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Abstract  
Precision agriculture is a new and evolving discipline that uses advanced technologies to 
increase the efficiency of agricultural inputs in a profitable and environmentally friendly way. 
Emerging techniques, such as Internet of Things, Artificial Intelligence, Big Data analytics, 
and Unmanned Aerial/Ground Vehicles can be utilized in order to make informed 
management decisions aiming to increase crop production. In this paper, we present the 
architecture of VELOS, a smart ecosystem for pest management and irrigation of bean farms 
in the Greece Region Prespa. VELOS leverages the aforementioned techniques for extracting 
knowledge in order to create integrated solutions to effectively support decision-making for 
efficiently managing pesticides and irrigation applications and scheduling. 
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1. Introduction 

The integration of novel information and communication technologies (ICT) in the primary 
production sector enables data collection and analysis concerning critical parameters of the production 
process, while predictive mechanisms exploiting Artificial Intelligence (AI) and Machine Learning 
(ML) techniques, lead to the generation of new knowledge and support informed decision making, 
contributing to production quality and increased quantity, profit maximization, cost reduction, and 
overall environmental footprint minimization. In the precision agriculture domain, minimizing 
pesticide usage and irrigation application has profound positive effects to: a) crop yield (optimizing 
its quality and quantity), b) farmers (minimizing production costs and increasing yield), and c) 
environment (minimizing agricultural footprint to natural resources, i.e., degradation / depletion of 
natural water resources and pollution).  

VELOS is a smart ecosystem for pest management and irrigation of bean farms in the Prespa 
Region. The ecosystem leverages on Internet of Things (IoT) technologies, Unmanned Aerial and 
Ground Vehicles (UAVs/UGVs), Low-Power Wide-Area Networks (LPWANs), AI, and ML 
techniques for extracting knowledge in order to create integrated solutions to effectively support 
decision-making for efficiently managing pesticide usage and irrigation scheduling. VELOS consists 
of: a) wireless sensors for real-time data collection and an easy-to-install and configurable LPWAN, 
b) automated UAV fleet management system, following the UAV model-as-a-service, c) UGV with 
robotic mechanisms, and d) data platform, which correlates and analyzes IoT data, open data and 
data retrieved from existing systems and applications, e) prediction / classification models and 
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thresholds and risk indicators that allow risk assessment of pests / diseases’ appearance in bean 
farming, f) smart decision-making system for the application of pesticides and irrigation, and g) 
traceability system for the final product. The proposed system will be deployed, and its performance 
will be verified in four pilot fields in the Prespa Region. 

The rest of the paper is structured as follows. In Section 2 we present the proposed architecture of 
VELOS and discuss on the individual subsystems, while in Section 3 the current pilot setup is briefly 
described. Finally, in Section 4 concluding remarks are made and future work is highlighted. 

Figure 1: The architecture of VELOS 

2. The case of VELOS 

The proposed architecture of VELOS project, depicted in Figure 1, includes several subsystems, 
that closely interwork aiming to assess the risk of occurrence and predicting bean infestations by 
arthropod pests and plant diseases, as well as making scheduling recommendations for pesticide usage 
and irrigation application to protect crops and optimize their yield. VELOS is an open-source, 
modular, and scalable framework, adding, exchanging, modifying, and upgrading software 
components / subsystems in an easy manner, ensuring interoperability between applications and 
subsystems. The system follows the design of N-level architecture, in order to be flexible, robust, 
efficient, providing also workload balancing to system units and workstations. 



2.1. IoT subsystem 

A Long Range Wide Area Network (LoRaWAN) [1] is considered the best option for the 
transmission of IoT related collected data (e.g., soil moisture, temperature, humidity level) in the 
VELOS ecosystem, due to the flexible scalability, low network development cost and prolonged 
lifetime of end devices,. The VELOS ecosystem will effectively exploit a telemetric meteorological 
station network already installed in the Prespes area. 

2.2. UAV subsystem 

The proposed UAV subsystem includes UAV fleet management capabilities, following the concept 
of UAV-as-a-service model [2], in order to address identified impediments in the agriculture sector 
(e.g., expensive equipment, enhanced skills and training that farmers are usually unwilling to receive 
[3]) and bring UAVs full potential to precision agriculture. This model supports the organization and 
coordination of available UAVs to achieve common goals. The UAV fleet will include UAVs 
belonging to one or more providers, supporting their management and coordination in order to 
collectively process and satisfy crop monitoring requirements in agricultural production, considering 
also UAVs already involved in a mission in the area of interest. The UAV subsystem includes mission 
initiation and definition, UAVs assignment, flight generation, and the ground control system.  

2.3. UGV subsystem 

VELOS exploits a custom-made robotic UGV that will be constructed to enhance collected data 
quality and improve pest prediction accuracy. The VELOS UGV necessitates a solid construction that 
will be equipped with DC motors, enabling movement in the area of interest, a robotic arm mounted 
with a spectral camera, sensors for obstacle avoidance and GPS receivers. Other requirements and 
constraints imposed, i.e., bean cultivation specific growing parameters and practices will also be taken 
into account. A central microprocessor will provide the best path to the area of interest according to 
an optimal path finding algorithm, considering different parameters, such as energy consumption 
and/or time necessitated for completing the specific mission.  

2.4. Pest risk threshold subsystem 

Empirical prognostic degree-day thresholds and epidemiological plant disease risk indices will be 
developed, in order to timely forecast the seasonal occurrence of the most important arthropod pests 
and diseases of bean cultivation. Particularly, degree-day thresholds for Helicoverpa armigera, Thrips 
sp. and Tetranychus urticae will be developed and further validated, as well as epidemiological growth 
risk indices for the fungal pathogen Uromyces phaseoli which is the cause of bean rust. The 
development of pest degree-day thresholds and plant disease risk indicators uses a combination of 
methodologies and techniques based on the analysis of meteorological data and field observations of 
the phenology and/or damage caused from the aforementioned pests. Data from two growing seasons 
(2021 and 2022) are collected and used along with demographic parameters and temperature-
dependent developmental thresholds available from published research.  

2.5. Pest damage detection engine subsystem  

The pest damage detection engine (PDDE) subsystem aims to detect arthropod pest damage and/or 
plant disease symptoms based on images taken by UAVs and UGVs. ML algorithms have been used 
extensively for pest damage and disease recognition in plants [3]-[8]. The input is typically a set of 
images, and a ML algorithm is applied to categorize the depicted plant either as healthy or not, and in 
the latter case, determine the disease. The PDDE subsystem applies a portfolio of detection models to 
get the best possible result. Specifically, it utilizes several state-of-the-art models based on 
convolutional neural networks (CNNs). These models are region-based detectors like Faster-RCNN 



[10] and single-stage detectors like SSD [11], RetinaNet [12], EfficientDet [13], YOLOv4 [14], and 
YOLOv5 [15]. The PDDE subsystem, also, applies several preprocessing techniques such as image 
resize, data augmentation, and image denoise to increase the accuracy of the models.  

2.6. Irrigation forecasting engine subsystem 

The irrigation forecasting engine subsystem predicts the irrigation needs of a field. The problem of 
predicting irrigation needs is approached as a regression one. We utilize a portfolio of various ML 
regression algorithms, e.g., support vector machines, decision trees, random forest, multi-layer 
perceptron regressor, to generate regression models and select the most accurate. Also, we use a 
plethora of preprocessing techniques, to reshape and modify data, so that non-existent measurements 
/ values at predetermined intervals or outliers in the measurements received are recognized in a timely 
manner, and do not lead to erroneous conclusions. 

2.7. VELOS Intelligent Decision-Making System  

The VELOS Intelligent Decision-Making System (DSS) is the heart of the system, orchestrating 
the rest of the subsystems in order to generate informed recommendations on pesticide application and 
irrigation management. Regarding pesticide application, the proposed system includes a three-stage 
approach of pest prediction, which is expected to improve the system’s overall prediction accuracy 
(graphically illustrated in Figure 2). Degree day thresholds and disease risk indices will be 
complemented with UAV flight missions (either pre-scheduled or triggered by user requests and/or 
DSS due to approaching specific indicators favoring the development of considered diseases). In case 
of scheduled or user-triggered UAV missions. PDDE predictions are reconsidered and further 
enhanced taking into account IoT data and pest risk thresholds defined. As a next step, UGV subsystem 
is activated, provided with corresponding coordinates to obtain more images of the afflicted area, 
which are given as input to the PDDE subsystem, and feed the models with new data that improve 
their predictions.  

 
Figure 2: Pest detection and prediction flow chart 



Finally, VELOS DSS makes an appropriate plant protection recommendation to farmers based on 
the identified disease. Coupling UAVs, UGVs image analysis and PDDE-based predictions with 
thresholds and risk indices developed for the bean cultivation, we can minimize the false-positive 
predictions of the applied ML algorithms.  

The irrigation forecasting engine subsystem collects IoT related data (e.g., soil moisture, 
temperature, rainfall) and data from external subsystems (e.g. open meteorological data and weather 
forecasts), applies a portfolio of regression ML techniques and produces the final irrigation needs for 
the pilot fields. beans cultivation. Finally, VELOS DSS suggests an appropriate irrigation schedule to 
farmers based on the identified needs. The irrigation needs forecasting flow chart is presented in 
Figure 3.  

 
Figure 3: Irrigation needs forecast flow chart 

3. Experimental setup 

At present, a telemetric meteorological network has been installed consisting of seven 
meteorological stations (Figure 4) distributed in the main bean growing area of Greece and above the 
border area of the Prespa National Park. The network sends data remotely to a cloud-based server that 
uses the ADCON addVANTAGE software (Figure 5). A pilot experimental field network has been 
established since 2021, order to obtain pest field data, necessary for the development and evaluation 
of pest threshold predictions. Pest specific monitoring and sampling protocols have been developed 
and implemented for the pilot field.  

During each of the bean growing seasons, sequential observations are taken twice a week from four 
experimental bean plots (4-7 acres each). Two of the plots are conventional and two organic, the latter 
receiving no treatment with pesticides and serving as controls. Field data for 2021 consistently 
demonstrate the presence of H. armigera, T. urticae, and U. phaseoli, which in combination with 
meteorological data are the basis for the development of degree-day pest thresholds and bean rust 
indices, respectively. This allows the initial development of empirical thresholds and indicators for 
the above species for the year 2021. These thresholds will be evaluated during the current growing 
season for the year 2022. Degree-day pest thresholds and plant disease risk indicators are a profound 
empirical oriented mathematical approach for pest prediction and a prerequisite for the operation of 
the ongoing integrated software system for forecasting and decision-making for the plant protection 
of bean cultivation in the Prespa region. For 2022, UAV and UGV based images will be collected 
from the pilot fields so as to train the ML models of the PDDE subsystem, while additional soil 



moisture sensors will be installed in order to further support the irrigation forecasting engine 
subsystem.  

 
Figure 4: Meteorological data collection stations from the study area 

 

Figure 5: Real-time daily temperature recording at one of the meteorological stations located in the Prespa region 

4. Conclusions 

The VELOS project aims to assess the risk of occurrence and predict infestations of bean 
cultivation by arthropod pests and plant diseases, as well as making pesticide usage and irrigation 
application scheduling recommendations for plant protection and optimization. All subsystems of the 
VELOS system have been presented and the most important use cases of the Intelligent Decision-
Making System have been graphically illustrated. In addition, the current experimental setup was 
briefly described. Field data for 2021 demonstrated the presence of H. armigera, T. urticae, and U. 
phaseoli, which in combination with meteorological data are the basis for the development of degree-
day pest thresholds and bean rust indices, respectively.  

Future work includes development of empirical thresholds and indicators for the above species and 
their evaluation during the current growing season for the year 2022. These pest thresholds will also 
be incorporated into the pest damage detection engine subsystem for improving prediction accuracy. 
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