
A peer review of the parallel and distributed toolboxes of matrix

programming languages for mathematical programming

Glavelis Themistoklis

University of Macedonia

Egnatia Street 156, Thessaloniki, 54006

mai086@uom.gr

Ploskas Nikolaos

University of Macedonia

Egnatia Street 156, Thessaloniki, 54006

mai084@uom.gr

Samaras Nikolaos

University of Macedonia

Egnatia Street 156, Thessaloniki, 54006

samaras@uom.gr

Abstract

Matrix programming languages are widely used by scientists due to theirs’ specific

orientation towards the construction and manipulation of mathematical and statistical

models. Mathematical programming is closely connected with these software packages.

Although the capabilities that these programming languages offer for mathematical

programming, there are sub cases where their effectiveness is not satisfactory with regard

to the computational time. These problems are solved with the use of parallel

programming. It is well-known that parallelization can lead to important reductions in

computational time. More recently, clusters of workstation computers have become widely

used. Nowadays, this solution is not very expensive in terms of hardware costs.

In this paper we examine the parallel toolboxes that matrix programming languages

provide. There are several advantages and opportunities that scientific community can gain

from the use of these libraries and toolboxes. However, these toolboxes have some

limitations and cannot be used to solve any kind of problem. We review the main features

of the most recent versions of the parallel toolboxes of the more common mathematical

software including MATHEMATICA, MATLAB and Ox. Despite their strong similarities

there are substantial differences between the parallel toolboxes of these matrix languages.

Index terms: Matrix programming languages, Parallel and distributed programming,

MATHEMATICA, MATLAB, OX.

1. Introduction

The requirement for faster and more effective computations in scientific applications has

been increased considerably in the last years. Natural restrictions and high costs render

impossible the increase of speed of processors beyond concrete limits. In order to

overcome these difficulties new architectures have been developed importing the parallel

processing [13], [14], [15], [21]. In our days different types of machines with high

capabilities are available and supported in the concentration of many processors together.

Networked computers have become a common infrastructure in most organisations,

especially large ones. Additionally, the speed of the network has also improved

significantly. Nowadays, it is very common for local area networks to carry various kinds

of data such as voice and video. High performance computing has also benefitted and

today, distributed computing is quickly gaining popularity [19].

Parallel programming is a good practice for solving computationally intensive problems in

various fields. In operations research, for instance, solving maximization problems with

simplex method is an area where parallel algorithms are being developed [16], [17], [18],

[20]. A popular approach to implement parallel algorithms is to configure a cluster or a

network of personal computers. With the advances made in computer hardware and

software, it is now quite a simple matter to configure a computer network.

The primary reasons for using parallel computing are: i) reduction of execution time, ii)

solution of larger problems, iii) provide concurrency, iv) taking advantage of non-local

resources - using available compute resources on a wide area network and finally v)

overcoming memory constraints.

The parallelism leads to the need for new algorithms, because many times the most optimal

parallel solutions are not performed with simple modifications of serial programs. In

addition to the serial programs, the parallel algorithms depend dynamically on the

architecture of system for which they have been created. The available support for

communication and timing between the parts of a parallel program are certain from the

important scripts of parallel programming.

The easiness and the time for the development of a program are many times exceptionally

critical. The tools can help the programmer to develop and improve parallel programs. One

of the difficulties faced by grid and distributed computing users is the user-friendliness of

the software and middleware used to run a job across the network. This is compounded by

the fact that not all computers in the network are exactly the same, even though they may

be running the same operating system. As a result, many software developers are

beginning to realise the need to make parallel computing more user-friendly.

MATHEMATICA [1], MATLAB [2] and Ox [3] have attempted to solve this problem by

offering an environment for creating parallel algorithms. MATHEMATICA, MATLAB

and Ox are popular mathematical software used by many students and academic staff.

Using these programming environments to implement parallel algorithms, users will take

advantage both from the wide range of functions that these software offer and from the

advantages of the parallel processing.

An outline of the rest of the paper is as follows. In section 2, general description of the

systems is given, and in section 3, we present the installation requirements in order to use

the parallel toolboxes of the three mathematical packages. In section 4, we present the

capabilities of the parallel toolboxes and in section 5 the structure of parallel programming

of each mathematical environment. In section 6, there is an analysis for the optimization

role in parallel toolboxes. Finally, in section 7 we give our conclusions.

2. General description of matrix programming languages

MATHEMATICA is a specialized computer program used mainly in scientific and

mathematical fields, developed and distributed by Wolfram Research Europe Ltd.

MATHEMATICA covers mainly subjects of mathematics, including number theory, linear

algebra and mathematical analysis by dealing with them from both the symbolic and the

numerical points of view. Apart from that, there is a large range of libraries and toolboxes

specialized in different sectors. Consequently, this is the reason for being wide spread

among the scientific community. Furthermore, it is recognized as one of the world's most

powerful mathematical software systems. Moreover, MATHEMATICA consists of two

applications, the “kernel” which is responsible for all the computations and the “front end”

which is the user interface. MATHEMATICA is available for Windows Vista/XP (32-bit,

64-bit), Apple Macintosh Mac OS X 10.4/10.5 (32-bit, 64-bit), Linux 2.4 or later (32-bit,

64-bit), Sun Solaris (64-bit), HP-UX 11.11 (64-bit), IBM POWER AIX 5.1, 5.2, 5.3 (64-

bit).

MATLAB is a matrix language developed and distributed by The MathWorks Inc.

MATLAB is wide spread due to its capability of easy programming tasks like plotting,

implementation of algorithms and interacting with programs which have been developed in

other languages (like Fortran and C/C++). MATLAB (MATrix LABoratory) as the name

suggests, is especially designed for matrix computations like, solving systems of linear

equations or factoring matrices. Its utilities and functions are organized in various

toolboxes. These toolboxes are comprehensive collections of MATLAB functions (M-

files) that extend the MATLAB environment in order to solve particular classes of

problems. In addition, some toolboxes are designed to connect MATLAB to other software

tools. For example, MATLAB itself handles only numerical computations, but the

Symbolic Math toolbox adds symbolic computation capabilities through an interface with

the Maple engine. As of 2004, MathWorks claimed that MATLAB was used by more than

one million people in industry and scientific community. Furthermore, it is remarkable the

fact that MATLAB has been widely adopted in the academic community. More than 3,500

universities around the world use MATLAB for teaching and research in a broad range of

technical disciplines. MATLAB is available for Windows Vista/XP (32-bit, 64-bit), Apple

Macintosh Mac OS X 10.4/10.5 (32-bit), Linux 2.4 or later (32-bit, 64-bit), Sun Solaris

(64-bit).

Ox has been developed by Jurgen Doornik and is distributed by International Thomson

Press. Ox is a matrix programming language with built-in capabilities of using the object-

oriented approach. This capability is its main advantage comparing to the other two

software packages. Apart from that, Ox is relatively younger language in comparison with

MATHEMATICA and MATLAB. Ox was created with the help of C language and this is

the reason for the significant similarities between their languages. Moreover, Ox includes a

comprehensive range of commands for quick matrix operations. Its wide spread among the

statisticians and econometricians implies its large and useful range of statistical and

econometrical libraries. Among the special features of Ox, are its speed, the ease of

programming, the well designed syntax and editor, and some graphical facilities. Most of

these advantages are due to its origin of C language. OxMetrics is an econometrical

software including the Ox programming language. Ox is available for Windows Vista/XP

(32-bit, 64-bit), Apple Macintosh Mac OS X 10.4/10.5 (32-bit), Linux 2.4 or later (32-

bit,64-bit), Sun Solaris (64-bit), HP-UX 11.11 (64-bit), IBM POWER AIX 5.1, 5.2, 5.3

(64-bit).

3. Installation Requirements for using the parallel toolboxes

3.1 MATHEMATICA

In order to perform computations in parallel with the help of MATHEMATICA, the only

thing which is needed is the ‘Parallel Computing Toolkit’. This toolkit is available under

these operating systems: Linux, Macintosh and Microsoft Windows. With this toolbox

users are able to: i) start processes and connect them in order to interact, ii) organize

processes and computations on available processors and iii) share data between processes

and synchronize access to common resources.

First of all, in order to be able to take full advantage of the opportunities that Parallel

Computing Toolkit offers, users should have access to a number of remote computers

capable of running MATHEMATICA or use of a multiprocessor local machine. Apart

from that, a suitable network connection between a local computer and the remote

machines are necessary. Although, a network is set up, there may be some security

restrictions which limit the ability to execute MATHEMATICA programs on remote

computers in parallel, like firewall restrictions.

Furthermore, the remote computer must run a rsh (for Windows platforms) or ssh daemon

(for Linux and Macintosh platforms) or other remote login service in order to start

MATHEMATICA on the remote computer through a local computer. On the other hand, if

there is not a rsh or ssh daemon on the remote computer, the connection can be achieved

with the help of a TCP/IP network. Before that, the users must start manually the kernels

on the remote computers and then connect them with the local computer.

3.2 MATLAB

Distributed computing with MATLAB on a cluster requires two products: i) Parallel

Computing Toolbox and ii) MATLAB Distributed Computing Server. Parallel Computing

Toolbox (formerly Distributed Computing Toolbox) should be installed on the computer

where the applications are written. MATLAB Distributed Computing Server (formerly

MATLAB Distributed Computing Engine) should be installed on each computer of the

cluster that performs the computation. These packages are available for the above

operating systems: Linux, Macintosh and Microsoft Windows.

In all three platforms, to set up a cluster for use with Parallel Computing Toolbox and

MATLAB Distributed Computing Server are required four stages. The first stage involves

the installation of the MATLAB Distributed Computing Server. This installation can be

accomplished with two patterns: either i) installation in a shared directory and then map the

installation directory to all nodes (this option increases network overhead) or ii) installation

individually on each node (this option involves no additional network overhead). The

second stage concerns the configuration of the MATLAB Distributed Computing Server

for use with the job manager. MATLAB Distributed Computing Server requires a

scheduler to queue and manage jobs submitted to the cluster. MATLAB offers the

possibility either to use the Job Manager (the scheduler included with MATLAB

Distributed Computing Server), or integrate with third-party schedulers, such as Platform

LSF [4], Microsoft Windows Compute Cluster Server [5], PBS [6], TORQUE [7], Sun

Grid Engine [8], Grid MP [9], etc. In the third stage takes place the installation of the

Parallel Computing Toolbox and finally in the last stage is verified that the parallel

computing products are installed and configured correctly.

Moreover, MATLAB offers the possibility to setup these parallel products on a single

machine without a cluster. A local scheduler is included with Parallel Computing Toolbox

that allows programmers to schedule jobs and run up to four workers or labs on a single

MATLAB client machine. This local scheduler and its workers do not require a job

manager, a third-party scheduler, or MATLAB Distributed Computing Server.

3.3 Ox

OxMPI is an Ox package enabling the development of distributed Ox programs. The

resulting Ox program can run on all processors of a multicore workstation, or on a cluster

of machines. The installation requirements to develop and run distributed Ox programs are:

i) a working MPI installation and ii) Ox Console 4 or 5, or Ox Professional 4 or 5.

OxMPI has been tested by the creator of Ox (Jurgen Doornik) both in Windows and Linux.

OxMPI for Windows has been tested with DeinoMPI 1.1.0 [10] using 32-bit Windows XP

and Vista, as well as 64-bit XP and also with MPICH2 1.0.6p1 [11]. OxMPI for Linux has

been tested with OpenMPI [12] under Fedora 7.

4. Parallel toolboxes’ strengths and weaknesses

4.1 MATHEMATICA

The parallel programming with the help of MATHEMATICA is not a complicated

procedure. MATHEMATICA have many built-in functions which make the lives of

programmers much easier. The first step is to load the ‘Parallel Computing Toolkit’ and

then start a number of remote kernels. Starting and connecting a number of remote

machines is not a very easy job. Programmers must insert some special commands, a task

which may be difficult for beginner users.

Apart from the stage of cluster’s configuration, parallel programming with

MATHEMATICA can be an ideal choice for beginners and experienced programmers too.

There are commands which can send data and codes from the local machine to remote

systems without the programmers to concern about details. On the other hand, there are

commands which permit to users to decide how they want to separate their codes and data

among the remote machines, a utility which refers to advanced parallel programming. It is

well known that all the programs and line of codes can not be parallelized. In this case,

MATHEMATICA does not face any problem and propose a very useful utility. The

particular block of code which can not be parallelized, is executed locally at the master

kernel and then the results can be distributed to remote kernels and continue their jobs.

It is well known that there are two ways of handling memory, the shared memory and

distributed memory. In a shared-memory machine, all processors have access to a common

main memory. Moreover, a processor can simply write a value into a particular memory

location, and all other processors can read this value. In a distributed-memory machine,

each processor has its own main memory, and the processors are connected through a

network to exchange values of variables. This involves explicit communication over the

network. MATHEMATICA through ‘Parallel Computing Toolkit’ uses independent

remote kernels as parallel processors. It is obvious that these machines do not share a

common memory, even if they happen to be on the same machine. In contrast, the package

Parallel `VirtualShared`, which is part of the ‘Parallel Computing Toolkit’, implements

virtual shared memory for these processors.

4.2 MATLAB

The Parallel Computing Toolkit is fully integrated in MATLAB by Mathworks itself. Its

aim is to distribute jobs in many computer machines without the need of user’s

configuration. This is the main advantage of this toolbox from others that have been

implemented to work with MATLAB. It is fairly easy to use this toolbox, although the user

still has to take care of cutting the data up in pieces. User can convert its serial MATLAB

programs to parallel MATLAB programs without making significant changes to existing

code or learning a low-level parallel language. Furthermore, Parallel Computing Toolbox

offers the possibility to execute programs on a single multicore or multiprocessor

workstation. Finally, both interactive and batch execution modes are supported from this

toolbox.

On the other hand, Parallel Computing Toolbox has also some disadvantages. First of all,

this toolbox comes at a cost per node. Furthermore, workers have to be started on all

computer nodes and if there is a crash, they have to be restarted manually. One other

significant disadvantage is that every file used in the program should be identified and

stored in a fileDependencies array. These files should be accessible from every node. If

there is a shared filesystem, this is not a problem. But if there isn’t a shared filesystem,

users have to pass these files to every node and it should be stored in the same location in

every node. Obviously, this option increases network overhead.

4.3 Ox

OxMPI has adopted the master/slave model written in MPI: the same program is running

on each node, with if statements selecting the appropriate code section. This means that

user have to learn first the Message Passing Interface language and then convert its’ serial

programs to parallel. The aim of this utility is to take a popular matrix programming

language and implement a message-passing interface using MPI. OxMPI isn’t a full

implementation of MPI for Ox. Instead it has what is sufficient to run a program, and then

extend this for parallel computations. Finally, OxMPI lucks the user-friendliness that the

parallel toolboxes of MATLAB and MATHEMATICA offers.

5. Structure of parallel programming in mathematical software

5.1 MATHEMATICA

First of all, debugging is not an easy utility in parallel programming. In this sector

MATHEMATICA provides the programmers with the opportunity of monitoring remote

machines. Through the ‘Debug view’ that shows which of the remote kernels are running,

users can find easily and very fast the origin of many problems which may be produced

during the execution of a parallel program. The ‘Debug window’ can present some useful

information when it combines with commands like ParallelEvaluate[] which separate the

initial calculation to smaller calculations and each of them is computed in different remote

kernels. With ‘Debug window’ users can see which remote machine can crash and begin

the calculation from the beginning again.

Apart from that, MATHEMATICA provides the programmers with the ability to control

their programs step by step with the help of the breakpoints. With this technique,

programmers have the ability to see which part of their code is causing problems and take

measures in order to avoid them. Furthermore, it is possible to have many breakpoints in

more than one remote machine. In this case, programmers are able to monitor each

machine separately without any problem.

It is well known that all the high level programming languages except for the opportunities

which offer through debugging for enhancement in codes, includes the profilers. In this

direction, MATHEMATICA includes functions for parallel profiling. As well as in

sequential programming, users have the opportunity to run a profile report on the command

line and they will have as a response a report for each kernel in the network. In this report

there is a reference to the number of calls for a particular computation and the average time

of the execution of this calculation for each remote machine.

5.2 MATLAB

First of all, parallel programs in MATLAB can be executed under interactive and batch

execution modes. In interactive mode, Parallel Computing Toolbox extends the MATLAB

interactive environment. The Parallel Command Window (interactive mode) is familiar

with MATLAB environment and that makes easier the developing of task- and data-

parallel applications. This environment helps parfor - loops (parallel for) detect the

presence of workers and transfer the necessary workspace data between the MATLAB

session and the workers. The Parallel Command Window sets up a data-parallel execution

environment in which can be used distributed arrays and message passing functions.

Commands issued at the parallel prompt are executed simultaneously on all computer

nodes.

Parallel Computing Toolbox offers also a batch environment that provides an offline mode

of execution. Running in batch mode the MATLAB client session can also be shut down or

used for other activities while large MATLAB applications are executed in worker nodes.

This utility frees the MATLAB client session for other activities and the results can be

retrieved later.

A profiling utility enables users to observe performance of parallel applications that use

distributed arrays and message passing functions. The profiler is collecting information

about the execution of code on each lab and the communication between the labs. Such

information includes: i) execution time of each function on each lab, ii) execution time of

each line of code in each function, iii) amount of data transferred between each lab and iv)

amount of time each lab spends waiting for communication. Moreover, using the profiler

one can extract a report at the end of program’s execution. This interactive report provides

feedback for almost every task like the plotting of the communication scheme between labs

and the comparison controls to display information for several labs simultaneously.

5.3 Ox

OxMPI offers all the well known MPI functions like send, receive, broadcast etc. The only

difference is that the OxMPI functions have less input arguments than the classic MPI

functions. For a beginner this is better, because it is more difficult to remember a function

with a lot of arguments and also it is even more complicated to understand what the scope

of these arguments is. Finally, it is possible to call external C, C++ and Fortran functions

from Ox code by writing a small C wrapper around the external function.

6. Parallel Optimization in MATLAB

In the latest version of MATLAB, MathWorks has distributed the integration of the

Parallel Computing Toolbox with the Optimization Toolbox. This attempt was made in

order to offer a strong combination of functions for linear programming, nonlinear

optimization and multi-objective optimization at the same time of taking full advantage of

benefits from parallel programming.

The Optimization Toolbox is a library of functions that extends the capability of the

MATLAB computing environment. The toolbox includes functions for many types of

optimization including: linear programming, quadratic programming, non-linear

optimization, non-linear least squares, multi-objective optimization and binary integer

programming. Functions of Optimization Toolbox, like the optimization solvers, are able

to take advantage of the opportunities that are available through the parallel computing

toolbox. Moreover, users can benefit from the ability that MATLAB provides a friendly

environment for parallel programming. In addition, programmers are able to execute

optimization problems on multicore computers or computer clusters.

The optimization toolbox of MATLAB can be used in order to enhance the performance of

program codes at any field of scientific community. One of the most significant

advantages is the simultaneous execution of many problems. In this case, users have the

opportunity to solve more intensive problems and much faster than in a single core.

Obviously, a significant reduction in the execution time is presented due to the parallel

computing.

Customizable support for parallel computing involves explicitly defining the optimization

problem to use parallel computing functionality. User can define either the objective

function or constraint function to use parallel computing, so to decrease the time required

to evaluate the objective/constraint. Finally, Built-in support for parallel computing allows

users to accelerate the gradient estimation step in select solvers for constrained nonlinear

optimization problems, multi-objective goal attainment and minimax problems.

7. Conclusions

Matrix programming languages are widely used by scientists due to theirs’ specific

orientation towards the construction and manipulation of mathematical and statistical

models. On the other hand, there are cases where their effectiveness is not satisfactory with

regard to the computational time. Such problems are solved with the use of parallel

programming.

In this paper we examined the parallel toolboxes that matrix programming languages

provide. There are opportunities that scientific community can gain from the use of these

libraries and toolboxes. However, these toolboxes have some limitations and cannot be

used to solve any kind of problem. Despite their strong similarities there are substantial

differences between the parallel toolboxes of these matrix languages.

MATLAB’s Parallel Computing Toolbox seems to gain popularity among the other

available from other software packages, due to its ease of programming and its useful

profiler. Moreover, a significant advantage of MATLAB’s parallel environment is that it

can be combined with the Optimization Toolbox to solve large problems.

MATHEMATICA’s parallel environment is a user-friendly toolbox for creating parallel

applications. Its advantages are the ease of programming and its powerful parallel

debugger. A drawback for MATHEMATICA’s parallel toolkit is its difficult configuration

for not very experienced users. The developer of Ox has implemented an Ox package to

enable the development of distributed Ox programs. Ox has a very useful library of

statistical and econometrical functions that can be combined with the parallel processing

and lead to the reduction of time. The disadvantage for OxMPI is that is just a combination

of the Message Passing Interface and the Ox environment. User should first learn MPI and

then use OxMPI.

In conclusion, there are several opportunities that we can gain from the combination of

mathematical software with parallel processing. Even though these parallel environments

have to be improved, they can lead to a reduction of time for computationally intensive

problems.

References

[1] (2008) The Wolfram Research website. [Online]. Available at:

http://www.wolfram.com/

[2] (2008) The MathWorks website. [Online]. Available at: http://www.mathworks.com/

http://www.wolfram.com/
http://www.wolfram.com/
http://www.mathworks.com/
http://www.mathworks.com/

[3] (2008) The Jurgen Doornik website. [Online]. Available at: http://www.doornik.com/

[4] (2008) The Platform Computing Corporation website. [Online]. Available at:

http://www.platform.com/Products/Platform.LSF.Family/

[5] (2008) The Microsoft Corporation website. [Online]. Available at:

http://www.microsoft.com/hpc/default.aspx

[6] (2008) The Altair Engineering website. [Online]. Available at:

http://www.altair.com/Default.aspx

[7] (2008) The Cluster Resources website. [Online]. Available at:

http://www.clusterresources.com/

[8] (2007) The Sun Microsystems website. [Online]. Available at:

http://gridengine.sunsource.net/

[9] (2008) The Univa UD website. [Online]. Available at:

http://www.univaud.com/products/grid-mp/

[10] (2008) The DeinoMPI website. [Online]. Available at: http://mpi.deino.net/

[11] (2008) The Research Laboratory Argonne website. [Online]. Available at:

http://www.mcs.anl.gov/research/projects/mpich2/

[12] (2008) The Open MPI project website. [Online]. Available at: http://www.open-

mpi.org/

[13] Baker M., Buyya R. and Laforenza D. (2002), “Grids and Grid technologies for

wide-area distributed computing”, Software-Practice and Experience, 32, 1437-1466.

[14] Cunha J.C., Rana O.F. and Medeiros P.D. (2005), “Future trends in distributed

applications and problem-solving environments”, Future Generation Computer

Systems, 21, 843-855.

[15] Foster I., Kesselman C. and Tuecke S. (2001), “The Anatomy of the Grid: Enabling

Scalable Virtual Organizations”, The International Journal of High Performance

Computing Applications, 15(3), 200-222.

[16] Karypis G. and Kumar V. (1994), “Performance and Scalability of the Parallel

Simplex Method for Dense Linear Programming Problems an Extended Abstract”,

Technical Report, Computer Science Department, University of Minessota.

[17] Kilgore A. (1993), “Vary Large-scale Linear Programming: A Case Study Exploiting

Both Parallelism and Distributed Memory”, MSc Thesis, Center for Research on

Parallel Computation, Rice University.

[18] Maros I. and Mitra G. (2000), “Investigating the sparse simplex algorithm on a

distributed memory multiprocessor”, Parallel Computing, 26, 151-170.

[19] Noor A.K. (1997), “New Computing Systems and Future High-Performance

Computing Environment and their Impact on Structural Analysis and Design”,

Computers and Structures, 64, 1-30.

[20] Shu W. and Wu M. (1993), “Sparse Implementation of Revised Simplex Algorithms

on Parallel Computers”, Sixth SIAM Conference on Parallel Processing for Scientific

Computing, March 22-24, 1993, Norfolk

[21] Skillicorn B. and Talia D. (1998), “Models and Languages for Parallel Computation”,

ACM Computing Surveys, 30(2), 123-169.

http://www.doornik.com/
http://www.doornik.com/
http://www.platform.com/Products/Platform.LSF.Family/
http://www.platform.com/Products/Platform.LSF.Family/
http://www.microsoft.com/hpc/default.aspx
http://www.microsoft.com/hpc/default.aspx
http://www.altair.com/Default.aspx
http://www.altair.com/Default.aspx
http://www.clusterresources.com/
http://www.clusterresources.com/
http://gridengine.sunsource.net/
http://gridengine.sunsource.net/
http://www.univaud.com/products/grid-mp/
http://www.univaud.com/products/grid-mp/
http://mpi.deino.net/
http://mpi.deino.net/
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.open-mpi.org/
http://www.open-mpi.org/
http://www.open-mpi.org/
http://www.open-mpi.org/

