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Abstract

TOPSIS and VIKOR are two well-known and widely-used multiple attribute de-

cision making methods. Many extensions of these methods have been proposed

that either use different techniques to rank alternatives or utilize fuzzy logic

to handle alternatives and criteria that are unquantifiable and/or incomplete.

In this paper, we present the implementation of a web-based decision support

system that incorporates TOPSIS and VIKOR to solve multicriteria decision

making problems either in a nonfuzzy or in a fuzzy environment. The aim of

this paper is to present a tool that will be used by decision makers to compare

various alternative solutions and understand how robust a decision will be. The

proposed system can be used both in single and in group decision making prob-

lems. In addition, we review several variations for each step of these methods

and implement different techniques when applicable. Hence, decision makers

can experiment with different techniques in each method. We implement ten

normalization techniques, three methods for the calculation of the ideal and

anti-ideal solutions, fifteen distance metrics, five fuzzy distance metrics, and

eight defuzzification techniques. An illustrative example is presented to high-

light the key features of the implemented system and the different scenarios that
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can be built using the proposed DSS.

Keywords: Multiple attribute decision making, Fuzzy aggregation operators,

Defuzzification, Fuzzy distance metrics, Group decision making
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1. Introduction

Multi-Criteria Decision Making (MCDM) is a well-known field of operations

research and the most well-known branch of decision making. It is a branch

of a general class of operation research models that can be applied for com-

plex decisions when a lot of criteria are involved. MCDM methods are divided

into Multi-Objective Decision Making (MODM) and Multi-Attribute Decision

Making (MADM) [80]. The major difference of these families of methods is

based on the determination of the alternatives. In MODM, the alternatives are

not predetermined but instead a set of objective functions is optimized subject

to a set of constraints. In MADM, the alternatives are predetermined and a

limited number of alternatives is to be evaluated against a set of attributes.

Well-known MODM methods include bounded objective function formulation,

genetic algorithms, global criterion formulation, and goal programming, while

well-known MADM methods include AHP, ELECTRE, PROMETHEE, TOP-

SIS, and VIKOR.

TOPSIS and VIKOR are well-known and pretty straightforward MADM

methods. TOPSIS is is based on finding an ideal and an anti-ideal solution and

comparing the distance of each one of the alternatives to those. On the other

hand, VIKOR has been developed to provide compromise solutions to discrete

multiple criteria problems that include non-commensurable and conflicting cri-

teria. Both methods are based on an aggregating function representing the close-

ness to the ideal. TOPSIS and VIKOR have attracted much attention among

researchers and many variants and extensions of these methods have been pro-

posed. Regarding different methods in the various steps of TOPSIS, researchers

focused on the normalization procedure [8, 41, 54, 81, 93], the determination

of the ideal and the anti-ideal solution [20, 30], and the distance metric used

to calculate the distance of each alternative from the ideal and anti-ideal solu-

tions [12, 56, 64]. On the contrary, the methods used in the various steps of

VIKOR have not been modified/extended. However, Opricovic & Tzeng [60, 61]

extended at a later stage VIKOR with four new steps which provided a stabil-
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ity analysis to determine the weight stability intervals and included a trade-off

analysis.

There are situations where decision makers have to deal with unquantifiable

or incomplete information [89]. In real-world problems, available data can very

often be incomplete, non-obtainable or imprecise, and as such not determin-

istic. Therefore, data can well be fuzzy, a situation where linguistic variables

can depict the decision makers preferences in a more appropriate way. Then,

the assessment of alternatives for each criterion and the weights associated to

the criteria are suitable for the use of linguistic variables rather than numeri-

cal ones. The concept of linguistic variables is therefore very useful when the

analyst needs to describe complex situations or sometimes not well defined by

conventional quantitative expressions. As an example, the notion of criteria

weight if represented by such a linguistic variable can have the values of very

low, low, medium, high, very high, or something similar. It is also easier for

the decision maker to deal with linguistic variables instead of their deterministic

counterparts when trying to reach for a decision.

Fuzzy set theory can model imprecision in MADM problems. The diffusion

of fuzzy set theory into MADM methods has created a new decision theory

paradigm, known as fuzzy MADM, that is widely-used in decision making prob-

lems. TOPSIS and VIKOR were further extended to handle fuzzy numbers

involving the opinions of a number of independent experts. Regarding different

methods in the various steps of fuzzy TOPSIS, there are many fuzzy TOPSIS

extensions focusing on the distance measurement [9, 14, 27, 50], the calcula-

tion of the ideal and anti-ideal points [14, 50], and the use of different type

of fuzzy numbers, like triangular [14, 23, 83] and trapezoidal [46, 50]. On the

other hand, researchers modified fuzzy VIKOR by utilizing different defuzzifi-

cation techniques [2, 57, 76] and the use of different type of fuzzy numbers, like

triangular [57, 73, 76] and trapezoidal [36, 75, 88].

The selection of the most suitable MADM method for a specific problem is a

difficult task. There are many factors that should be considered before selecting

an MADM method or a combination of MADM methods. Guitouni & Mar-
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tel [31] proposed a conceptual framework for articulating tentative guidelines

to choose an appropriate MADM method. Roy & Slowiński [74] presented a

general framework to guide decision makers in choosing the right method for a

specific problem. Kurka & Blackwood [38] provided a methodology to system-

atically select an MADM method in the energy and renewable energy sectors.

Zanakis et al. [90] compared the performance of eight MADM methods, namely

ELECTRE, MEW, SAW, TOPSIS, and four versions of AHP. They found out

that the final rankings of the alternatives vary across methods, especially in

problems with many alternatives. Opricovic & Tzeng [59] presented a compar-

ative analysis of TOPSIS and VIKOR in order to show their similarities and

differences. The analysis revealed that TOPSIS and VIKOR use different nor-

malization techniques and that they introduce different aggregating functions for

ranking. Opricovic & Tzeng [60] compared the extended VIKOR method with

ELECTRE II, PROMETHEE, and TOPSIS. Ranking results were similar for

ELECTRE II, PROMETHEE, and VIKOR. Chu et al. [21] presented a compar-

ison of SAW, TOPSIS, and VIKOR. They found out that TOPSIS and SAW had

identical rankings, while VIKOR produced different rankings. They concluded

that both TOPSIS and VIKOR are suitable for assessing similar problems and

provide results close to reality. Ertuğrul & Karakaşoğlu [28] compared fuzzy

AHP and fuzzy TOPSIS. They applied these methodologies to facility location

selection problem finding the same ranking with both methods. Hajkowicz &

Higgins [32] compared the weighted summation, range of value, PROMETHEE

II, Evamix, and compromise programming methodologies. They concluded that

different multicriteria methods were in strong agreement with high correlations

amongst rankings. Ozcan et al. [62] compared the AHP, TOPSIS, ELECTRE,

and Grey Theory methods and detailed the advantages and disadvantages of

them. They found out that TOPSIS and ELECTRE produce similar results.

A common problem is that different MADM methods result to different

ranking results. Hence, many researchers apply different MADM methods and

compare the corresponding rankings. Even using different techniques in a step

of a single MADM method may result in different results. The aim of this paper
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is threefold. Firstly, we review different variants of the TOPSIS and VIKOR

methods focusing on variants used both in a nonfuzzy and in a fuzzy environ-

ment. Several techniques for each of these steps are reviewed. More specifically,

we review ten normalization techniques, three methods for the calculation of

the ideal and anti-ideal solutions, fifteen distance metrics, five fuzzy distance

metrics, and eight defuzzification techniques. This is the first time that most

of these methods are incorporated into TOPSIS and VIKOR. Secondly, even

though there are many recent papers (e.g., [3, 39, 55, 71, 86]) that compare

TOPSIS and VIKOR methods in various applications, most of these techniques

have not been utilized in MADM techniques yet. Hence, we present various

normalization techniques, distance metrics, and defuzzification techniques that

can be used in TOPSIS, VIKOR, and their fuzzy variants. Finally, we imple-

ment a web-based decision support system that incorporates all these MADM

methods and variants. To the best of our knowledge, this is the first DSS that

provides decision makers with so many different extensions of TOPSIS, VIKOR,

and their fuzzy extensions. The decision makers can apply different techniques

in various steps of the TOPSIS and VIKOR methods and compare the results.

In addition, they can use the proposed DSS in a group decision making environ-

ment and find optimal solutions without directly interacting with each other.

The overall goal of this paper is to present all alternative methods that can be

utilized in TOPSIS, VIKOR, and their fuzzy extensions. Selecting a suitable

MADM method for a specific case study is challenging [31, 38, 74]. If we also

consider the alternative methods that can be used in MADM methods, then

the complexity of this task increases significantly. As it has been mentioned

in previous works (e.g., [31]), it is very important to use a tool to choose an

appropriate MADM method. Hence, we aim to present such a tool that will be

used by decision makers to compare various alternative solutions and find out

the most appropriate one for their specific case study.

In this paper, we present the implementation of a web-based decision sup-

port system that incorporates TOPSIS and VIKOR and allows decision makers

to compare the results obtained from both methods. TOPSIS and VIKOR have

6



been included in the DSS because they share the same theoretical background

and the same input matrix; as such the results can be considered comparable.

This paper is an extension of our previous works [63, 70], where we presented a

decision support system with a limited number of different methods and tech-

niques included. In the proposed DSS, decision makers can easily upload the

input data and get thorough illustrative results. Different techniques are avail-

able for each step of these methods and decision makers can select them to

obtain rankings according to a case’s needs. The proposed paper is a signif-

icantly extended work. First of all, we have extended our previous works to

allow multiple decision makers solve multicriteria group decision making prob-

lems. Secondly, decision makers can experiment with different techniques in

each method and build several scenarios. We implement ten normalization tech-

niques, three methods for the calculation of the ideal and anti-ideal solutions,

fifteen distance metrics, five fuzzy distance metrics, and eight defuzzification

techniques. The aim of this paper is not to compare analytically all different

methods that can be utilized in each step of TOPSIS, VIKOR, and their fuzzy

extensions. We do not intend to make suggestions about which method is bet-

ter. Our aim is to provide decision makers with a robust tool to enable them

to structure the problem according to their exact requirements. They can build

the desired multiple criteria model and explore the various possibilities that

arise from the use of different methods in each step of the TOPSIS and VIKOR

methodologies. At a second stage, they can compare graphically the associated

solutions, produce scenarios and maybe revise the original model in order to

accommodate any needed changes. In this way, they can fine-tune the model

and find more appropriate solutions. Additionally, as a byproduct, the DSS

can well be used as a teaching tool. If the results obtained by using different

methods are similar, this fact may be considered as a good indication that the

proposed solution is optimal. In the opposite case, additional analysis of the

criteria and their ranking is advised [27].

The remainder of this paper is organized as follows. A background on fuzzy

number theory is presented in Section 2. We review TOPSIS, VIKOR, fuzzy
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TOPSIS, and fuzzy VIKOR in Sections 3 and 4. For each method, we present

different techniques that can be utilized in each step of these methods. We also

present a literature review on comparative studies of such methods. In Section

5, the implemented decision support system is presented. Section 6 presents

an illustrative example to highlight the key features of the implemented system

and the different scenarios that can be built using the proposed DSS. Finally,

the conclusions of this paper are outlined in Section 7.

2. Background

Let us assume that an MADM problem has m alternatives, A1, A2, · · · , Am,

and n decision criteria, C1, C2, · · · , Cn. Each alternative is evaluated with re-

spect to the n criteria. All the alternatives evaluations form a decision matrix

X = (xij)m×n. Let W = (w1, w2, · · · , wn) be the vector of the criteria weights,

where
∑n
j=1 wj = 1.

The goal of an MADM method is to rank the alternatives and find the best

solution. Initially, the decision maker defines the criteria and the alternatives.

Then, he/she sets values for the criteria weights and evaluates the alternatives

with respect to the n criteria. The input of an MADM method is the deci-

sion matrix X and the weight vector w, while the output is a ranking of the

alternatives.

However, there are situations where decision makers have to deal with un-

quantifiable or incomplete information [89]. Fuzzy set theory can model impreci-

sion in MADM problems. Hence, variants of the “traditional” MADM methods

have been developed to cope with unquantifiable or incomplete information. In

these methods, a group of decision makers evaluate the criteria weights and the

decision matrix using fuzzy numbers, especially triangular and trapezoidal fuzzy

numbers. In the rest of this section, we introduce the notation that will be used

to describe the fuzzy TOPSIS and VIKOR methods.

A fuzzy set is a class with a continuum of membership grades [89]; thus, a

fuzzy set A in a referential (universe of discourse) X is characterized by a mem-
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bership function A, which associates with each element x ∈ X a real number

A(x) ∈ [0, 1], having the interpretation A(x) as the membership grade of x in

the fuzzy set A.

Let’s consider now a fuzzy subset of the real line u: R→ [0, 1]. u is a fuzzy

number [4, 25], if it satisfies the following properties:

• u is normal, i.e., ∃x0 ∈ R with u(x0) = 1.

• u is fuzzy convex, i.e., u(tx+(1−t)y) ≥ min {u(x), u(y)} ,∀t ∈ [0, 1], x, y ∈

R.

• u is upper semi-continuous on R, i.e., ∀ε > 0,∃δ > 0 such that u(x) −

u(x0) < ε, |x− x0| < δ.

• u is compactly supported, i.e., cl {x ∈ R;u(x) > 0} is compact, where

cl(A) denotes the closure of the set A.

One of the most popular shapes of fuzzy numbers is the trapezoidal fuzzy

number that can be defined as A = (α1, α2, α3, α4) with a membership function

determined as follows (Figure 1 (b)):

µA(x) =



0, x < α1

x−α1

α2−α1
, α1 ≤ x ≤ α2

1, α2 ≤ x ≤ α3

α4−x
α4

, α3 ≤ x ≤ α4

0, x > α4

(1)

In the case where α2 = α3, the trapezoidal fuzzy number coincides with a

triangular one (Figure 1 (a)).

Given a couple of positive trapezoidal fuzzy numbers A = (α1, α2, α3, α4)

and B = (b1, b2, b3, b4), the result of the addition and subtraction between trape-

zoidal fuzzy numbers is also a trapezoidal fuzzy number:

A(+)B = (α1, α2, α3, α4)(+)(b1, b2, b3, b4)

= (α1 + b1, α2 + b2, α3 + b3, α4 + b4)
(2)

9



(a) Triangular fuzzy number (b) Trapezoidal fuzzy number

Figure 1: Triangular (a) and trapezoidal (b) fuzzy numbers

and

A(−)B = (α1, α2, α3, α4)(−)(b1, b2, b3, b4)

= (α1 − b4, α2 − b3, α3 − b2, α4 − b1)
(3)

A fuzzy vector is a certain vector that includes an element and has a value

between 0 and 1. Bearing this in mind, a fuzzy matrix is a gathering of such

vectors. The operations on given fuzzy matrices A = (αij) and B = (bij) are:

• maximum

A+B = max [αij , bij ] (4)

• max-min composition

A ·B = max
k

[min (αik, bkj)] (5)

• scalar product

λA = λ× [αij ] (6)

where 0 ≤ λ ≤ 1.

According to Zadeh [89], a linguistic variable is one whose values are words

or sentences in a natural or artificial language; among others, he provides an

example in the form of the linguistic variable ’Age’ that can take the values

young, not young, very young, quite young, old, not very old and not very

young, etc., rather than 20, 21, 22, 23, · · · . Linguistic variables well be replaced
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by triangular or trapezoidal fuzzy numbers. Lee [44] further denotes that a

linguistic variable can be defined by the quintuple

Linguistic variable = (x, T (x), U,G,M) (7)

where:

• x: name of variable.

• T (x): set of linguistic terms that can be a value of the variable.

• U : set of universe of discourse, which defines the characteristics of the

variable.

• G: syntactic grammar that produces terms in T (x).

• M : semantic rules, which map terms in T (x) to fuzzy sets in U .

.

3. TOPSIS and VIKOR in nonfuzzy environment

In this section, we present the TOPSIS and VIKOR methods in nonfuzzy

environment. First, we provide the steps of each method. Then, we discuss

variants of the methods used in various steps of these methods.

3.1. TOPSIS

The TOPSIS (Technique of Order Preference Similarity to the Ideal So-

lution) method [33, 87] is one of the most classical and widely-used MADM

methods. The TOPSIS method is based in finding ideal and anti-ideal solutions

and comparing the distance of each one of the alternatives to those. It has been

successfully applied in various application areas, like supply chain management

and logistics, engineering, marketing, and environmental management (for a

review, see [5]).

The TOPSIS method is comprised of the following five steps:
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• Step 1. Calculation of the weighted normalized decision matrix:

The first step is to normalize the decision matrix in order to eliminate the

units of the criteria. The normalized decision matrix is computed using

the vector normalization technique as follows:

rij =
xij√∑m
i=1 x

2
ij

, i = 1, 2, · · · ,m, j = 1, 2, · · · , n (8)

Then, the normalized decision matrix is multiplied with the weight asso-

ciated with each of the criteria. The normalized weighted decision matrix

is calculated as follows:

vij = wjrij , i = 1, 2, · · · ,m, j = 1, 2, · · · , n (9)

where wj is the weight of the jth criterion.

• Step 2. Determination of the ideal and anti-ideal solutions: The

ideal (A+) and anti-ideal (A−) solutions are computed as follows:

A+ =
(
v+1 , v

+
2 , · · · , v+n

)
=

{(
max
j
vij |j ∈ Ωb

)
,

(
min
j
vij |j ∈ Ωc

)}
, j = 1, 2, · · · , n

(10)

A− =
(
v−1 , v

−
2 , · · · , v−n

)
=

{(
min
j
vij |j ∈ Ωb

)
,

(
max
j
vij |j ∈ Ωc

)}
, j = 1, 2, · · · , n

(11)

where Ωb is the set of the benefit criteria and Ωc is the set of the cost

criteria.

• Step 3. Calculation of the distance from the ideal and anti-ideal

solutions: The distance from the ideal and the anti-ideal solutions is

computed for each alternative as follows:

D+
i =

√√√√ n∑
j=1

(
vij − v+j

)2
, i = 1, 2, · · · ,m (12)

D−i =

√√√√ n∑
j=1

(
vij − v−j

)2
, i = 1, 2, · · · ,m (13)
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• Step 4. Calculation of the relative closeness to the ideal solution:

The relative closeness of each alternative to the ideal solution is calculated

as follows:

Ci =
D−i

D+
i +D−i

, i = 1, 2, · · · ,m (14)

where 0 ≤ Ci ≤ 1.

• Step 5. Ranking the alternatives: The alternatives are ranked from

best (higher relative closeness value Ci) to worst.

The initial methodology was versatile enough to allow for various experi-

ments and modifications; research has focused on the normalization procedure

[8, 40, 54, 81, 93], the proper determination of the ideal and the anti-ideal solu-

tion [20, 30], and the metric used for the calculation of the distances from the

ideal and the anti-ideal solution [12, 56, 64].

3.1.1. Normalization

A normalization method is applied in MADM techniques in order to convert

the elements of the decision matrix into non-dimensional form. Hence, it is an

important step in most MADM techniques. Although all normalization tech-

niques have the same goal, i.e., scale the elements of the decision matrix to be

approximately of the same magnitude, different normalization techniques may

produce different solutions [13]. Thus, a normalization procedure may cause

deviation from the originally recommended solutions and the best solution may

be overlooked [13].

Jahan & Edwards [34] reviewed thirty one normalization techniques. They

investigated how different normalization techniques can affect the decision mak-

ing process in engineering design and showed that although many normalization

methods are minor variants of each other, these nuances can have important con-

sequences in decision making. Pavličić [66] studied the effect of simple, linear,

and vector normalization on ELECTRE, TOPSIS, and SAW. He showed that

the normalization technique affected the final decision. Zavadskas et al. [92]

compared four linear normalization techniques with a nonlinear one proposed
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by Peldschus et al. [69] and showed that the nonlinear normalization technique

improves the quality of the decision making. Milani et al. [54] studied the effect

of five normalization techniques on the TOPSIS method and showed that the

linear normalization techniques produce different closeness coefficients but the

ranking of the alternatives remains the same, while the nonlinear normalization

techniques generated a different ranking. Zavadskas et al. [93] evaluated the

accuracy of nonlinear vector and linear normalization techniques and concluded

that the relative closeness of the alternatives to the ideal solution is approxi-

mately 2.3 times less accurate in linear than in vector normalization. Migilinskas

& Ustinovichius [53] studied eight normalization techniques and concluded that

the normalization method must be chosen according to the objectives in order

to meet special requirements. Peldschus [68] evaluated several normalization

techniques and showed that a normalization technique affects the final ranking.

In addition, Peldschus [68] showed that linear normalization does not ensure the

stability of the solution. Chakraborty & Yeh [10] examined four normalization

techniques on SAW. They concluded that the vector and max linear normal-

ization techniques outperform other normalization techniques. Chakraborty

& Yeh [11] extended their work on the TOPSIS method and concluded that

vector normalization is more suitable for the TOPSIS method. Zavadskas &

Turskis [91] proposed a new logarithmic normalization technique and compared

it with two nonlinear normalization techniques. They concluded that the log-

arithmic normalization technique generated more stable solutions and can be

used in problems where the elements of the decision matrix differ considerably.

Çelen [8] examined the impact of four normalization techniques on the TOP-

SIS method and concluded that vector normalization is more suitable for the

TOPSIS method. Vafaei et al. [81] evaluated the effect of six normalization

techniques on the TOPSIS method and showed that the vector normalization

technique is the best for the TOPSIS method, while the logarithmic normaliza-

tion technique is the worst one.

In summary, many computational studies have shown that the vector nor-

malization technique is more suitable for the TOPSIS method. However, the
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vector normalization technique is not the best technique for all case studies

and it is important to select the appropriate normalization technique according

to the case study’s objectives. Hence, it is important for a decision maker to

have access to different normalization techniques when applying the TOPSIS

method. TOPSIS can be extended by using several normalization techniques.

In the proposed DSS, we have incorporated the following normalization tech-

niques:

1. Vector normalization

rij =
xij√∑m
i=1 x

2
ij

, i = 1, 2, · · · ,m, j = 1, 2, · · · , n (15)

for benefit criteria, and

rij = 1− xij√∑m
i=1 x

2
ij

, i = 1, 2, · · · ,m, j = 1, 2, · · · , n (16)

for cost criteria.

2. Linear sum normalization

rij =
xij∑m
i=1 xij

, i = 1, 2, · · · ,m, j = 1, 2, · · · , n (17)

for benefit criteria, and

rij =
1/xij∑m
i=1 1/xij

, i = 1, 2, · · · ,m, j = 1, 2, · · · , n (18)

for cost criteria.

3. Linear max normalization

rij =
xij

x+j
, i = 1, 2, · · · ,m, j = 1, 2, · · · , n, x+j = max

i
xij (19)

for benefit criteria, and

rij = 1− xij

x+j
, i = 1, 2, · · · ,m, j = 1, 2, · · · , n, x+j = max

i
xij (20)

for cost criteria.
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4. Linear max-min normalization

rij =
xij − x−j
x+j − x

−
j

, i = 1, 2, · · · ,m, j = 1, 2, · · · , n,

x+j = max
i
xij , x

−
j = min

i
xij

(21)

for benefit criteria, and

rij =
x+j − xij
x+j − x

−
j

, i = 1, 2, · · · ,m, j = 1, 2, · · · , n,

x+j = max
i
xij , x

−
j = min

i
xij

(22)

for cost criteria.

5. Logarithmic normalization [91]

rij =
ln (xij)

ln (
∏m
i=1 xij)

, i = 1, 2, · · · ,m, j = 1, 2, · · · , n (23)

for benefit criteria, and

rij =
1− ln(xij)

ln(
∏m
i=1 xij)

m− 1
, i = 1, 2, · · · ,m, j = 1, 2, · · · , n (24)

for cost criteria.

6. Marković method [51]

rij = 1−
xij − x−j
x+j

, i = 1, 2, · · · ,m, j = 1, 2, · · · , n,

x+j = max
i
xij , x

−
j = min

i
xij

(25)

for both benefit and cost criteria.

7. Tzeng and Huang method [80]

rij =
x+j
xij

, i = 1, 2, · · · ,m, j = 1, 2, · · · , n, x+j = max
i
xij (26)

for both benefit and cost criteria.

8. Nonlinear normalization [69]

rij =

(
xij

x+j

)2

, i = 1, 2, · · · ,m, j = 1, 2, · · · , n, x+j = max
i
xij (27)

16



for benefit criteria, and

rij =

(
x−j
xij

)2

, i = 1, 2, · · · ,m, j = 1, 2, · · · , n, x−j = min
i
xij (28)

for cost criteria.

9. Lai and Hwang method [41]

rij =
xij

x+j − x
−
j

, i = 1, 2, · · · ,m, j = 1, 2, · · · , n,

x+j = max
i
xij , x

−
j = min

i
xij

(29)

for benefit criteria, and

rij =
xij

x−j − x
+
j

, i = 1, 2, · · · ,m, j = 1, 2, · · · , n,

x+j = max
i
xij , x

−
j = min

i
xij

(30)

for cost criteria.

10. Zavadskas and Turskis method [91]

rij = 1−

∣∣∣∣∣x
+
j − xij
x+j

∣∣∣∣∣ , i = 1, 2, · · · ,m, j = 1, 2, · · · , n, x+j = max
i
xij (31)

for benefit criteria, and

rij = 1−

∣∣∣∣∣x
−
j − xij
x−j

∣∣∣∣∣ , i = 1, 2, · · · ,m, j = 1, 2, · · · , n, x−j = min
i
xij (32)

for cost criteria.

3.1.2. Ideal and anti-ideal solutions

The ideal solution is a solution that maximizes the benefit criteria and min-

imizes the cost criteria, whereas the anti-ideal solution minimizes the benefit

criteria and maximizes the cost criteria. The simplest case to determine these

solutions is that the ideal and anti-ideal points are fixed by the decision maker,

but this should be avoided as it would mean that the decision maker could de-

fine a fixed ideal solution [59]. The determination of the ideal and anti-ideal

solutions may affect the final ranking.

In the proposed DSS, we have incorporated the following methods to deter-

mine the ideal (A+) and anti-ideal (A−) solutions:
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1. Max-min values

A+ =
(
v+1 , v

+
2 , · · · , v+n

)
=

{(
max
j
vij |j ∈ Ωb

)
,

(
min
j
vij |j ∈ Ωc

)}
, j = 1, 2, · · · , n

(33)

A− =
(
v−1 , v

−
2 , · · · , v−n

)
=

{(
min
j
vij |j ∈ Ωb

)
,

(
max
j
vij |j ∈ Ωc

)}
, j = 1, 2, · · · , n

(34)

where Ωb is the set of the benefit criteria and Ωc is the set of the cost

criteria.

2. Absolute values

A+ = (1, 1, · · · , 1) (35)

A− = (0, 0, · · · , 0) (36)

3. Fixed values

A+ =
(

max
1
,max

2
, · · · ,max

n

)
(37)

A− =
(

min
1
,min

2
, · · · ,min

n

)
(38)

where maxj and minj , j = 1, 2, · · · , n, are the ideal and anti-ideal solutions

for each criterion defined by the decision maker.

If the decision maker does not have any specific domain knowledge of the

case study, he/she can select the ideal and anti-ideal solutions using the max-

min or the absolute values of the criteria. On the other hand, domain knowledge

of the case study can lead the decision maker to select fixed values.

3.1.3. Distance metrics

The distance from the ideal and the anti-ideal solutions can be computed

using several distance metrics. In most cases, decision makers use Euclidean,

Manhattan, or Chebyshev distance. Olson [56] utilized the Manhattan, Eu-

clidean, and Chebyshev distance metrics in TOPSIS and concluded that the
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Manhattan and Euclidean distance metrics seem very good for TOPSIS. Shih

et al. [77] considered the Manhattan, Euclidean, Chebyshev, and weighted Lp

distance metrics and also found that the Manhattan and Euclidean distance

metrics are more consistent. Therefore, the Manhattan and Euclidean distance

metrics seems to be the most appropriate distance measures for TOPSIS. How-

ever, the aforementioned studies did not take into account a large number of

distance metrics that can be utilized in TOPSIS. Therefore, it is important for

a decision maker to have access to different distance metrics when applying the

TOPSIS method. The TOPSIS method can be extended by using several dis-

tance metrics. In the proposed DSS, we have incorporated the following distance

metrics:

1. Manhattan distance

D+
i =

n∑
j=1

∣∣vij − v+j ∣∣ , i = 1, 2, · · · ,m, v+j = max
i
vij (39)

D−i =

n∑
j=1

∣∣vij − v−j ∣∣ , i = 1, 2, · · · ,m, v−j = min
i
vij (40)

2. Euclidean distance

D+
i =

√√√√ n∑
j=1

(
vij − v+j

)2
, i = 1, 2, · · · ,m, v+j = max

i
vij (41)

D−i =

√√√√ n∑
j=1

(
vij − v−j

)2
, i = 1, 2, · · · ,m, v−j = min

i
vij (42)

3. Chebyshev distance

D+
i = max

(∣∣vij − v+j ∣∣) , i = 1, 2, · · · ,m, v+j = max
i
vij (43)

D−i = max
(∣∣vij − v−j ∣∣) , i = 1, 2, · · · ,m, v−j = min

i
vij (44)

4. Squared Euclidean distance

D+
i =

n∑
j=1

(
vij − v+j

)2
, i = 1, 2, · · · ,m, v+j = max

i
vij (45)
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D−i =

n∑
j=1

(
vij − v−j

)2
, i = 1, 2, · · · ,m, v−j = min

i
vij (46)

5. Sørensen [78] or Bray-Curtis distance [7]

D+
i =

∑n
j=1

∣∣vij − v+j ∣∣∑n
j=1

(
vij + v+j

) , i = 1, 2, · · · ,m, v+j = max
i
vij (47)

D−i =

∑n
j=1

∣∣vij − v−j ∣∣∑n
j=1

(
vij + v−j

) , i = 1, 2, · · · ,m, v−j = min
i
vij (48)

6. Canberra distance [42]

D+
i =

n∑
j=1

∣∣vij − v+j ∣∣
vij + v+j

, i = 1, 2, · · · ,m, v+j = max
i
vij (49)

D−i =

n∑
j=1

∣∣vij − v−j ∣∣
vij + v−j

, i = 1, 2, · · · ,m, v−j = min
i
vij (50)

7. Lorentzian distance [24]

D+
i =

n∑
j=1

ln(1 +
∣∣vij − v+j ∣∣), i = 1, 2, · · · ,m, v+j = max

i
vij (51)

D−i =

n∑
j=1

ln(1 +
∣∣vij − v−j ∣∣), i = 1, 2, · · · ,m, v−j = min

i
vij (52)

8. Jaccard distance [65]

D+
i =

∑n
j=1

(
vij − v+j

)2∑n
j=1 v

2
ij +

∑n
j=1 v

+2
j −

∑n
j=1 vijv

+
j

,

i = 1, 2, · · · ,m, v+j = max
i
vij

(53)

D+
i =

∑n
j=1

(
vij − v−j

)2∑n
j=1 v

2
ij +

∑n
j=1 v

−2
j −

∑n
j=1 vijv

−
j

,

i = 1, 2, · · · ,m, v−j = min
i
vij

(54)

9. Dice distance [26]

D+
i =

∑n
j=1

(
vij − v+j

)2∑n
j=1 v

2
ij +

∑n
j=1 v

+2
j

, i = 1, 2, · · · ,m, v+j = max
i
vij (55)

D−i =

∑n
j=1

(
vij − v−j

)2∑n
j=1 v

2
ij +

∑n
j=1 v

−2
j

, i = 1, 2, · · · ,m, v−j = min
i
vij (56)
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10. Bhattacharyya distance [6]

D+
i = − ln

 n∑
j=1

√
vijv

+
j

2

, i = 1, 2, · · · ,m, v+j = max
i
vij (57)

D−i = − ln

 n∑
j=1

√
vijv

−
j

2

, i = 1, 2, · · · ,m, v−j = min
i
vij (58)

11. Hellinger distance [24]

D+
i = 2

√√√√1−
n∑
j=1

√
vijv

+
j , i = 1, 2, · · · ,m, v+j = max

i
vij (59)

D−i = 2

√√√√1−
n∑
j=1

√
vijv

−
j , i = 1, 2, · · · ,m, v−j = min

i
vij (60)

12. Matusita distance [52]

D+
i =

√√√√2− 2

n∑
j=1

√
vijv

+
j , i = 1, 2, · · · ,m, v+j = max

i
vij (61)

D−i =

√√√√2− 2

n∑
j=1

√
vijv

−
j , i = 1, 2, · · · ,m, v−j = min

i
vij (62)

13. Squared-chord distance [72]

D+
i =

n∑
j=1

(
√
vij −

√
v+j

)2

, i = 1, 2, · · · ,m, v+j = max
i
vij (63)

D−i =

n∑
j=1

(
√
vij −

√
v−j

)2

, i = 1, 2, · · · ,m, v−j = min
i
vij (64)

14. Pearson χ2 distance [67]

D+
i =

n∑
j=1

(
vij − v+j

)2
v+j

, i = 1, 2, · · · ,m, v+j = max
i
vij (65)

D−i =

n∑
j=1

(
vij − v−j

)2
v−j

, i = 1, 2, · · · ,m, v−j = min
i
vij (66)

21



15. Squared χ2 distance [67]

D+
i =

n∑
j=1

(
vij − v+j

)2
vij + v+j

, i = 1, 2, · · · ,m, v+j = max
i
vij (67)

D−i =

n∑
j=1

(
vij − v−j

)2
vij + v−j

, i = 1, 2, · · · ,m, v−j = min
i
vij (68)

3.2. VIKOR

The VIKOR (the acronym is in Serbian: VlseKriterijumska Optimizacija I

Kompromisno Resenje, meaning multicriteria optimization and compromise so-

lution) method has been developed to provide compromise solutions to discrete

MADM problems that include non-commensurable and conflicting criteria. It

has attracted much attention among researchers and has been applied in various

areas, like design and manufacturing, supply chain management and logistics,

heath care, and tourism management (for a review, see [85]).

The VIKOR method is comprised of the following five steps:

• Step 1. Calculation of the aspired and tolerable levels: The first

step is to determine the best f+j values (aspired levels) and the worst f−j

values (tolerable levels) of all criterion functions, j = 1, 2, · · · , n:

f+j = maxifij , f
−
j = minifij , j = 1, 2, · · · , n (69)

for benefit criteria, and

f+j = minifij , f
−
j = maxifij , j = 1, 2, · · · , n (70)

for cost criteria.

• Step 2. Determination of the utility and the regret measures:

The utility measure Si and the regret measure Ri are computed as follows:

Si =

n∑
j=1

wj(f
+
j − fij)/(f

+
j − f

−
j ), i = 1, 2, · · · ,m (71)

Ri = maxj
{
wj(f

+
j − fij)/(f

+
j − f

−
j )
}
, i = 1, 2, · · · ,m (72)

22



• Step 3. Calculation of the VIKOR index: The VIKOR index is

computed for each alternative as follows:

Qi = v
(
Si − S+

)
/
(
S− − S+

)
+ (1− v)

(
Ri −R+

)
/
(
R− −R+

)
,

i = 1, 2, · · · ,m
(73)

where S+ = miniSi, S
− = maxiSi, R

+ = miniRi, R
− = maxiRi; and v

is the weight of the strategy of the maximum group utility (and is usually

set to 0.5), whereas 1− v is the weight of the individual regret.

• Step 4. Ranking the alternatives: The alternatives are ranked de-

creasingly by the values Si, Ri and Qi. The results are three ranking

lists.

• Step 5. Finding a compromise solution: The alternative A1, which is

the best ranked by the measureQ (minimum), is proposed as a compromise

solution if the following two conditions are satisfied:

– C1. Acceptable advantage:

Q
(
A2
)
−Q

(
A1
)
≥ DQ (74)

whereA2 is the second best ranked by the measureQ andDQ = 1
m−1 ;

m is the number of alternative solutions.

– C2. Acceptable stability in decision making: The alternative A1

must also be the best ranked by the measures S or/and R. This

compromise solution is stable within a decision making process, which

could be one of the following strategies: (i) maximum group utility

(v > 0.5), (ii) consensus (v ≈ 0.5), or (iii) veto (v < 0.5).

If one of the conditions is not satisfied, then a set of compromise solutions

is proposed, which consists of:

– Alternatives A1 and A2 if only condition C2 is not satisfied.
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– Alternatives A1, A2, · · · , Ak if condition C1 is not satisfied; Ak is

determined by the relation Q
(
Ak
)
− Q

(
A1
)
< DQ for maximum k

(the positions of these alternative solutions are ”in closeness”).

These are the steps of the original version of the VIKOR method that is

used in the implemented decision support system. The method was extended at

a later stage with 4 new steps which provided a stability analysis to determine

the weight stability intervals and included a trade-off analysis [60, 61]. The

VIKOR method has been modified to handle alternatives with different criteria,

uncertainty, etc., but the steps of the method have not been modified. Contrary

to the many alternative methodologies that can be used in various steps of

TOPSIS, there are only two modifications that can be made in the steps of

VIKOR. First of all, we can experiment with the selection of the ideal and

anti-ideal solutions. As already described in subsection 3.1.2, there are three

different methods than can be used to determine the ideal (A+) and anti-ideal

(A−) solutions:

• Max-min values (Equations (33) and (34))

• Absolute values (Equations (35) and (36) and using either the max ranking

or a fixed value for the maximum)

• Fixed values (Equations (37) and (38))

In addition, decision makers can select the weight of the maximum group

utility strategy (v).

4. TOPSIS and VIKOR in fuzzy environment for group decision mak-

ing

4.1. Fuzzy TOPSIS

The TOPSIS method was further extended to handle fuzzy numbers involv-

ing the opinions of a number of independent experts. There are many fuzzy
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TOPSIS extensions [14, 23, 46, 83]. Table 1, adopted from [37], presents a com-

parison of the various fuzzy TOPSIS methods proposed in the literature. In

this Section, we present a fuzzy extension of TOPSIS that is based on Chen’s

methodology [14] and uses triangular fuzzy numbers. Then, we discuss varia-

tions that can be used in this method, focusing on the distance measurement,

the determination of the ideal and anti-ideal points, and the use of other than

triangular fuzzy numbers, like trapezoidal fuzzy numbers.

In conjunction with the steps of the typical TOPSIS method presented earlier

in Section 3.1, the steps of the fuzzy extension are:

• Step 1. Identification of the evaluation criteria: If we assume that

the decision group has K persons, then the importance of the criteria and

the ratings of the alternatives can be calculated as:

x̃ij =
1

K

[
x̃1ij(+)x̃2ij(+) · · · (+)x̃Kij

]
(75)

w̃j =
1

K

[
w̃1
j (+)w̃2

j (+) · · · (+)w̃Kj
]

(76)

where x̃Kij and w̃Kj are the ratings and criteria weights of the Kth decision

maker.

• Step 2. Selection of the linguistic variables: Choose the appropri-

ate linguistic variables for the importance weight of the criteria and the

linguistic ratings for alternatives with respect to the criteria.

• Step 3. Aggregations: Aggregate the weight of criteria to get the

aggregated fuzzy weight w̃j of criterion Cj , and pool the decision makers’

opinions to get the aggregated fuzzy rating x̃ij of alternative Ai under

criterion Cj .

• Step 4. Construction of the fuzzy decision matrix and the nor-

malized fuzzy decision matrix: The fuzzy decision matrix is con-
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Table 1: A comparison of fuzzy TOPSIS methods [37]

Source
Attribute
weights

Type of fuzzy
numbers Ranking method

Normalization
method

Chen and
Hwang

[18]
Fuzzy

numbers Trapezoidal

Lee and Li’s [43]
generalized mean

method
Linear

normalization

Liang [46]
Fuzzy

numbers Trapezoidal

Chen’s [16]
ranking with

maximizing set and
minimizing set

Linear
normalization

Chen [14]
Fuzzy

numbers Triangular

Chen [14]
proposes the

vertex method
Linear

normalization

Chu [22]
Fuzzy

numbers Triangular

Liou and Wang’s
[48] ranking

method of total
integral value
with α = 1/2

Modified
manhattan

distance

Tsaur et al.
[79]

Crisp
values Triangular

Zhao and Govind’s
[95] center of
area method

Vector
normalization

Zhang and Lu
[94]

Crisp
values Triangular

Chen’s [14]
vertex mode

Manhattan
distance

Chu and Lin
[23]

Fuzzy
numbers Triangular

Kaufmann and
Gupta’s [kau] mean of
the removals method

Linear
normalization

Cha and
Yung [9]

Crisp
values Triangular

Cha and Young [9]
propose a fuzzy

distance operator
Linear

normalization

Yang and
Hung [84]

Fuzzy
numbers Triangular

Chen’s [14]
vertex method

Normalized
fuzzy linguistic
ratings are used

Wang and
Elhag [83]

Fuzzy
numbers Triangular

Chen’s [14]
vertex method

Linear
normalization

Jahanshahloo
et al. [35]

Crisp
values Interval data

Jahanshahloo et al. [35] propose a
new column and ranking method
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structed as:

D̃ =


x̃11 x̃12 · · · x̃1n

x̃21 x̃22 · · · x̃2n
...

...
. . .

...

x̃m1 x̃m2 · · · x̃mn

 (77)

and the vector of the criteria weights as:

W̃ = [w̃1, w̃2, · · · , w̃n] (78)

where x̃ij and w̃j , i = 1, 2, · · · ,m, j = 1, 2, · · · , n are linguistic variables

according to Step 2. They can be described by the triangular fuzzy num-

bers x̃ij = (aij , bij , cij) and w̃j = (wj1, wj2, wj3). For the normalization

step, Chen uses the linear scale transformation in order to drop the units

and make the criteria comparable; it is also important to preserve the

property stating that the ranges of the normalized triangular fuzzy num-

bers belong to [0, 1]. The normalized fuzzy decision matrix denoted by R̃

is:

R̃ = [r̃ij ]m×n (79)

The set of benefit criteria is B and the set of cost criteria is C, therefore:

r̃ij =

(
aij

c+j
,
bij

c+j
,
cij

c+j

)
, j ∈ B, i = 1, 2, · · · ,m (80)

r̃ij =

(
a−j
cij
,
a−j
bij
,
a−j
aij

)
, j ∈ C, i = 1, 2, · · · ,m (81)

c+j = max
i
cij , if j ∈ B, i = 1, 2, · · · ,m (82)

a−j = min
i
aij , if j ∈ C, i = 1, 2, · · · ,m (83)

• Step 5. Construction of the fuzzy weighted normalized decision

matrix: Then, the fuzzy weighted normalized decision matrix can be

constructed as:

Ṽ = [ṽij ]m×n , i = 1, 2, · · · ,m, j = 1, 2, · · · , n (84)
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where:

ṽij = r̃ij(·)w̃j , i = 1, 2, · · · ,m, j = 1, 2, · · · , n (85)

The elements ṽij , i = 1, 2, · · · ,m, j = 1, 2, · · · , n, are normalized positive

triangular fuzzy numbers ranging from 0 to 1.

• Step 6. Determination of the fuzzy positive ideal solution (FPIS)

and the fuzzy negative ideal solution (FNIS): The fuzzy positive

ideal solution (FPIS, A+) and the fuzzy negative ideal solution (FNIS,

A−) are:

A+ =
(
ṽ+1 , ṽ

+
2 , · · · , ṽ+n

)
(86)

A− =
(
ṽ−1 , ṽ

−
2 , · · · , ṽ−n

)
(87)

where:

v+j = (1, 1, 1) , ṽ−j = (0, 0, 0) , j = 1, 2, · · · , n (88)

• Step 7. Calculation of the distance of each alternative from FPIS

and FNIS: The distance of each of the alternatives from FPIS and FNIS

can be calculated as:

D+
i =

n∑
j=1

d
(
ṽij , ṽ

+
j

)
, i = 1, 2, · · · ,m, j = 1, 2, · · · , n (89)

D−i =

n∑
j=1

d
(
ṽij , ṽ

−
j

)
, i = 1, 2, · · · ,m, j = 1, 2, · · · , n (90)

where d is the distance measurement between two fuzzy numbers.

• Step 8. Calculation of the closeness coefficient of each alter-

native: The closeness coefficient of each alternative can be defined as:

CCi =
d−i

D+
i +D−i

, i = 1, 2, · · · ,m (91)

• Step 9. Ranking the alternatives: An alternative Ai is better than

Aj if its closeness coefficient is closer to 1. Therefore, the final ranking of

the alternatives is defined by the value of the closeness coefficient.
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As already mentioned, there are many other fuzzy TOPSIS extensions focus-

ing on the distance measurement [9, 14, 50], the determination of the ideal and

anti-ideal points [14, 50], and the use of other than triangular fuzzy numbers, like

trapezoidal fuzzy numbers [46, 50]. The fuzzy TOPSIS method and the methods

presented in subsections 4.1.1 and 4.1.2 can be modified using trapezoidal fuzzy

numbers. In the proposed DSS, we allow the decision maker to select either

triangular or trapezoidal fuzzy numbers to use in the fuzzy TOPSIS method.

4.1.1. Distance metrics

The distance from the ideal and the anti-ideal solutions can be computed

using several distance metrics. In most fuzzy TOPSIS extensions, decision mak-

ers use Chen’s vertex method [14]. An interesting generalization of the fuzzy

TOPSIS method is proposed by Dymova et al. [27]. Instead of defuzzifying

the initial fuzzy decision matrix and converting fuzzy values to real-values ones,

they treat the distances of the alternatives from the ideal and anti-ideal solu-

tions as modified weighted sums of local criteria. Therefore, they avoid using

weighted sums and proposed the utilization of local criteria aggregation.

The selection of a distance metric may affect the final ranking. In general,

most works select Chen’s vertex method [14] as a distance metric for fuzzy TOP-

SIS. However, the fuzzy TOPSIS method can be extended by using several dis-

tance measures of fuzzy numbers. In the following distance metrics, we want to

calculate the distance between two triangular fuzzy numbers m̃ = (m1,m2,m3)

and ñ = (n1, n2, n3). In the proposed DSS, we have incorporated the following

distance metrics:

1. Chen’s vertex method [14]

d(m̃, ñ) =

√
1

3

[
(m1 − n1)

2
+ (m2 − n2)

2
+ (m3 − n3)

2
]

(92)

2. The fuzzy distance operator proposed by Cha & Jung [9]

d(m̃, ñ) =

∣∣∣∣m1 − n1 +m2 − n2 +m3 − n3
3

∣∣∣∣
+

∣∣∣∣m1 +m3 − 2m2

2 (m3 −m1)
− n1 + n3 − 2n2

2 (n3 − n1)

∣∣∣∣× ∣∣∣∣m3 −m1 + n3 − n1
4

∣∣∣∣ (93)
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3. The fuzzy distance measure proposed by Lin [47]

d(m̃, ñ) =

√√√√1

6

[
3∑
i=1

(ni −mi)
2

+ (n2 −m2)
2

+

2∑
i=1

(ni −mi) (ni+1 −mi+1)

]
(94)

4. A distance measure based on the similarity measure proposed by Chen

[19]

d(m̃, ñ) =

∑3
i=1 |mi − ni|

3
(95)

5. A distance measure based on the similarity measure proposed by Chen &

Hsieh [17]

d(m̃, ñ) =

∣∣∣∣m1 + 4m2 +m3

6
− n1 + 4n2 + n3

6

∣∣∣∣ (96)

4.1.2. Ideal and anti-ideal solutions

The simplest case to determine these solutions is that the ideal and anti-

ideal points are fixed by the decision maker, as in the fuzzy TOPSIS variant

presented in Section 4.1. The determination of the ideal and anti-ideal solutions

may affect the final ranking.

In the proposed DSS, we have incorporated the following methods to deter-

mine the ideal (A+ =
(
ṽ+1 , ṽ

+
2 , · · · , ṽ+n

)
) and anti-ideal (A− =

(
ṽ−1 , ṽ

−
2 , · · · , ṽ−n

)
)

solutions:

1. Max-min values

ṽ+j = max
i
ṽij , ṽ

−
j = min

i
ṽij , i = 1, 2, · · · ,m, j = 1, 2, · · · , n (97)

2. Absolute values

ṽ+j = (1, 1, 1) , ṽ−j = (0, 0, 0) , j = 1, 2, · · · , n (98)

3. Fixed values

ṽ+j =
(

max
1
,max

2
,max

3

)
, ṽ−j =

(
min
1
,min

2
,min

3

)
, j = 1, 2, · · · , n (99)

where maxk and mink, k = 1, 2, 3, are the ideal and anti-ideal solutions

for each criterion defined by the decision makers using a fuzzy triangular

number.
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4.2. Fuzzy VIKOR

Similar to the TOPSIS method, the VIKOR method was further extended

to handle fuzzy numbers involving the opinions of a number of independent

experts. There are many fuzzy VIKOR extensions [57, 76, 82, 88]. Table 2

presents a comparison of the various fuzzy VIKOR methods proposed in the

literature. In this Section, we present a fuzzy extension of VIKOR that is based

on the methodology proposed by Sanayei et al. [75] and uses trapezoidal fuzzy

numbers. We will present this method using triangular fuzzy numbers (as we

did in Section 4.1 for the fuzzy TOPSIS method). Then, we discuss variations

that can be used in this method, focusing on the defuzzification technique and

the use of other than triangular fuzzy numbers, like trapezoidal fuzzy numbers.

The steps of the fuzzy VIKOR method are:

• Step 1. Identification of the problem objectives and scope: The

decision goals and the scope of the problem are defined. Then, the objec-

tives of the decision making process are identified.

• Step 2. Identification of the criteria: We form a group of decision

makers to identify the criteria and their evaluation scales.

• Step 3. Identification of the appropriate linguistic variables:

Choose the appropriate linguistic variables for the importance weights

of the criteria and the linguistic ratings for the alternatives with respect

to the criteria.

• Step 4. Calculation of the aggregated fuzzy weight of criteria and

the aggregated fuzzy rating of alternatives: Let the fuzzy rating and

importance weight of the kth decision maker be x̃ijk = (x̃ijk1, x̃ijk2, x̃ijk3)

and w̃ijk = (w̃ijk1, w̃ijk2, w̃ijk3), respectively, where i = 1, 2, · · · ,m and

j = 1, 2, · · · , n. Hence, the aggregated fuzzy ratings (x̃ij) of alternatives

with respect to each criterion can be calculated as:

x̃ij = (xij1, xij2, xij3) (100)
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Table 2: A comparison of fuzzy VIKOR methods

Source
Type of fuzzy

numbers
Defuzzification

method

Opricovic [57] Triangular
2nd weighted

mean

Rostamzadeh et al. [73] Triangular
Center of
gravity

Chen and Wang [15] Triangular
Minimizing and
maximizing sets

Wan et al. [82] Triangular
Custom defuzzification

method

Shemshadi et al. [76] Trapezoidal
Custom defuzzification

method

Ju and Wang [36] Trapezoidal
Center of
gravity

Yucenur and Demirel [88] Trapezoidal
Center of
gravity

Opricovic and Tzeng [58] Trapezoidal
Custom defuzzification

method

Liu et al. [49] Trapezoidal
Center of
gravity
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where:

xij1 = min
k
{xijk1} , xij2 =

1

K

K∑
k=1

xijk2, xij3 = max
k
{xijk3} (101)

The aggregated fuzzy weights (w̃j) of each criterion can be calculated as:

w̃j = (wj1, wj2, wj3) (102)

where:

wj1 = min
k
{wjk1} , wj2 =

1

K

K∑
k=1

wjk2, wij3 = max
k
{wjk3} (103)

The problem can be concisely expressed in matrix format as follows:

D̃ =



x̃11 x̃12 · · · x̃1n

x̃21 x̃22 · · · x̃2n

...
...

. . .
...

x̃m1 x̃m2 · · · x̃mn


(104)

and the vector of the criteria weights as:

W̃ = [w̃1, w̃2, · · · , w̃n] (105)

where x̃ij and w̃j , i = 1, 2, · · · ,m, j = 1, 2, · · · , n, are linguistic variables

according to Step 3. They can be approximated by the triangular fuzzy

numbers x̃ij = (xij1, xij2, xij3) and w̃j = (wj1, wj2, wj3).

• Step 5. Defuzzification of the fuzzy decision matrix and the

fuzzy weight of each criterion into crisp values: Defuzzify the fuzzy

decision matrix and fuzzy weight of each criterion into crisp values using

COG defuzzification relation (see Section 4.2.1).
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• Step 6. Calculation of the best and the worst values of all criteria

functions: Determine the best f+j and the worst f−j values of all criteria

functions:

f+j = max
i
fij , f

−
j = min

i
fij , i = 1, 2, · · · ,m, j = 1, 2, · · · , n (106)

if the jth function is to be maximized (benefit) and:

f+j = min
i
fij , f

−
j = max

i
fij , i = 1, 2, · · · ,m, j = 1, 2, · · · , n (107)

if the jth function is to be minimized (cost).

• Step 7. Computation of the values Si and Ri: Compute the values

Si and Ri using the relations:

Si =

n∑
j=1

wj
(
f+j − fij

)
/
(
f+j − f

−
j

)
,

i = 1, 2, · · · ,m, j = 1, 2, · · · , n

(108)

Ri = max
j

[
wj
(
f+j − fij

)
/
(
f+j − f

−
j

)]
,

i = 1, 2, · · · ,m, j = 1, 2, · · · , n
(109)

• Step 8. Computation of the values Qi: Compute the values Qi using

the relation:

Qi = v
(
Si − S+

)
/
(
S− − S+

)
+ (1− v)

(
Ri −R+

)
/
(
R− −R+

)
,

i = 1, 2, · · · ,m
(110)

where S+ = mini Si; S
− = maxi Si; R

+ = miniRi; R
− = maxiRi; and v

is introduced as a weight for the strategy of the ”maximum group utility”,

whereas 1− v is the weight of the individual regret.

• Step 9. Ranking the alternatives: Rank the alternatives, sorting by

the values S, R, and Q in ascending order. The results are three ranking

lists.

• Step 10. Proposal of a compromise solution: Propose as a com-

promise solution the alternative [A(1)], which is the best ranked by the

measure Q (minimum) if the following two conditions are satisfied:
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– C1 - Acceptable advantage

Q
(
A(2)

)
−Q

(
A(1)

)
≥ DQ (111)

where A(2) is the second ranked alternative by the measure Q and

DQ = 1/(m− 1).

– C2 - Acceptable stability in decision making: The alternative A(1)

must also be the best ranked by S and/or R. This compromise

solution is stable within a decision making process, which could be

the strategy of maximum group utility (v > 0.5), or ”by consensus”

(v ≈ 0.5), or ”with veto” (v < 0.5). If one of the conditions is

not satisfied, then a set of compromise solutions is proposed, which

consists of:

∗ Alternatives A(1) and A(2) if only the condition C2 is not satis-

fied, or

∗ Alternatives A(1), A(2), · · · , A(l) if the condition C1 is not satis-

fied; A(l) is determined by the relation Q(A(l))−Q(A(1)) < DQ

for maximum l (the positions of these alternatives are ”in close-

ness”).

As already mentioned, there are many other fuzzy VIKOR extensions fo-

cusing on the defuzzification technique [2, 57, 76] and the use of other than

triangular fuzzy numbers, like trapezoidal fuzzy numbers [36, 75, 88]. The

fuzzy VIKOR method and the methods presented in subsection 4.2.1 can be

modified using trapezoidal fuzzy numbers. In the proposed DSS, we allow the

decision maker to select either triangular or trapezoidal fuzzy numbers to use in

the fuzzy TOPSIS method. Similar to the nonfuzzy VIKOR method, decision

makers can select the weight of the maximum group utility strategy (v) and

the method that will be used to determine the ideal (A+) and anti-ideal (A−)

solutions:

• Max-min values (Equations (33) and (34))
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• Absolute values (Equations (35) and (36) and using either the max ranking

or a fixed value for the maximum)

• Fixed values (Equations (37) and (38))

4.2.1. Defuzzification

In all variants of the fuzzy VIKOR method, a defuzzification technique is

necessary to convert fuzzy numbers to crisp values. There are many defuzzifica-

tion techniques proposed in the literature (for a literature review, see [45]). The

use of each one of these techniques can have a substantial impact on the output

of the fuzzy VIKOR method. Leekwijck and Kerre concludes that the maxima

methods behave well with respect to core selection, scale invariance, monotony

and the triangular conorm criterion. The center of gravity method does not ful-

fill the basic defuzzification criteria but it provides the highly practical property

of continuity. Most of the defuzzifications techniques presented below has not

been incorporated into the fuzzy VIKOR method. Therefore, it is important for

the decision maker to experiment with these techniques on specific case studies.

All defuzzification techniques can be formulated both in discrete and in

continuous form. Without loss of generality and for simplicity, we will use the

discrete formulation. In the proposed DSS, we have incorporated the following

defuzzification metrics:

1. First of maxima (FOM): FOM method selects the smallest element of the

core of A as the defuzzification value:

FOM(A) = min (core(A)) (112)

2. Last of maxima (LOM): LOM method selects the greatest element of the

core of A as the defuzzification value:

LOM(A) = max (core(A)) (113)

3. Middle of maxima (MOM): If the core of A contains an odd number of

elements, then the middle element of the core is selected such that:∣∣core(A)<MOM(A)

∣∣ =
∣∣core(A)>MOM(A)

∣∣ (114)
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If the core of A contains an even number of elements, then we can select

an element as the defuzzification value such that:∣∣core(A)<MOM(A)

∣∣ =
∣∣core(A)>MOM(A)

∣∣± 1 (115)

4. Center of gravity (COG): COG method calculates the center of gravity of

the area under the membership function:∑xmax
xmin

xµA (x)∑xmax
xmin

µA (x)
(116)

5. Mean of maxima (MeOM): MeOM method is a variant of COG method.

It computes the mean of all the elements of the core of A:

MeOM(A) =

∑
x∈core(A) x

|core(A)|
(117)

6. Basic defuzzification distributions (BADD): BADD method [29] is an ex-

tension of the COG method. The defuzzification value is computed as

follows:

BADD(A) =

∑xmax
xmin

xµγA (x)∑xmax
xmin

µγA (x)
(118)

where γ is a free parameter in [0,∞). The parameter γ is used to adjust

the method to the following special cases:

BADD(A) = MeOS(A), if γ = 0

BADD(A) = COG(A), if γ = 1

BADD(A) = MeOM(A), if γ →∞

(119)

where MeOS(A) is the mean of support of the core A.

7. Indexed center of gravity (ICOG): ICOG method [29] computes the center

of gravity of the fuzzy set that is obtained after putting all membership

values below a certain threshold α equal to zero:

ICOG(A,α) =

∑
x∈Aα xµA (x)∑
x∈Aα µA (x)

(120)

In the proposed DSS, we have implemented ICOG using α = 0, therefore

all values are included in the calculation of the crisp value.
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8. Bisector of area (BOA): The bisector is the vertical line that divides the

region of the fuzzy number into two subregions of equal area:

BOA∑
xmin

xµA (x) =

xmax∑
BOA

xµA (x) (121)

5. Implementation and presentation of the Decision Support System

Desktop decision support systems require all involved decision makers to be

at the same location or use different communication channels to collaborate. In

most group decision making problems that involve various decision makers and

stakeholders, all decision makers should evaluate the criteria and alternatives

of the problem. That usually requires that each decision maker will fill out

questionnaires and the answers will be later aggregated. In order to eliminate

this problem, we implemented the proposed DSS as a web-based one. Web-

based decision support systems have reduced technological barriers and made it

easier and less costly to make decisions in a group decision making environment.

The web-based decision support system has been implemented using PHP,

MySQL, Ajax, and jQuery. The DSS is implemented with a responsive web

design, i.e., the web pages look equally good regardless of the screen size of

a device. That allows decision makers perform all requested steps using their

mobile device, tablet, or computer. Since the DSS can be used in a group deci-

sion making environment, it is important to allow decision makers use the DSS

without any time or geographical constraints. Therefore, decision makers in ge-

ographically distributed locations can access the DSS and add their evaluations

without directly interacting with each other.

Figure 2 presents the decision making process that the decision maker should

follow. Initially, the decision maker selects the type of MADM methodologies

that he/she wishes to use, i.e., use of traditional TOPSIS and VIKOR or fuzzy

TOPSIS and VIKOR involving the opinions of a number of independent ex-

perts. In case that the decision maker selects to use the traditional TOPSIS

and VIKOR methods, then he/she is asked to insert the alternatives and criteria
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of the problem (Figure 3). The decision maker has the option either to upload

an Excel file with all the available information (based on an Excel template that

can be downloaded from the DSS) or to insert manually the information. For

each criterion, the decision maker enters the name, the type (qualititative or

quantitative criterion), the type of optimization (min or max), and the weight

of the criterion. For each alternative, the decision maker enters the name and

the ranking associated with each criterion. Then, the decision maker selects the

algorithms and parameters. In each scenario, the decision maker can select to

run both TOPSIS and VIKOR and decide how many different methods wants to

combine. As detailed in Section 3, the following methods are available (Figure

4):

• TOPSIS

– Calculation of ideal and anti-ideal solutions

∗ Max-min values (Equations (33) and (34))

∗ Absolute values (Equations (35) and (36))

∗ Fixed values (Equations (37) and (38))

– Normalization method

∗ Vector normalization (Equations (15) and (16))

∗ Linear sum normalization (Equations (17) and (18))

∗ Linear max normalization (Equations (19) and (20))

∗ Linear max-min normalization (Equations (21) and (22))

∗ Logarithmic normalization (Equations (23) and (24))

∗ Marković method (Equation (25))

∗ Tzeng and Huang method (Equation (26))

∗ Nonlinear normalization (Equations (27) and (28))

∗ Lai and Hwang method (Equations (29) and (30))

∗ Zavadskas and Turskis method (Equations (31) and (32))

– Distance metric
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∗ Manhattan distance (Equations (39) and (40))

∗ Euclidean distance (Equations (41) and (42))

∗ Chebyshev distance (Equations (43) and (44))

∗ Squared Euclidean distance (Equations (45) and (46))

∗ Sorensen or Bray-Curtis distance (Equations (47) and (48))

∗ Canberra distance (Equations (49) and (50))

∗ Lorentzian distance (Equations (51) and (52))

∗ Jaccard distance (Equations (53) and (54))

∗ Dice distance (Equations (55) and (56))

∗ Bhattacharyya distance (Equations (57) and (58))

∗ Hellinger distance (Equations (59) and (60))

∗ Matusita distance (Equations (61) and (62))

∗ Squared-chord distance (Equations (63) and (64))

∗ Pearson χ2 distance (Equations (65) and (66))

∗ Squared χ2 distance (Equations (67) and (68))

• VIKOR

– Calculation of ideal and anti-ideal solutions

∗ Max-min values (Equations (33) and (34))

∗ Absolute values (Equations (35) and (36) and using either the

max ranking or a fixed value for the maximum)

∗ Fixed values (Equations (37) and (38))

– the weight of the maximum group utility strategy (v)

After entering the data and selecting the suitable methods and parameters,

the DSS displays the results both in a graphical and in a tabular format. The

decision makers can export the results in pdf format for further processing.

Figure 5 displays the results of a problem where the decision maker selected to

use TOPSIS and VIKOR with various method combinations. The final results

40



of all different combinations are shown. The closeness coefficient for TOPSIS

variants and the measure Q for VIKOR variants is displayed (note that for

VIKOR variants we use 1 − Q in the figure in order for the decision maker

to be able to compare the results with the closeness coefficients of the TOPSIS

variants; of course, tabular results contain all information for making a decision).

Figure 2: Decision making process

In case that the decision maker selects to use the fuzzy TOPSIS and VIKOR

methods, we assume that we have already formed a group of decision makers

and one of them acts as the leader of the group. Initially, the leader is asked

to insert the alternatives and criteria of the problem (Figure 6). He/she should

enter the name and type (benefit or cost) of each criterion and the name of each

alternative. Next, the leader selects the type of fuzzy numbers (triangular or

trapezoidal) and enters the linguistic variables for the alternatives and criteria

(Figure 7). Then, the leader selects the algorithms and parameters. In each
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Figure 3: Insert alternatives and criteria

Figure 4: Select algorithms and parameters
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Figure 5: Results of TOPSIS and VIKOR

scenario, he/she can select to run both fuzzy TOPSIS and VIKOR and decide

how many different methods wants to combine. As detailed in Section 4, the

following methods are available (Figure 8):

• Fuzzy TOPSIS

– Calculation of ideal and anti-ideal solutions

∗ Max-min values (Equations (33) and (34))

∗ Absolute values (Equations (35) and (36))

∗ Fixed values (Equations (37) and (38))

– Distance metric

∗ Chen’s vertex method (Equation (92))

∗ Cha & Jung method (Equation (93))

∗ Lin’s method (Equation (94))

∗ Chen’s distance metric (Equation (95))

43



∗ Chen & Hsieh distance metric (Equation (96))

.

• Fuzzy VIKOR

– Calculation of ideal and anti-ideal solutions

∗ Max-min values (Equations (33) and (34))

∗ Absolute values (Equations (35) and (36) and using either the

max ranking or a fixed value for the maximum)

∗ Fixed values (Equations (37) and (38))

– Defuzzification technique

∗ First of maxima (Equation (112))

∗ Last of maxima (Equation (113))

∗ Middle of maxima (Equation (114))

∗ Center of gravity (Equation (116))

∗ Mean of maxima (Equation (117))

∗ Mean of support (Equations (118) and (119))

∗ ICOG (Equation (120))

∗ Bisector of area (Equation (121))

– the weight of the maximum group utility strategy (v)

In the next step, each decision maker evaluates the criteria and alternatives

using a linguistic variable (Figure 9). When all decision makers have entered

their evaluations, the leader can see the results of the fuzzy TOPSIS and/or

VIKOR methods. The results are graphically (Figure 10) and numerically dis-

played (Figure 11). The DSS can also output a thorough report in a pdf file

containing the results of the methods. Similar to the results of the traditional

TOPSIS and VIKOR methods, the closeness coefficient for fuzzy TOPSIS vari-

ants and the measure Q for VIKOR variants is displayed. The decision makers

can also revise the original model in order to accommodate any needed changes
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according to the feedback from the first run. In this way, they can fine-tune the

model and find more appropriate solutions.

Figure 6: Insert fuzzy alternatives and criteria

Figure 7: Insert linguistic variables for the alternatives and criteria

6. Illustrative Example

In this illustrative example, we use the proposed DSS to select the most

suitable employee. We formed a group of three experts in order to make the best

decision thus, we use fuzzy TOPSIS and VIKOR. There are six candidates, each
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Figure 8: Select fuzzy algorithms and parameters

Figure 9: Evaluation

Figure 10: Graphical results
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Figure 11: Tabular results

one of them evaluated according to the following four criteria: (i) education, (ii)

work experience, (iii) written test, and (iv) interpersonal skills. The importance

weights of the criteria and the ratings are considered as linguistic variables

expressed in positive triangular fuzzy numbers, as shown in Table 3; they are

also considered to be evaluated by decision makers that are experts on the field.

The evaluations of three decision makers are in Tables 4 and 5.
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Table 3: Linguistic variables for the criteria and the ratings

Linguistic variables for the importance
weight of each criterion

Linguistic variables for the
ratings

Very low (VL) (0, 0, 0.1) Very poor (VP) (0, 0, 0.1)

Low (L) (0, 0.1, 0.3) Poor (P) (0, 0.1, 0.3)

Medium low (ML) (0.1, 0.3, 0.5) Medium poor (MP) (0.1, 0.3, 0.5)

Medium (M) (0.3, 0.5, 0.7) Fair (F) (0.3, 0.5, 0.7)

Medium high (MH) (0.5, 0.7, 0.9) Medium good (MG) (0.5, 0.7, 0.9)

High (H) (0.7, 0.9, 1.0) Good (G) (0.7, 0.9, 1)

Very high (VH) (0.9, 1.0, 1.0) Very good (VG) (0.9, 1, 1)

Table 4: The importance weight of the criteria for each decision maker

D1 D2 D3

Education MH M H

Work experience VH H VH

Written test VH VH VH

Interpersonal skills M M MH
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The final results are shown in Figures 10 and 11 and Table 6. Both fuzzy

TOPSIS combinations produce the same ranking. According to TOPSIS, the

most suitable candidate is C3. On the other hand, both fuzzy VIKOR com-

binations generate the same ranking (considering only the measure Q) but a

different one compared to fuzzy TOPSIS combinations. However, the two top-

ranked candidates are the same on all four variants. A difference between the

two fuzzy VIKOR combinations is that the one using the center of gravity de-

fuzzification technique proposes as a compromise solution alternative C3, while

the one using the mean of maxima defuzzification technique proposes alterna-

tives C3 and C1.
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7. Conclusions

A significant problem researchers face when dealing with a multicriteria de-

cision making problem is choosing the most suitable method for their problem.

Even when finding a single MADM method that is appropriate to solve a specific

problem, there may be many variants of this method that can be used. Many

of these MADM methods and variants may produce different results. Hence,

many researchers apply different MADM methods and compare the correspond-

ing rankings. That way they have in their possession different scenarios and

can select the one that is most suitable to their needs. If the results obtained

by using different methods are similar, this fact may be considered as good in-

dication that the proposed solution is optimal. In the opposite case, additional

analysis of the criteria and their ranking is advised.

In this paper, we presented a DSS that enables decision makers use different

methods and compare graphically the associate solutions. We reviewed the

TOPSIS and VIKOR methods both in a fuzzy and in a nonfuzzy environment.

Without trying to propose which method is best, we give the opportunity to

decision makers to experiment with different methods and variations and decide

which one fits their problem information. Reviewers can study various scenarios

and fine-tune their models in order to find more appropriate solutions.

In that context, we implemented in the proposed DSS four MADM method-

ologies: (i) TOPSIS, (ii) VIKOR, (iii) fuzzy TOPSIS, and (iv) fuzzy VIKOR.

For each of this method we also implemented different techniques at each step,

resulting to ten normalization techniques, three methods for the calculation of

the ideal and anti-ideal solutions, fifteen distance metrics, five fuzzy distance

metrics, and eight defuzzification techniques. To the best of our knowledge, this

is the first that most of these methods are being used in TOPIS and VIKOR.

The proposed system can be used both in single and in group decision making

problems.

We also presented an illustrative example of selecting the most suitable em-

ployee using a group of three experts. We applied fuzzy TOPSIS and VIKOR
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and build different scenarios using several techniques. In the specific example,

although there were variations in the final ranking among different methods,

all methods found the same two top-ranked alternatives. Hence, that is a good

indication that these two alternatives should be ranked high. The proposed DSS

gives the ability to decision makers to perform such scenarios and compare the

results among many different MADM methods and/or techniques used in each

MADM method. In addition, we presented the advantages that a web-based

solution has when decisions are made in a group decision making environment.

The DSS allows multiple decision makers collaborate without directly interact-

ing with each other. The user-friendly interface of the DSS makes this procedure

easy.

Finally, extensive comparisons in different application areas should be made

in order to study the effect of using a different technique at a step of a spe-

cific MADM method, e.g., a normalization method for TOPSIS, a method

for selecting the ideal and anti-ideal solutions for VIKOR, a distance metric

in fuzzy TOPSIS, and a defuzzification technique in fuzzy VIKOR. In future

work, we plan to incorporate in the proposed DSS other MADM methods, like

PROMETHEE and AHP, and study the effect of using a different technique at a

step of an MADM method. We also plan to include the revised Simos procedure

for the evaluation of weights and address a problem that often arises in group

decision making; the fact that many decision makers do not have the same ex-

pertise or experience that would allow them to safely reach a solution. This is

why we plan to include a module allowing them to have different importance

and as such have a different effect in the final result.
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[30] Garćıa-Cascales, M. S. and Lamata, M. T. (2012). On rank reversal and

TOPSIS method. Mathematical and Computer Modelling, 56:123–132.

56



[31] Guitouni, A. and Martel, J. M. (1998). Tentative guidelines to help choosing

an appropriate MCDA method. European Journal of Operational Research,

109:501–521.

[32] Hajkowicz, S. and Higgins, A. (2008). A comparison of multiple criteria

analysis techniques for water resource management. European Journal of

Operational Research, 184:255–265.

[33] Hwang, C. L. and Yoon, K. (1981). Multiple attribute decision making –

methods and applications a state-of-the-art survey. Springer-Verlag, Berlin-

Heidelberg, Germany.

[34] Jahan, A. and Edwards, K. L. (2015). A state-of-the-art survey on the

influence of normalization techniques in ranking: improving the materials

selection process in engineering design. Materials & Design, 65:335–342.

[35] Jahanshahloo, G. R., Lotfi, F. H., and Izadikhah, M. (2006). An algorithmic

method to extend TOPSIS for decision-making problems with interval data.

Applied Mathematics and Computation, 175:1375–1384.

[36] Ju, Y. and Wang, A. (2013). Extension of VIKOR method for multi-

criteria group decision making problem with linguistic information. Applied

Mathematical Modelling, 37:3112–3125.
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[51] Marković, Z. (2013). Modification of TOPSIS method for solving of multi-

criteria tasks. Yugoslav Journal of Operations Research, 20.

[52] Matusita, K. (1955). Decision rules, based on the distance, for problems

of fit, two samples, and estimation. Annals of Mathematical Statistics, pages

631–640.

[53] Migilinskas, D. and Ustinovichius, L. (2007). Normalisation in the selec-

tion of construction alternatives. International Journal of Management and

Decision Making, 8:623–639.

[54] Milani, A. S., Shanian, A., Madoliat, R., and Nemes, J. A. (2005). The

effect of normalization norms in multiple attribute decision making models:

a case study in gear material selection. Structural and Multidisciplinary Op-

timization, 29:312–318.

[55] Mir, M. A., Ghazvinei, P. T., Sulaiman, N. M. N., Basri, N. E. A., Saheri,

S., Mahmood, N. Z., Jahan, A., Begum, R. A., and Aghamohammadi, N.

(2016). Application of TOPSIS and VIKOR improved versions in a multi

criteria decision analysis to develop an optimized municipal solid waste man-

agement model. Journal of Environmental Management, 166:109–115.

[56] Olson, D. L. (2004). Comparison of weights in TOPSIS models. Mathe-

matical and Computer Modelling, 40:721–727.

[57] Opricovic, S. (2011). Fuzzy VIKOR with an application to water resources

planning. Expert Systems with Applications, 38:12983–12990.

[58] Opricovic, S. and Tzeng, G. H. (2002). Multicriteria planning of post-

earthquake sustainable reconstruction. Computer-Aided Civil and Infrastruc-

ture Engineering, 17:211–220.

59



[59] Opricovic, S. and Tzeng, G. H. (2004). Compromise solution by MCDM

methods: a comparative analysis of VIKOR and TOPSIS. European Journal

of Operational Research, 156:445–455.

[60] Opricovic, S. and Tzeng, G. H. (2007). Extended VIKOR method in com-

parison with outranking methods. European Journal of Operational Research,

178:514–529.

[61] Opricovic, S. and Tzeng, G. H. (2009). A compromise solution in water

resources planning. Water Resources Management, 23:1549–1561.

[62] Ozcan, T., Celebi, N., and Esnaf, S. (2011). Comparative analysis of multi-

criteria decision making methodologies and implementation of a warehouse

location selection problem. Expert Systems with Applications, 38:9773–9779.

[63] Papathanasiou, J., Ploskas, N., Bournaris, T., and Manos, B. (2016). A

decision support system for multiple criteria alternative ranking using TOP-

SIS and VIKOR: a case study on social sustainability in agriculture. In S.

Liu et al. (Eds), Decision Support Systems VI Decision Support Systems

Addressing Sustainability & Societal Challenges, Lecture Notes in Business

Information Processing (LNBIP 250), pages 3–15.

[64] Parkan, C. and Wu, M. L. (1999). Decision-making and performance mea-

surement models with applications to robot selection. Computers & Industrial

Engineering, 36:503–523.

[65] Paul, J. (1901). Distribution de la flore alpine dans le bassin des dranses

et dans quelques rgions voisines. Sciences Naturelles, 37:241–272.
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