidate global constraints are generated. The process

starts by applying patterns to the various subsets of assignments in the examples
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(e.g. per row, per column, all pairs), as the sequences of variables included in the

examples could be involved in global constraints. Whenever we associate a sequence

of variables (resulting from a recognized pattern) with a global constraint, we term

this association as a candidate constraint. Furthermore, we use some extra rules

to generate any additional parameters that may be needed for certain global con-

straints (e.g. the target sum in a sum constraint).

Then the method is split into two threads that are run in parallel. In the first

thread (fourth step in Figure 1) we have a big pool of candidate constraints that

will be formulated as small CP models and we will verify if they are satisfied or

not using a CP solver, as explained in Subsection 4.1. Constraints failing to satisfy

all the assignments of the examples will be discarded. After this step, we will have

a list of Learned Global Constraints, that form the initial acquired model. The

second thread of our system filters the Bias of fixed arity constraints that will

guide the AL process, removing those constraints that are not satisfied in all the

input solutions. These two operations can be performed sequentially, but we have

chosen to parallelize them for efficiency reasons.

If the Learned Global Constraints include any decomposable constraint, i.e. a

constraint that can be equivalently represented by a set of fixed arity constraints,

like the alldifferent, our method handles it in a specialized way. Specifically, we

generate the decomposition of the constraint and insert the resulting set of fixed

arity constraints to CL, which will be given as input to the AL module. As we explain

below, this is done so that the AL module can proceed efficiently to the refinement

of the model without having to learn these binary constraints from scratch.

The filtered Bias is also given as input to the AL module as shown in step 8

of Figure 1, where the AL module runs and iteratively generates and posts partial

queries to the user, asking him/her to classify them as solutions to the problem or

not. The AL algorithm is an exact active learning method that strategically utilizes

each query to substantially contribute to the learning process without the need

for a predefined query budget. This allows it to operate efficiently by generating

queries that are likely to identify multiple constraints per negative example with

the efficiency of logarithmic complexity for locating each constraint’s scope. The

heuristic used ranks instances based on their potential to uncover new constraints

and their likelihood of negative classification, effectively prioritizing queries. The

FindScope-2 function, an optimization of FindScope, aims to locate the scope of

violated constraints efficiently by avoiding redundancy—skipping queries that do

not alter the number of violated constraints detected previously and classifying

queries automatically as positive when no violations are found. Meanwhile, the

FindC function identifies the specific constraint within the determined scope that

the negative example violates, employing a partial querying strategy for precision.

By the end of this process, we will have a list of learned fixed arity constraints,

which will augment the global constraints acquired by the PL module.

The following step of our methodology is the post-processing of the list of the
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learned global and fixed arity constraints, where we remove duplicate and some

implied constraints. For example, given two constraints: c1: AllDifferent(x1, x2,

x3, x4) and c2: AllDifferent(x1, x2, x3) then c2 is implied by c1 and thus can be

removed without affecting the solution set.

Ultimately, in the last step, again following ModelSeeker, our system presents a

list of Learned Global Constraints to the user. Each constraint in this list is accom-

panied by a probabilistic ranking, calculated based on its relational dependencies.

This ranking is systematically derived from the Global Constraint Catalog,28 with

each constraint’s position in the ranking determined by its ’implied by’ and ’implies’

relationships. These relationships are indicative of the constraints’ interdependen-

cies and relative strengths, thereby providing an understanding of the constraint’s

significance within the context of the problem. This last step is necessary in cases

where there are several candidate global constraints over the same set of variables

that satisfy all of the solutions provided to the PL component.

We now explain in more detail the two main stages of the learning process.

4.1. Passive learning

The aim of PL in our methodology is to identify recurring schemes or complex

associations among the variables and also to set the stage for the subsequent AL

process. The system receives a set of solutions and a list of global constraints as

its primary inputs. In our implementation, the acceptable format of the input so-

lutions is based on the format of the data provided for the PTHG 2021 Constraint

Acquisition Challenge.29

Inspired by the ModelSeeker,14 we primarily use patterns to identify sequences

or configurations of variables that could be involved in a global constraint. The

utilization of patterns is a common practice in CA systems, such as ModelSeeker

and Count-CP. Our hybrid CA method is designed to accommodate two different

problem structures. Problems’ examples and/or solutions may be formulated as

one-dimensional arrays (lists) or two-dimensional arrays (matrices). In problems

structured as matrices, such as Sudoku, we employ specific patterns to identify

potential constraints and relationships among the variables. Some notable patterns

that we utilize include the following and are depicted graphically in Figure 2:

• Variables in rows: This pattern identifies constraints based on variable val-

ues in the same row.

• Variables in columns: Following the preceding pattern, this pattern discerns

constraints based on variable values in the same column.

• Diagonals: This pattern reveals constraints based on variable values on the

same diagonal.

• Sliding window: This pattern discerns constraints based on variable values

within a specific size sliding window.

Our system initializes B, based on a given language Γ encapsulating all potential
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Fig. 1: Our hybrid constraint acquisition approach

fixed arity relations among the variables. Also, CL is initialized to the empty set,

denoting that no fixed arity constraints have been learned yet.
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Fig. 2: Sudoku 4× 4 with row, column, diagonal, and sliding window patterns.

Identifying and filtering potential global constraints is done systematically. The

first step is to identify the candidate constraints based on the patterns mentioned

above. Once identified, these candidate constraints are subjected to a filtering pro-

cess to eliminate constraints that are not satisfied in all solutions. This is done on a

constraint-by-constraint basis. Each candidate constraint is individually checked for

satisfaction against all available solutions. To achieve this, we create a simple CSP

model for each constraint that only includes the variables in the scope of this con-

straint, and we then iteratively check the satisfiability of the constraint under each

solution using a CP solver, such as Choco.30 This is done by fixing the domains of

the variables in the model to the values they have in the currently processed solution

and calling the solver to check if the constraint is satisfied under this assignment.

This is repeated for all available solutions until the solver fails, signaling that the

constraint is not satisfied by some solution, or all solutions have been processed. To

handle certain global constraints that need extra parameters, like a COUNT or a

SUM constraint, we also identify the possible values for these parameters.

In addition to candidate global constraints, our method evaluates fixed arity

constraints from B, again using the set of provided solutions. Checking if a fixed

arity constraint (e.g. xi ̸= xj) is satisfied in a solution is straightforward, and

therefore does not require the use of a CP solver. If any such constraint is violated

in some solution, it is removed from B, thereby reducing its size. This is a notable

novelty of our methodology, as the Bias now serves as a link between the PL and

AL modules.

Importantly, in our implementation, the Constraint Validation phase for candi-

date global constraints and the Fixed Arity Constraint Elimination phase of the PL

component run in parallel to make the CA process more efficient.

4.1.1. Decomposable constraints

As a final step in the PL process, if any learned global constraints are amenable

to decomposition, they are processed in the Decomposition Phase, where they are

broken down into fixed arity constraints. As alldifferent is the most commonly used

constraint that is decomposable, we will focus on this constraint when we refer to

decomposable constraints hereafter.

Any alldifferent constraint is decomposed into binary ̸= constraints, which are
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added to CL and are removed from B. As all existing AL algorithms can only

operate with fixed arity constraints, it is necessary that the AL module “knows”

that the ̸= constraints have been learned. If they are neither added to CL nor

removed from B then the AL algorithm will try to learn them from scratch, incurring

an unnecessarily large number of queries being posted to the user. Otherwise, if

these constraints are not added to CL, but only removed from B, then the user’s

replies to the examples the system posts may be misled and the system may not

be able to converge to the correct constraint network. It has to be noted, that the

decomposition of an alldifferent does not mean that this constraint is removed from

the list of Learned Global Constraints.

Regarding the other binary constraints on pairs of variables participating in an

alldifferent constraint (i.e. the =, ≤, ≥, <, > constraints), we differentiate between

constraints that include the equality and the <, > ones. As any ̸= constraint on

two variables xi, xj , belonging to the decomposition on an alldifferent, is considered

learned, we remove the =, ≤, ≥ constraints between these variables from B, as is

it has been proved that the two variables must take different values.

However constraints <,> are not removed from B. This is because we cannot

conclude if they exist or not in the target network. Removing these constraints from

B would make it impossible to learn them in case they are part of CT in the problem

at hand, thus AL would not be able to converge to the correct constraint network.

In addition, if they were removed, the AL system might not be able to derive the

correct information from the user’s answers to queries. There can be cases in which

the user’s answer is negative due to these constraints, but as they are not in B,

the AL system will be directed to look for the constraint(s) that violate the posted

example in another part of the problem, resulting in falsely learning constraints

that do not belong to the target network.

We now illustrate our PL strategy using the classic Sudoku puzzle, and a variant

known as Greater Than Sudoku. A Sudoku problem is composed of a 9x9 grid,

divided into nine 3x3 sub-grids or ’blocks’. A correctly resolved Sudoku puzzle

guarantees that each row, column, and block encapsulates all digits from 1 to 9

once, without repetition. In the standard CP model for Sudoku we have one variable

for every cell, hence 81 variables, all having domain {1, . . . 9}, and one alldifferent

constraint for every row, column, and block (hence 27 constraints).

Example 4.1. Consider a small 4× 4 Sudoku puzzle. We focus on variables x1 to

x4, which are positioned at the top row of the Sudoku. Assume that the PL module

receives only two solutions, which include the following assignments for variables

x1 to x4:

(1) x1 = 2, x2 = 1, x3 = 4, x4 = 3

(2) x1 = 1, x2 = 2, x3 = 3, x4 = 4

Let us break down how the PL module processes these solutions, and how it

modifies B and CL:
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(1) Initialization of fixed arity Bias:

• Our method generates all binary constraints on pairs of variables

{x1, x2, x3, x4} based on the language Γ. These 36 constraints (six

per each pair of variables) are added to B.

(2) Candidate constraints generation and satisfiability test

• The PL will apply the row pattern to the top row of the variables. This

will result in identifying the sequence of variables {x1, x2, x3, x4} as

a set of variables that could potentially be involved in a constraint.

Assuming for simplicity that the only available global constraint is

the alldifferent then we will get the candidate constraint alldiffer-

ent(x1, x2, x3, x4).

• This candidate constraint will be checked against the available solu-

tions by building a simple CSP model that will only include variables

{x1, x2, x3, x4} and using a CP solver to determine if the constraint is

satisfied in all solutions. In the first solution, variables x1 to x4 hold

distinct values, meaning that the alldifferent(x1, x2, x3, x4) is satis-

fied. The same holds for the second solution. As there are no other

available solutions, the global constraint alldifferent(x1, x2, x3, x4) is

considered learned and it is added to the Learned Global Constraints.

(3) The PL parses each solution and eliminates any fixed arity constraint

that is violated. Specifically, the following constraints are removed from

B: (a) x1 < x2, x1 ≤ x2, x1 = x2 (as in the first solution we have

x1 > x2) (b) x1 > x2, x1 ≥ x2 (due to the second solution, where x1 < x2)

(c) x3 < x4, x3 ≤ x4, x3 = x4 (as in the first solution x3 > x4) (d) x3 > x4,

x3 ≥ x4 (due to the second solution, where x3 < x4) (e) x1 = x3, x1 > x3,

x1 ≥ x3, x1 = x4, x1 > x4, x1 ≥ x4, x2 = x3, x2 > x3, x2 ≥ x3, x2 = x4,

x2 > x4, x2 ≥ x4 (violated in both solutions).

(4) Global constraints decomposition

• At the next step the learned alldifferent(x1, x2, x3, x4) is decomposed

to the binary constraints: (1) x1 ̸= x2 (2) x1 ̸= x3 (3) x1 ̸= x4

(4) x2 ̸= x3 (5) x2 ̸= x4 (6) x3 ̸= x4. This set of constraints is added

to CL and is removed from B.

• In addition, the following constraints are removed from B: (1) x1 ≤ x3

(2) x1 ≤ x4 (3) x2 ≤ x3 (4) x2 ≤ x4.

• B includes the following constraints among variables x1 . . . x4:

(1) x1 < x3 (2) x1 < x4 (3) x2 < x3 (4) x2 < x4. It is now up

to the AL module to remove these constraints from B, and thereby

to conclude that the only constraint among variables x1 . . . x4 is the

alldifferent. But importantly, B contains only four constraints among

these variables, meaning that fewer queries to the user will be required.
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Example 4.2. Consider a Greater Than Sudoku puzzle, where in addition to the

standard rules of Sudoku, certain adjacent cells have a greater than (>) or less than

(<) sign between them. Hence, in the CP model of the problem, any two variables

corresponding to such cells have a > (resp. <) constraint between them, in addition

to being involved in at least one alldifferent constraint because they are adjacent.

Consider two such variables, xi and xj , having a constraint xi > xj . Assume that

the solutions provided have the following assignments for xi and xj : 1) xi = 4,

xj = 2, 2) xi = 3, xj = 1, 3) xi = 5, xj = 3. Let us see what can be deduced about

the constraint between xi and xj :

• The system will add to B all binary constraints between xi and xj from the

language Γ: (1) xi = xj , (2) xi ̸= xj , (3) xi > xj , (4) xi < xj , (5) xi ≥ xj ,

(6) xi ≤ xj .

• Any constraint in B that violates some solution is removed. This holds for

constraints xi = xj , xi ≤ xj , xi < xj .

• As xi and xj are involved in some alldifferent constraint, there are two

cases;

(1) The alldifferent is not learned by the PL module. In this case, con-

straints xi > xj , xi ≥ xj , xi ̸= xj remain in B, and therefore the PL

module is unable to learn the specific constraint that holds between

variables xi and xj .

(2) The alldifferent is learned by the PL module. In this case, after its

decomposition is generated, the constraint xi ̸= xj will be added to

CL and removed from B, as it is considered learned. Constraint xi ≥ xj

will also be removed from B. However, constraint xi > xj will remain

in B, meaning that the system is so far unable to determine whether

it belongs to the target network or not.

4.2. Active learning

The AL component focuses on refining the model learned by the PL component. This

is achieved by adding to CL, and thereby acquiring, specific fixed arity constraints,

and by removing other fixed arity constraints from B, and thereby proving that

they do not belong to the target network.

Our hybrid CA system can incorporate any AL algorithm, as the only means

of communication between the PL and AL components is the initialization of CL

and B that the PL performs for the AL algorithm. We currently use the MQuAcq-2

algorithm. Details about the mechanics of AL algorithms can be found in the AL

papers referenced in Section 3, and specifically about MQuAcq-2 in the paper by

Tsouros et. al.31 In this section, we focus on the integration of MQuAcq-2 in our

hybrid CA system.

MQuAcq-2 takes as input a set of variables X, a set of domains D, the Bias B,

and the set of learned constraints CL, and it outputs the updated learned constraint
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network CL. In our method, the algorithm starts by initializing CL to the known

constraints that we get as input from the PL process (if any exist), whereas the

AL algorithms such as MQuAcq-2 typically initialize CL to the empty set. Then,

MQuAcq-2 generates (partial) examples and asks the (human or software) user

to classify them as solutions or not. If the user classifies an example as a solution,

MQuAcq-2 will remove the constraints rejecting the example from B. If the example

is classified as a non-solution, MQuAcq-2 will identify one or more constraints from

B that conflict with the example and add them to CL.

MQuAcq-2 and other active CA algorithms generate queries at three different

levels. The first level called Top-Level Query Generation, builds a (partial) example

to focus on. If this is classified as negative then the second level, implemented by

function Findscope, queries the user on subsets of the top-level query to identify the

scope of the constraint to acquire. Once the scope has been located, the third level,

implemented by the function FindC, seeks the specific relation that holds over this

scope.10 The generation of top-level queries is the process which mostly affects the

runtimes. In our system, the query generation strategy of MQuAcq-2 is designed

to ensure that at least one constraint from the B aiming to maximize the violated

constraints and is formulated as follows:

Minimize
∑
c∈B

c

where c represents an individual constraint from the set B. The constraints in B

are treated as soft constraints that MQuAcq-2 aims to violate. To ensure that at

least one constraint is violated, the following constraint is added to the model:∑
c∈B

c < |B|

Where |B| denotes the number of constraints in B. This inequality ensures that the

total sum of the satisfied constraints is less than the total number of constraints,

thereby guaranteeing that at least one constraint is not satisfied. Since the MQuAcq-

2 algorithm is exact, there is no budget for queries like in classical AL and the

algorithm terminates when no other example could be generated.

The algorithm terminates when all the constraints in B have been explored and

either confirmed as belonging to CT , and therefore moved to CL, or rejected. The

output of MQuAcq-2 is the set of learned fixed arity constraints CL that can be

combined with the learned global constraints from PL to form a complete CSP

model. As an illustration, consider again the Sudoku and Greater Than Sudoku

examples 4.1 and 4.2.

Example 4.3. Regarding Example 4.1, recall that after the completion of the PL

phase, the constraint alldifferent(x1, x2, x3, x4) has been learned, andB includes the

following constraints among variables x1 . . . x4: (1) x1 < x3 (2) x1 < x4 (3) x2 < x3

(4) x2 < x4. MQuAcq-2 will at some point generate one or more positive (partial)

examples that are violated by these four constraints, and will thus remove them from
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B. For instance, it may generate a partial example with the following assignments for

variables x1 . . . x4: x1 = 4, x2 = 3, x3 = 2, x4 = 1. The user will label this example

as positive, and therefore the system will remove all constraints that violate it (i.e.

the four constraints above) from B. Hence, the AL component will prove that the

only constraint among variables x1 . . . x4 is the alldifferent, something that the PL

module was unable to do.

Now consider Example 4.2 and let us assume that the PL module has learned

the alldifferent constraint that includes variables xi and xj . In this case, constraint

xi ̸= xj will be added to CL and removed from B by the PL module. Also, all other

binary constraints between xi and xj will be removed from B, except for constraint

xi > xj . The AL phase, then commences, seeking to refine the constraint model.

MQuAcq-2 may post a (partial) query including the following assignment for xi and

xj : xi = 1, xj = 2. This query will be classified as negative by the user because

the target constraint between xi and xj is violated. The algorithm will then seek

the constraint responsible, and after a series of partial queries have been posted

and replied, it will eventually focus on xi > xj , which will be removed from B and

added to CL. Hence, the AL module will be able to learn that this constraint is part

of CT , something that the PL module was unable to do.

5. Experimental evaluation

In this section, we present the results of experiments that evaluate the efficiency of

our hybrid CA system. Our tool, implemented in Java 11 and utilizing the Choco

solvera, was tested on four problems. Namely, Sudoku, Greater Than Sudoku, the

Warehouse Location Problem, and the Virtual Machines to Physical Machine allo-

cation problem. Subsection 5.1 describes these problems. The experimental results

and an analysis of their implications is given in Subsection 5.2.

5.1. Benchmarks

Sudoku and Greater Than Sudoku Sudoku is a puzzle game played on a 9 ×
9 grid, with some cells initially filled in. The objective is to complete the grid

using numbers from 1 to 9, ensuring that every row, column, and 3 × 3 block

contains unique numbers.32 The Sudoku puzzle is widely used as a benchmark for

CA algorithms. Its CSP model includes a set of 81 variables, one for each cell in

the grid, having domain {1, . . . 9}, and a set of alldifferent constraints across each

row, column, and 3× 3 block.

Greater Than Sudoku is a variant of Sudoku where in addition to the alldifferent

constraints, there are binary > and/or < constraints between some adjacent vari-

ables (i.e. variables corresponding to adjacent cells in the puzzle). These additional

aOur code is available online at our GitHub repository https://github.com/mpvasilis/JAIT-
HybridConstraintAcquisition
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binary constraints make Greater Than Sudoku more challenging for PL methods

compared to the classic Sudoku.

Warehouse Location Problem The Warehouse Location Problem (WLP)33 in-

volves finding the best locations to open warehouses to minimize the overall expense

of serving customers. For the purposes of this study, we approach WLP as a satis-

faction problem and do not consider the optimization criterion. The target model

for the WLP is as follows:

Variables: Let W = {w1, w2, . . . , wn} be the set of potential warehouse loca-

tions, and C = {c1, c2, . . . , cm} be the set of customers. We define the following

variables: Ac: A variable for each customer c ∈ C, where Ac = i if customer c is

served by warehouse wi, and Ac = 0 if no warehouse is assigned to customer c.

Domains: Ac ∈ {0, 1, 2, . . . , n} for each customer c ∈ C.

Constraints:

(1) Every customer must be served by exactly one warehouse: 1 ≤ Ac ≤
n, ∀c ∈ C.

(2) The maximum number of customers a warehouse i can supply is limited to

Ki: Count({Ac : c ∈ C}, i, Ki), ∀ i ∈ {1, . . . , n}.

The first constraint ensures that each customer is assigned to one and only one

warehouse. Variable Ac represents the assignment of customer c to a warehouse. The

second constraint ensures that the number of customers assigned to each warehouse

does not exceed its designated capacity.

In practice, additional side constraints may exist in a WLP. For instance, a con-

straint stating that two specific customers must not be served by the same ware-

house. Hence, for the purposes of this study, we extend the model above to include

constraints such as: Ai ̸= Aj , i.e. a binary constraint indicating that customer i ∈ C

must not be served by the warehouse that servers the customer j ∈ C.

VM to PM Allocation Problem The Virtual Machine to Physical Machine

(VM to PM) allocation problem is a resource allocation problem, where the goal

is to optimally allocate a set of virtual machines to a set of physical machines in a

Data Center. Each Virtual Machine (VM) has specific resource requirements, such

as CPU and RAM, while each Physical Machine (PM) has a limited capacity for

these resources. As with the WLP, we approach this problem as a satisfaction one.

The target model is as follows:

Variables: Let n be the number of VMs and m be the number of PMs.

• vm allocatedi ∈ {1, . . . ,m}: An integer variable representing the index of

the PM to which the ith VM is allocated, where i ∈ {1, . . . , n}.
• CPUi: The CPU requirement of the ith VM, where i ∈ {1, . . . , n}.
• CPUj : The CPU capacity of the jth PM, where j ∈ {1, . . . ,m}.
• RAMi: The RAM requirement of the ith VM, where i ∈ {1, . . . , n}.
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• RAMj : The RAM capacity of the jth PM, where j ∈ {1, . . . ,m}.

Constraints:

(1) CPU capacity constraints: For each PM j ∈ {1, . . . ,m}, the sum of the

CPU requirements of the VMs allocated to it must not exceed its CPU

capacity.

sum({CPUi∗(vm allocatedi == j) : i ∈ {1, . . . , n}},≤, CPUj) ∀j ∈ {1, . . . ,m}
(1)

(2) RAM capacity constraints: For each PM j ∈ {1, . . . ,m}, the sum of the

RAM requirements of the VMs allocated to it must not exceed its RAM

capacity.

sum({RAMi∗(vm allocatedi == j) : i ∈ {1, . . . , n}},≤, RAMj) ∀j ∈ {1, . . . ,m}
(2)

(3) VM allocation constraints: Each VM i ∈ {1, . . . , n} must be allocated to

exactly one PM.

vm allocatedi ∈ {1, . . . ,m}, ∀i ∈ {1, . . . , n} (3)

As in the WLP, side constraints may exist. For this study, we consider additional

constraints between pairs of variables specifying whether two VMs must not be

allocated to the same PM: vm allocatedi ̸= vm allocatedj , i.e. a binary constraint

indicating that VM i must not be allocated to the same PM as the VM j.

5.2. Experimental Results

This section describes the methodology we used for our experiments:

(1) We used the Hamming distance34 to generate a broad spectrum of 1,000

diverse solutions for each problem, following the methodology proposed

in.35 For any given problem, we model it as a CSP and use the Choco solver

to generate solutions iteratively. For each new solution obtained, we ensure

that its Hamming distance from each of the previously generated solutions

is greater than a predefined threshold of 10. The Hamming distance between

two solutions is calculated by counting the number of assignments where the

two solutions differ. This diversity is crucial for ensuring that our learning

process is not biased toward a specific subset of solutions.

(2) In the experiments, we sequentially increased the number of available solu-

tions from zero to 1,000. Through this, we aimed to observe the incremental

impact of adding more solutions to the learning process.

(3) Upon completion of the learning process, we created plots to visualize the

following: a) The correlation between the amount of learned global con-

straints and the number of solutions, b) the correlation between the number

of AL queries and the number of solutions, c) the correlation between the
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generated AL bias and the number of solutions, d) the effect of the number

of solutions on the runtime of PL and AL.

The experiments were carried out on a computational system with an AMD

Ryzen Threadripper PRO 3975WX 32-Core CPU with a clock speed of 3.50GHz,

complemented by 64 GB of DDR4 RAM, running under Ubuntu 22.04. The results

are presented in a series of graphs (Figures 3, 4, 5, and 6), showing the number of

global constraints acquired, the number of AL queries, the size of the fixed arity

bias, and the AL and PL running times.

5.2.1. Sudoku 9× 9 experimental results

The experimental results for the standard Sudoku 9 × 9 puzzle are presented in

Figure 3. Figure 3a illustrates the efficiency of the PL process in acquiring global

constraints. The system successfully identified all 27 alldifferent constraints, without

wrongly learning any other constraint, by examining a set of only 20 solutions. This

is consistent with findings reported in the literature with respect to ModelSeeker,4

which also acquired all the alldifferent constraints with a small solution sample.

Figure 3b gives the number of queries required by AL for constraint refinement.

As the target model for Sudoku only includes the 27 alldifferent constraints, the AL

module does not add any new constraints to the basic model, but it verifies that

no additional binary constraints exist in the model. Figure 3c shows the number of

constraints left in B after the completion of the PL process.

Without the preparatory phase of PL (i.e. with 0 solutions available), AL alone

requires an excessive number of queries (over 6,000) to learn all the binary ̸= con-

straints (with a total bias of 19,440 binary constraints). However, as we introduce

more solutions, the burden on AL diminishes substantially. The query count drops

to only 71 and the bias size drops to 182 constraints after processing just 5 solu-

tions. This is due to the narrowing down of B, achieved during the PL phase. With

20 solutions, the number of queries drops to 26 (for a bias size of 40). With 100

solutions only one query is required to remove the remaining constraints from B.

Figures 3d and 3e display the runtimes of the PL and AL phases, respectively.

The runtimes are rounded off to the nearest second. Notably, the integration of PL

with AL leads to a sharp drop in the total time required for the AL phase, after

only a few solutions have been given to the PL component. Regarding the runtime

of the PL phase, it is negligible, reaching approximately 1 second as the number of

solutions becomes larger than 20.

5.2.2. Greater Than Sudoku 9× 9 Experimental Results

We generated three Greater Than Sudoku puzzles, having 8, 16, and 24 binary in-

equality constraints, respectively. Figure 4 demonstrates the results of this study. As

depicted in Figure 4a, with just 20 solutions, the algorithm learned all 27 alldiffer-

ent constraints for the puzzle having 8 additional inequalities. However, for puzzles
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(a) Acquired global constraints (b) AL queries

(c) Fixed arity bias (d) PL runtime (e) AL runtime

Fig. 3: Sudoku 9× 9 experimental results

with 16 and 24 inequalities, a minimum of 100 solutions was necessary to learn the

27 alldifferent constraints without wrongly acquiring constraints that do not exist

in the target network. This is because, in the presence of an increasing number of

inequality constraints, candidate alldifferent constraints that are not part of the

target network may be invalided by fewer variable assignments. Hence, a larger

number of solutions needs to be processed so that such variable assignments appear

in a solution.

Figure 4b demonstrates the advantages of integrating PL with the AL process.

When using AL alone, it took over 6,200 queries to acquire the constraints in the

Greater Than Sudoku instances. However, with as few as 5 solutions processed by

the PL module, the query count for AL starts to drop substantially.

Specifically, for 20 solutions we get the following results: for the puzzle with

8 binary constraints, the system precisely learned the 27 alldifferent constraints,

initiated 392 AL queries, and had an AL bias with 621 constraints. For the puzzle

with 16 constraints, there were 30 alldifferent constraints learned (i.e. it wrongly
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acquired 3 extra constraints), 504 AL queries, and an AL bias of 596 constraints.

In the puzzle with 24 constraints, the system learned 31 alldifferent constraints,

conducted 468 AL queries and had an AL bias with size 764. When giving 100

solutions to the PL phase, in all three puzzles the 27 alldifferent constraints were

learned without wrongly acquiring any extra constraints. In the 8-constraint puzzle

there were 42 AL queries and an AL bias size of 40. In the 16-puzzle 107 AL queries

were posted, and the AL bias included 79 constraints. Lastly, in the 24-constraint

puzzle there were 78 AL queries and an AL bias with 59 constraints.

In Figures 4d and 4e, we give the runtimes of the PL and AL phases, respectively.

As in Sudoku, integrating PL with AL significantly reduces the total time of the

AL phase after giving only a few solutions to the PL component. In Figure 4e we

can observe that the AL exhibits peaks at 15-20 solutions and 35 solutions for the

three instances. These peaks are the result of variations in the number of top-level

queries generated by MQuAcq-2.

PL gives minimal runtimes for a small number of solutions. When the number of

solutions is between 20 and 100, the runtime of the PL phase increases moderately

and averages about 1 second. As expected, the runtime increases as the number

of solutions that need to be processes grows. As with Sudoku, the runtimes are

rounded to the nearest second, resulting in some peaks in the curves from 0 to 50

solutions due to this rounding process.

5.2.3. WLP experimental results

We generated four instances of the WLP that comprise both global and fixed arity

constraints. The first instance consists of 10 warehouses, 20 customers, and 10 binary

constraints. For the second instance these numbers are 15, 30 and 15, respectively. In

the third instance we have 25 warehouses, 50 customers, and 25 binary constraints.

Lastly, for the fourth instance these numbers are 30, 60, and 30.

The results are demonstrated through a series of plots in Figure 5. In the first

two instances of the WLP our system successfully acquired the precise number of

Count constraints (10 and 15 respectively) by utilizing 20 solutions. In the third

instance, the system acquired all 25 Count constraints after processing 30 solutions.

Finally, in the last instance, the system required 35 solutions to accurately learn

the 30 Count constraints.

Figure 5b shows the number of AL queries posted during the process. When

solely utilizing the AL module, 870 queries were needed for the first instance (with

1,140 constraints in B), while the largest instance required 5,610 queries (10,620

constraints in B). Note that the Count constraint cannot be decomposed into fixed

arity constraints. However, the PL module still removes from B any binary con-

straint that is not satisfied in all solutions, resulting in a bias of smaller size being

passed to the AL module. Hence, as demonstrated in Figure 5b, by running the PL

module with only a few solutions, the amount of AL queries sharply drops.

Specifically, for 20 solutions, in the first instance the system learned 12 global
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(a) Acquired global constraints (b) AL queries

(c) Fixed arity bias (d) PL runtime (e) AL runtime

Fig. 4: Greater Than Sudoku 9× 9 experimental results

constraints, initiated 71 queries, and had a bias size of 180. With the same number

of solutions, the second instance recorded 15 learned global constraints, 92 queries,

and a bias of size 429. In the third instance we had 32 learned global constraints,

154 queries, and a bias of size 1,220. For the fourth instance, there were 78 learned

global constraints, 288 queries, and a bias of 1,766 constraints. At 100 solutions,

the precise number of Count constraints was acquired in all four instances. In the

first instance the system posted 67 queries, in the second instance, 112 queries were

posted, in the third instance we had 178 queries. Finally, in the fourth instance we

had 220 queries. Importantly, in none of the instances was the PL module able to

refine the bias to consist exclusively of ’not equal to’ constraints.

In the AL runtime plot (Figure 5e), we observe a similar pattern as in the Sudoku

benchmarks, i.e. a sharp drop as only a few solutions become available, meaning

that the size of B starts to shrink. In contrast, the PL runtime graph (Figure 5d)

shows a different behavior. The PL runtimes remain relatively constant or increase

only slightly for the less complex instances. However, for the fourth instance we
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observe a clear and steady increase in runtime as the number of solutions increases.

(a) Acquired global constraints (b) AL queries

(c) Fixed arity bias (d) PL runtime (e) AL runtime

Fig. 5: WLP experimental results

5.2.4. VM to PM allocation problem experimental results

In the last of our experiments, we generated four instances of the VM to PM al-

location problem. The outcomes of these experiments are illustrated in Figure 6.

The first instance consisted of 12 VMs, 8 PMs, and 8 binary constraints. The sec-

ond instance encompassed 18 VMs, 10 PMs, and 10 binary constraints. The third

instance involved 24 VMs, 12 PMs, and 12 binary constraints. Lastly, the fourth

instance comprised 30 VMs, 14 PMs, and 14 binary constraints.

Figure 6a shows the number of global constraints identified by the PL module. In

the first instance, we learned the 16 Sum global constraints using only 20 solutions.

In the second instance, approximately 35 solutions were required to accurately learn

the 20 Sum constraints. In the the third the acquisition of all 24 Sum constraints
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was achieved using 40 solutions. Lastly, for the fourth instance, the system required

100 solutions to precisely learn the 28 Sum constraints. However, the binary ̸=
constraints were not acquired during the PL phase.

Figure 6b shows the number of AL queries required. When using AL exclusively,

a total of 56 queries were needed to learn the 8 binary constraints from a bias of

size 396. For the second instance, 81 queries were necessary to learn the 10 binary

constraints from a bias of size 918. In the case of the third instance, 95 queries were

required to learn the 12 binary constraints from a bias of size 1,656. Finally, for the

last instance, 127 queries were needed to learn the 14 binary constraints from a bias

of size 2,610.

As in the case of WLP, the combination of PL with AL achieved a reduction in

the number of queries required. For the first instance, the use of only 10 solutions

resulted in the number of queries dropping from 56 to 25. For the second instance,

the query count decreased to 39 with 10 solutions and further dropped to 20 with 40

solutions. In the third instance, the queries were reduced to 30 using 50 solutions,

while in the fourth instance, the queries were reduced to 30 with 100 solutions.

Figure 6d shows the PL runtime, which gradually increases with the number

of solutions, as in the case of the WLP. As expected, the runtimes of the PL are

higher for the larger instances compared to the smaller ones. Figure 6e shows the AL

runtime, which again as in the WLP, decreases sharply as the number of solutions

increases, due to the smaller size of the bias received from the PL module.

6. Conclusions

This paper introduced a tool for CA that blends AL and PL strategies, achieving

the efficient acquisition of global and fixed arity constraints for CSPs. The PL

module is based on generating patterns from potential solutions, which may contain

constraints. These patterns are then compared with an array of global constraints

and confirmed using a CP solver. Constraints that are present across all solution

sets are added to the list of learned constraints. Afterward, unsatisfactory fixed arity

constraints are identified and removed, and the remaining ones are channeled to the

AL module for further acquisition and enhancement through user interaction.

Testing our methodology on a variety of simple and complex problems demon-

strated its effectiveness in learning global and fixed arity constraints. The results

indicate that the system is capable of learning the precise global constraints of all

problem instances. By combining AL and PL, we were able to learn the remaining

fixed arity constraints that the PL alone could not learn. Furthermore, we observed

a significant decrease in the number of queries required by the AL module when the

PL module was used in combination.

We believe that this innovative hybrid approach contributes towards making CA

more efficient and effective. In the future, efforts can be directed towards improving

and expanding this method to make it more adaptable to a broader range of complex

problems.



January 8, 2025 17:25 WSPC/INSTRUCTION FILE output

28 Balafas, Tsouros, Ploskas, and Stergiou

(a) Acquired global constraints (b) AL queries

(c) Fixed arity bias (d) PL runtime (e) AL runtime

Fig. 6: VM to PM allocation problem experimental results
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