
Special Issue Paper

A Heuristic Constraint Programming
Method for the p-Median Problem With
Distance Constraints

The European Journal on Artificial
Intelligence

1–28
© The Author(s) 2025

Article reuse guidelines:
sagepub.com/journals-permissions

DOI: 10.1177/30504554251344177
journals.sagepub.com/home/eai

Panteleimon Iosif1 , Nikolaos Ploskas1

and Kostas Stergiou1

Abstract
In a facility location problem, we seek to locate a set of facilities in an area, where demand points (clients) may be present,
so that some criterion is optimized. A well-known facility location problem is the p-median problem, where we seek to
minimize the sum of distances between demand points and their nearest facility. We consider a variant of the p-median
problem where distance constraints exist between facilities and between facilities and demand points. This problem
can be used to model the requirements that arise when locating semi-obnoxious facilities. We first introduce integer
linear programming and constraint programming (CP) models and implement them in Gurobi and OR-Tools, respectively.
Then, we describe a greedy heuristic that can be used to prune branches during a search within an incomplete CP solver.
We also introduce a number of domain-specific value ordering heuristics that can be applied within such a solver. The
developed method is evaluated under different problem generation models, and compared to Gurobi and OR-Tools. The
results demonstrate that our method is more robust than the two complete solvers, significantly outperforming either
of them in certain classes of problems, both in terms of run times and the quality of the solutions found.

Keywords
constraint programming, facility location, distance constraints, value ordering, optimization

Received: January 28, 2025; accepted: May 6, 2025

1 Introduction
Facility location problems are widely studied in operations research (OR), artificial intelligence (AI), computational geom-
etry, and other disciplines. In such problems, we seek to locate a set of facilities in an area, where demand points (clients)
that will be serviced by the facilities may be present, so that some criterion is optimized. The optimization criterion largely
depends on the types of facilities to be located. When the facilities have beneficial properties (e.g., pharmacies), we typ-
ically want to locate them close to clients. In contrast, when the facilities are (ob)noxious, that is, they have hazardous
effects (e.g., dump sites), we seek to locate them far from clients and/or each other. In between, we have the class of
semi-obnoxious facilities that have both desirable and undesirable properties.

Prime examples of the first two categories are the p-median and p-dispersion problems, respectively. In the former, we
seek to locate p facilities in an area where demand points are present, so that the sum of distances between demand points
and their nearest facility is minimized. Hence, we have a minsum objective. In the latter, we seek to locate p facilities
so that the closest distance between any two facilities is maximized. Hence, in this case, we have a maxmin objective.
Apart from the difference in the type of objective function, another crucial difference between the two problems is that in
p-dispersion there are no clients to be serviced by the facilities.

1Department of Electrical and Computer Engineering, University of Western Macedonia, Kozani, Greece

Corresponding Author:
Panteleimon Iosif, Department of Electrical and Computer Engineering, University of Western Macedonia, Kozani, Greece.
Email: p.iosif@uowm.gr

https://uk.sagepub.com/en-gb/eur/journals-permissions
https://doi.org/10.1177/30504554251344177
https://journals.sagepub.com/home/eai
https://orcid.org/0009-0001-4589-3346
https://orcid.org/0000-0001-5876-9945
https://orcid.org/0000-0002-5702-9096
http://crossmark.crossref.org/dialog/?doi=10.1177%2F30504554251344177&domain=pdf&date_stamp=2025-06-19

2 The European Journal on Artificial Intelligence 0(0)

Here, we are concerned with a variant of the p-median problem where we again seek to minimize the sum of the
distances between the clients and their closest facility, but in this case, we also have hard distance constraints between
facilities and also between facilities and clients. These constraints impose lower bounds on the distance between the
locations of any two facilities and also between any facility and any client. In the rest of the paper, we call this problem
p-median with distance constraints (pMD). Although this problem was proposed as far back as 1984 (Moon & Chaudhry,
1984), and despite its usefulness in modeling the location of semi-obnoxious facilities (Krarup et al., 2002), it has received
little attention. We consider the discrete uncapacitated case where the potential location points for the facilities are given,
the facilities are heterogeneous (i.e., they have varying properties), and after the location has been completed, demand
points are serviced by the facility that is located closest to them.

As an example of a pMD, consider the problem of locating a set of filling (gas) stations in an area. Filling stations
are typical semi-obnoxious facilities. For their convenience, clients wish to have them placed at a close distance, but
not too close, given the danger involved in case of an accident, as well as for other reasons (e.g., traffic and pollution).
In addition, there are safety regulations that must be taken into account when opening filling stations. Among other
constraints, such regulations impose minimum safety distances between the stations in an area and also between stations
and clients. Another property that facilities such as filling stations have is that they are often heterogeneous. That is, they
can have varying characteristics. In the case of filling stations such characteristics may be the overall size, tank capacity,
types of fuel on offer (gasoline, diesel, natural gas, etc.), number of available fuel dispensers, etc. Such heterogeneous
characteristics imply that the minimum allowed distances may not be uniform (e.g., large stations must be placed further
away than smaller ones).

Location problems with distance constraints have received relatively little attention within the vast literature on loca-
tion problems (Berman & Huang, 2008; Chaudhry et al., 1986; Comley, 1995; Moon & Chaudhry, 1984; Moon &
Papayanopoulos, 1991; Tansel et al., 1982). Very recently, p-dispersion with distance constraints was studied, compar-
ing integer linear programming (ILP) to exact and heuristic constraint programming (CP) approaches (Iosif et al., 2024b;
Ploskas et al., 2023).

We start by giving an ILP formulation for the pMD, based on the ReVelle & Swain formulation for the p-median prob-
lem (ReVelle & Swain, 1970), extending it to cover the case of heterogeneous facilities and adding distance constraints.
Then, we describe a CP model that can capture the pMD as a constraint satisfaction/optimization problem in a natural way.
The CP (respectively, ILP) model has been implemented in the CP-SAT OR-Tools (respectively, Gurobi) solver. These are
state-of-the-art solvers for CP and ILP, respectively. Experimental results reveal that these solvers struggle with large, hard
instances of the pMD, often failing to find a feasible solution within 1 h of central processing unit (CPU) time. In addition,
such large instances have extensive, and sometimes prohibitive, memory requirements due to the large sizes of the models.
These problems highlight the need for heuristic and lightweight approaches that may sacrifice completeness to efficiently
handle the challenges posed by large, hard problems.

Hence, we investigate the applicability of a CP-based heuristic method in pMDs, similar to the one proposed in Ploskas
et al. (2023) for p-dispersion problems with distance constraints. This method employs a CP solver that incorporates a
heuristic pruning technique, which tries to prune the search tree by reasoning, at any node, about the best cost that can be
achieved. Specifically, after the first solution has been found, a greedy heuristic is run at each visited node to estimate the
best cost that can be achieved if the subtree rooted at that node is explored. If this estimated cost is not better than the cost
of the best solution found so far, then the current branch is cut off.

We also introduce four specialized value ordering heuristics that try to intelligently guide search by selecting appro-
priate sites to place the facilities using increasingly more complex information. The first two heuristics only exploit local
information about the facility that we currently try to assign to a site. The third heuristic takes into account information
about past assignments when making the decision, while the fourth heuristic, in addition, reasons about the possible future
assignments.

We experimented with pMD problems of three types. In the first two, the clients and the potential facility sites are
randomly placed in a grid, while in the third, we use the p-median benchmark instances (Beasley, 1985) as a basis to
generate pMDs. Problems of the first two types, which typically have few solutions, can be very hard for Gurobi, as it
often does not discover any solution within 1 h of CPU time, but mostly manageable by OR-Tools, except for the larger
ones. In contrast, OR-Tools fares badly on problems of the third type, which typically has many solutions, while Gurobi
finds most of these problems quite easy.

The heuristic CP solver’s performance is more stable across problem classes with different characteristics compared to
standard ILP and CP solvers, despite not being the best in all classes. Specifically, it is by far more efficient and effective
than Gurobi in grid-structured problems, and it also often outperforms OR-Tools, both in terms of run times and solution
quality, being able to handle large instances of these types that are out of reach for the complete solvers. On the other hand,
it is outperformed by Gurobi on most p-median-based instances (though it is quite efficient in some cases), but it is much

Iosif et al. 3

more efficient than OR-Tools. In addition, experiments with the four specialized value ordering heuristics demonstrated
that through the use of these heuristics, and especially the more informed ones, we can often obtain improvements not
only in solution quality, but also in run times.

Finally, as our heuristic pruning method is often quite aggressive, meaning that it can cut off many branches and reduce
the size of the search space significantly, it may also result in the omission of optimal and near-optimal solutions. To
partially alleviate this problem, we investigate the application of the heuristic together with a sampling technique that
calculates the best estimation over different orderings for the future variables (i.e., unassigned facilities). Experimental
results show that through this technique, we find better solutions, albeit by paying a run-time penalty.

This paper is an extended version of a conference paper by Iosif et al. (2024a), where the p-median problem with
distance constraints was studied. Here, we extend that paper in the following ways:

• We describe our approach in more detail.
• We provide more extensive experimental results, offering deeper insights into the details and the performance of the

CP heuristic solver.
• We give additional experimental results to assess the impact of the sampling technique proposed in Iosif et al.

(2024a).
• And most importantly, we introduce four specialized value-ordering heuristics for the pMD and evaluate their

effectiveness within the CP heuristic solver framework.

The remainder of this paper is structured as follows: In Section 2, we discuss related work. In Section 3, we give the
necessary background on CP and ILP, and we formally define the pMD problem. In Sections 4 and 5, we present the
ILP and CP formulations for pMDs, respectively. Section 6 details the proposed heuristic methodology, while Section 7
presents experimental results. Finally, Section 8 concludes the paper with a discussion and potential directions for future
work.

2 Related Work
In the past few decades, a vast literature encompassing different models, problem characteristics, applications, algorithms,
and heuristics for the various facility location problems, has been accumulated. The p-median problem is a prime example
of a problem with “pull” objectives, where clients wish to have the facilities (e.g., pharmacies and stores) located close to
them, whereas the p-dispersion problem is an example of a problem with “push” objectives, where we seek to place the
facilities away from each other. In between we have the class of semi-obnoxious location problems where the facilities
have both desirable and undesirable properties (Krarup et al., 2002). In this case, clients wish to have facilities located
close to them, but not too close. For example, the residents of a suburb wish to have bars situated near them, but not too
close because of the noise and traffic associated with such facilities.

The semi-obnoxious case can be viewed as a biobjective optimization problem. For instance, we might wish to mini-
mize the total service cost and at the same time maximize the minimum distance between any facility and a client. Several
strategies to handle such problems have been studied (Krarup et al., 2002). The problem can be treated directly as biob-
jective and we may try to find the Pareto set, which is anything but easy for location problems with multiple facilities
(Ortigosa et al., 2015; Tutunchi & Fathi, 2019; Yapicioglu et al., 2007). As an alternative, a model with a single criterion
can be derived, where the objective function is a weighted combination of both the pull and the push objective. Another
option is to place a bound on the obnoxious effects, as a set of constraints, and hence to view the problem as having a
single objective (Carrizosa & Plastria, 1999). This is the approach that we follow in this paper.

The p-median problem, which is -hard on general networks for an arbitrary p, was originally proposed by Hakimi
(1964, 1965). In 1970, ReVelle and Swain (1970) presented the first integer programming formulation for the p-median
problem, utilizing a structure proposed by Balinski (1965) in a plant location problem. Thereafter, various alternative
formulations have been proposed (Church, 2003; Cornuejols et al., 1980; Densham & Rushton, 1992; Rosing et al., 1979).
For a thorough literature review on formulations of the p-median problem, see Church (2003).

Apart from the standard ILP approach, other methods, such as Lagrangian relaxation (Beltran et al., 2006) and numer-
ous other heuristics, have been proposed for the p-median problem. The greedy or myopic heuristic first solves the
1-median problem by locating one facility in such a way as to minimize the total cost for all demand nodes. Facilities
are then added one by one in the same way, that is, trying to minimize the total cost at each step, until all p facilities have
been located (Kuehn & Hamburger, 1963). A survey of heuristic and meta-heuristic methods for the p-median problem
can be found in Mladenović et al. (2007).

4 The European Journal on Artificial Intelligence 0(0)

2.1 Distance Constraints
There are several early works that considered maximum distance constraints between the demand nodes and the facility
locations (Church & Meadows, 1977; Chvatal, 1979; Khumawala, 1973; Tansel et al., 1982). Tansel et al. (1982) were
the first to include distance constraints in a facility location problem. Specifically, they studied the distance-constrained
p-center problem. The distance constraints that they consider are between the demand points and the centers. They study
the case where the network is a tree and they also provide the dual of this problem. They give polynomially bounded
procedures for solving both problems.

Moon and Chaudhry (1984) were the first to systematically study location problems with distance constraints. They
provided a thorough categorization of such problems according to several factors, such as the optimization criterion, the
type of distance constraint (> or <), and whether constraints exist between facilities, or between facilities and clients, or
between both. In the terminology they introduced, the pMD is called Median∕l∕l. That is, we seek to minimize the sum
of the distances between the clients and their closest facility (as in p-median) subject to constraints that impose lower
bounds (hence the l) in the distance between any two facilities and also between any facility and any client. But whereas in
Median∕l∕l the minimum distances in the distance constraints are uniform, denoting that the facilities are homogeneous,
in the pMD they may differ from constraint to constraint because we consider the more general case of heterogeneous
facilities.

Chaudhry et al. (1986) proposed heuristics for selecting a maximum-weight set of locations such that no two are closer
than a given distance from each other. Moon and Papayanopoulos (1991) considered the problem of locating two facilities
so as to minimize the maximum of combined Euclidean distances to unweighted existing points when the facilities must
be separated by at least a specified distance. An interactive graphical method that produces near-optimal solutions was
proposed. Comley (1995) studied the problem of locating a small number (up to three) of heterogeneous semi-obnoxious
facilities that interact with each other as well as with other existing facilities. The minimum Euclidean distance between
any pair of such facilities was maximized using a quadratic 0–1 programming algorithm.

Berman and Huang (2008) studied the problem of locating homogeneous obnoxious facilities on a network so as
to minimize the total demand covered, subject to the condition that no two facilities are allowed to be closer than a
prespecified distance. Drezner et al. (2018) proposed the Weber obnoxious facility location problem where we seek to
locate one facility so that the weighted sum of distances between the facility and demand points is minimized, with the
additional requirement that the facility location is at least a given distance from demand points because it is obnoxious to
them. Drezner et al. (2019) considered a continuous multiple obnoxious facility location problem where a given number of
facilities must be located in a convex polygon with the objective of maximizing the minimum distance between facilities
and a given set of communities subject to distance constraints between facilities.

Welch and Salhi (1997) studied the location of obnoxious facilities with interactions between them. Location problems
with distance constraints that restrict the placement of facilities near certain demand points have also been studied (e.g.,
Brimberg & Juel, 1998; Maier & Hamacher, 2019; Orloff, 1977).

Although CP has been successfully applied to many combinatorial problems, there are very few works investigating
CP-related methods for facility location problems (Cambazard et al., 2012; Fazel-Zarandi & Beck, 2009; Ploskas et al.,
2023; Sorkhabi et al., 2018). But very recently, ILP and CP models, as well as a CP-based heuristic method, were proposed
for the p-dispersion problem with distance constraints (Iosif et al., 2024b; Ploskas et al., 2023).

3 Background and Problem Definition
We first give some necessary background on CP and ILP and then we formally define the pMD problem.

3.1 Constraint Programming (CP)
CP is a paradigm for solving combinatorial problems that integrates a wide range of techniques, mainly from AI and OR.
In CP, the user states the constraints on the feasible solutions for a set of decision variables, and a solver is then used
to deliver a feasible solution, or the optimal one according to some criterion. In a constraint satisfaction problem (CSP)
P = (X, Dom, C), we have:

• A set of n variables X = {x1,… , xn}.
• A set Dom = {Dom(x1),… , Dom(xn)} of finite domains, one for each variable in X.
• A set C = {c1,… , ce} of e hard constraints that must be necessarily satisfied. Each constraint ci ∈ C involves a

subset of X, known as the scope of ci, and specifies the combinations of values that the variables in this subset are
allowed to take.

Iosif et al. 5

In a binary CSP, any constraint involves at most two variables. If in addition to the hard constraints, there is an objective
function to be optimized then we refer to the problem as a constraint satisfaction and optimization problem (CSOP). In
many cases, in addition to the decision variables, the model of a CSP, or a CSOP, may include extra (auxiliary) variables
that are useful for modeling purposes. Similarly, a model may include redundant constraints, that is, constraints whose
removal does not change the set of solutions.

A solution to a CSP is a complete assignment, that is, an assignment involving all variables, that satisfies all constraints
in . A consistent partial assignment is an assignment to a set S ⊆  of variables that satisfies all constraints among the
variables in S. The search process can be visualized by a traversal of a search tree where the root corresponds to the empty
assignment (no decision variable has been assigned yet) and the rest of the nodes correspond to partial assignments.

Complete algorithms for CSPs are based on backtracking depth-first search interleaved with constraint propagation.
Backtracking search tries to assign the decision variables with values from their domains so that constraints are satisfied,
while constraint propagation filters values from domains that are deemed inconsistent according to some local consistency
property that is applied to the constraints.

It is well known that one of the cornerstones of CP and a major reason for its success in various domains is constraint
propagation (Bessiere, 2006). CP solvers typically propagate binary constraints using the local consistency property called
arc consistency. For binary problems, a value ai ∈ Dom(xi) is arc consistent (AC) iff for every constraint between xi and
another variable xj, there exists a value aj ∈ Dom(xj) s.t. the pair of values (ai, aj) satisfies the constraint (Mackworth,
1977). In this case, we say that aj is a support for ai in Dom(xj), and vice versa. In case a value ai ∈ Dom(xi) has no
support in some domain Dom(xj), the application of AC will filter it from Dom(xi). The backtracking search algorithm
that applies AC after each branching decision during a search is known as maintaining arc consistency (Sabin & Freuder,
1994). Unary constraints that involve only one variable (e.g., x > 0) are typically handled by applying the property of
node consistency. A value ai ∈ Dom(xi) is node consistent (NC) iff it satisfies all the unary constraints on xi. Values that
are not NC can be detected and removed from the corresponding domains by iterating over all the variable domains in a
preprocessing phase.

CP solvers also offer an array of global constraints that are very useful at the modeling level, as their use results in
more compact models, but also speed up search as solvers typically provide fast specialized propagation algorithms for
such constraints. A global constraint can capture a relation between an arbitrary number of variables. A well-known such
constraint is the AllDifferent(x1,… xn), which specifies that all variables in the scope must be assigned different values
(i.e., pairwise distinct). Another frequently used global constraint is the Element(index, table, value) global constraint,
which is used to link the discrete decision variable index and the variable value according to a given table of values table.
Hence, value is equal to the indexth item of table, that is, value= table[index].

Search in a CP solver is guided by variable and value ordering heuristics. After a branching decision (e.g., a variable
assignment or a value removal from a domain) propagation kicks off. If this results in an empty domain, in which case we
have a domain wipe-out (DWO), the search algorithm rejects the most recent branching decision and moves on to the next
one. A standard general-purpose variable ordering heuristic is dom/weighted degree (wdeg) (Boussemart et al., 2004).
This heuristic assigns a weight to each constraint, initially set to one. Each time a constraint causes a DWO, its weight is
incremented by one. Each variable is associated with a wdeg, which is the sum of the weights over all constraints involving
the variable and at least another (unassigned) variable. The dom/wdeg heuristic chooses the variable with a minimum ratio
of current domain size to a wdeg.

Although value ordering heuristics have received less attention than variable ordering ones, as their effect on search
effort is usually less profound in CSPs, they can be quite effective in CSOPs. The task of a value ordering heuristic is to
choose a value for the current variable under consideration during a search. The guiding principle when designing value-
ordering heuristics is to select the value most likely to succeed, that is, be part of a solution. There is a wide variety of such
heuristics and they can be divided into static and dynamic (Rossi et al., 2006). Static heuristics produce a fixed ordering
of values before the search begins, while dynamic ones determine the order as the search progresses. Static heuristics are
generally computationally inexpensive, whereas dynamic heuristics guide the search using a more informed strategy, but
are typically quite expensive to compute. Hence, the static lexicographic ordering of values is very commonly used. Like
other types of heuristics, value ordering heuristics can be general-purpose or domain-specific. General-purpose heuristics
use generic properties that CSPs share in common, while domain-specific ones incorporate expertise and deep knowledge
of the problem at hand.

When faced with a CSOP, CP solvers typically add a bounding constraint when locating a solution, forcing any sub-
sequent solution to have a better value according to the optimization function compared to the solution just found. This
constraint is propagated, potentially resulting in domain pruning. If the filtering achieved is weak then the search in a
CSOP degenerates to almost an exhaustive enumeration of the solutions. In contrast, if the filtering is strong then a CP
solver may exhibit very good performance on a CSOP.

6 The European Journal on Artificial Intelligence 0(0)

3.2 Integer Linear Programming (ILP)
Another paradigm for solving combinatorial problems is ILP. ILP is widely used in various fields, such as OR, to find
optimal solutions where all or some (mixed-integer) of the decision variables are integers. This requirement often arises in
practical applications where decisions involve discrete choices, such as assigning tasks to machines, scheduling shifts, or
location problems, as in the case of this paper. ILP is a type of optimization paradigm where the objective function and the
constraints are linear. ILP formulations are mathematical models, which can then be solved using specialized algorithms,
such as branch and bound, cutting planes, and branch and cut.

An ILP problem is generally formulated as follows:

min cTx
s.t. Ax ≤ b
Aeqx = beq

x ∈ ℤn

where m is the number of inequality constraints, k is the number of equality constraints, n is the number of decision
variables, x ∈ ℤn is an n-dimensional vector of decision variables, c is an n-dimensional vector of coefficients, A is an
m × n matrix of coefficients for the inequality constraints, b is an m-dimensional vector of constants for the inequality
constraints, while Aeq is a k × n matrix of coefficients for the equality constraints and beq is a k-dimensional vector of
constants for the equality constraints. The decision variables are also subject to lower and upper bounds: l ≤ x ≤ u, where
l is an n-dimensional vector of lower bounds and u is an n-dimensional vector of upper bounds.

Binary variables are a special case of integer variables in ILP, where the variables are restricted to take values in the set
{0, 1}. These variables are commonly used in ILP formulations to model decisions that have a yes/no nature.

Solving ILP problems involves specialized algorithms and software tools known as solvers. These solvers are designed
to handle the complexities associated with the discrete nature of ILP problems and provide optimal or near-optimal
solutions efficiently.

3.3 The p-Median Problem With Distance Constraints
In a p-median problem with distance constraints (pMD), p facilities in a set of facilities F (i.e., p= |F|) are to be placed
on p nodes of a weighted network G = {V , E} embedded on a plane. A set CL of demand points (clients) to be serviced
by the facilities is already located in the network. In the following, we will use the terms demand points and clients
interchangeably. We assume that the set P of nodes in G where facilities can potentially be located is known, and so are
the nodes where demand points are located. Hence, we deal with a discrete/network location problem. The weight wij on
an edge (i, j) ∈ E denotes the symmetric service cost (typically the distance) between nodes i and j. That is, the cost of
serving a client located at node i assuming a facility is located at node j, and vice versa.

Between each pair of facilities fi and fj there is a distance constraint dis(fi, fj) > d1ij specifying that the (Euclidean)
distance dis(fi, fj) between the nodes where the facilities fi and fj are located must be greater than d1ij, where d1ij is a real
constant. Also, between each facility fi and any client ck there is a distance constraint dis(fi, ck) > d2i specifying that the
(Euclidean) distance dis(fi, ck) between the node where facility fi is located and node k where client ck is located must be
greater than d2i, where d2i is a real constant.

The Euclidean distance between two nodes i and j should not be confused with the minimum distance between the two
nodes in the network, which is given by the sum of weights of the edges that belong to the shortest path between i and
j. It is natural to model the costs of service between i and j through the cost of the paths between the two nodes, but we
believe that any distance constraint established due to, say, safety reasons, should consider a metric such as the Euclidean
distance instead.

A common assumption in the literature on location problems with distance constraints is that the lower distance bound
d1ij is fixed to a specific value for all the constraints between facilities, and so is d2i for constraints between facilities and
demand points. This is a reasonable assumption in the case where the facilities are homogeneous, and therefore in essence
indistinguishable, but it is not always realistic, especially when the facilities have different properties. In this paper, we
deal with the heterogeneous case where the distance bound for the distance constraints between facilities may vary from
constraint to constraint. However, we assume that for any specific facility fi, the distance constraints between fi and all
demand nodes have the same bound.

Iosif et al. 7

In the following, as is common in the literature, we assume that the pairwise distances between all nodes in the network
G have been precomputed and are stored in two 2-d matrices, D and SP that are given as input to the algorithms. The
first stores the Euclidean distances and the second stores the lengths of the shortest paths. Hence, D[i, j] is the Euclidean
distance between points i and j while SP[i, j] is the length of the shortest path between the same points. These assumptions
are not restrictive as other metrics can be used to capture the distances between points.

To summarize our notation, we have:

• CL: set of demand nodes.
• P: set of candidate facility sites.
• F: set of facilities.
• p: the number of facilities to be located.
• D[i, j]: the Euclidean distance between any two nodes.
• SP[i, j]: the shortest path distance between any two nodes.
• d1ij: the lower bound in the allowed distance between each pair of facilities (i, j), where i ∈ F and j ∈ F.
• d2i: the lower bound in the allowed distance between each facility i ∈ F and all demand nodes.

The goal is to minimize the sum of distances between each demand point and its nearest located facility, subject to the
satisfaction of all the distance constraints.

4 ILP Formulation

In this section, we present a binary ILP model for pMD. The model is based on the formulation of ReVelle and Swain
(1970) for the p-median problem, extended to the case of heterogeneous facilities with distance constraints. Although alter-
native formulations for the p-median problem exist, it is accepted that ReVelle and Swain’s (1970) formulation exhibits
integer-friendly properties, and a recent study by Ploskas and Stergiou (2022) demonstrated that it is the most efficient
option when modeling the p-median problem with homogeneous distance constraints.

Dealing with heterogeneous facilities introduces the need for additional decision variables, to know which specific
facility is located in which candidate location, whereas in ReVelle and Swain (1970), and any other p-median formulation,
we only need to know if a site hosts a facility or not. The introduction of new decision variables necessitates the general-
ization of the constraints that forbid the location of two facilities in the same place and the location of a single facility in
multiple places. Also, compared to ReVelle and Swain’s (1970) formulation, in the pMD model there exist two additional
sets of constraints to capture the distance constraints existing between facilities and between facilities and clients. In the
following, we make use of the following additional notation:

• C = {(i, j, f1, f2)|i, j ∈ P, f1, f2 ∈ F, D[i, j] ≤ d1f1f2
}, ∀i ∈ P,∀j ∈ P, and for each pair of facilities (f1, f2): the set of

quadruples (i, j, f1, f2) s.t. facilities f1 and f2 cannot be placed in facility sites i and j, respectively, because i and j are
not in a safe distance between each other with respect to the allowed distance between f1 and f2.

• N = {(i, j)|i ∈ P, j ∈ F,∃k ∈ CL, D[i, k] ≤ d2j},∀i ∈ P,∀j ∈ F: the set of pairs (i, j) s.t. facility j cannot be placed
in facility site i because there exists a demand node k that is not in safe distance from i with respect to the allowed
distance between j and the demand nodes.

• xij = 1 if a facility j ∈ F is located at a facility site i ∈ P and 0 otherwise.
• yij = 1 if a demand node i ∈ CL is assigned to a facility site j ∈ P and 0 otherwise.

As we deal with heterogeneous facilities, we need |P| × |F| variables, that is, one variable xij,∀(i, j), i ∈ P, j ∈ F, in
order to know whether or not a specific facility j ∈ F is located at a facility site i ∈ P. In addition, we need |CL| × |P|
variables, that is, yij,∀(i, j), i ∈ CL, j ∈ P, in order to know whether or not a demand node i ∈ CL is assigned to a facility
site j ∈ P. Variables yij,∀(i, j), i ∈ CL, j ∈ P, are required in order to: (i) calculate the distance between each demand node
and the facility that serves it (in the objective function of the model), and (ii) place restrictions on which facilities can
serve each demand node based on the distance constraints.

8 The European Journal on Artificial Intelligence 0(0)

The model for pMDs can be expressed as:

min
∑
i∈CL

∑
j∈P

SP[i, j] × yij (1)

s.t.
∑
j∈F

xij ≤ 1, ∀i ∈ P (2)

∑
i∈P

xij = 1, ∀j ∈ F (3)

∑
i∈P

∑
j∈F

xij = p (4)

∑
j∈P

yij = 1 ∀i ∈ CL (5)

yij ≤
∑
k∈F

xjk∀i ∈ CL,∀j ∈ P (6)

xif1
+ xjf2

≤ 1,∀
(
i, j, f1, f2

)
∈ C (7)

xij = 0,∀ (i, j) ∈ N (8)

xij ∈ {0, 1} ,∀i ∈ P,∀j ∈ F (9)

yij ∈ {0, 1} ,∀i ∈ CL,∀j ∈ P (10)

The objective function 1 aims at minimizing the sum of the distances between the clients and their nearest located
facility. Constraint 2 ensures that each facility site can host at most one facility, while Constraint 3 guarantees that each
facility should be hosted at exactly one facility site. Constraint 4 specifies that p facilities are to be located. Constraint 5
ensures that each demand node will be served by one facility site, while Constraint 6 guarantees that each demand node
will be served by a facility site that indeed hosts a facility. It is a generalization of the Balinski constraint (Balinski, 1965)
to the heterogeneous case.

Constraint 7 models the distance constraints between facilities. It ensures that each facility is at a safe distance from
all other facilities by not allowing two facilities f1 and f2 to be established at sites that are at a distance closer than the
allowed distance between f1 and f2. This constraint generalizes to the heterogeneous case the simplest and most efficient
formulation of distance constraints given by Berman and Huang (2008) for the minimum weighted covering location
problem, where distance constraints are homogeneous.

Finally, Constraint 8 is the distance constraint between facilities and demand nodes. This constraint ensures that any
facility site that is opened is at a safe distance from every demand node. Instead of setting variables xij, where (i, j) ∈ N,
equal to 0, these variables can be removed from the model.

5 CP Formulation
The pMD is modeled as a CSOP (X, Dom, C, O), where X is the set of decision variables, Dom is the set of finite domains,
C is the set of hard constraints, and O is the optimization function. The model is as follows:

(1) For each facility i ∈ F there is a finite domain variable xi. These p variables are the decision variables in the
problem, meaning that |X| = |F| = p. For each variable xi ∈ X, Dom(xi) includes as values all the points where a
facility can be located, that is, ∀xi ∈ X : Dom(xi) = P.

(2) Y1 is a set of auxiliary variables, s.t. for each pair of variables (xi, xj) ∈ X × X | i < j, there is a variable y1ij ∈ Y1
and a constraint y1ij = D[xi, xj] (slightly abusing the notation, we write D[xi, xj] to refer to the distance between
the values that xi and xj are assigned to). Hence, each y1ij ∈ Y1 models the Euclidean distance between xi and
xj. In CP solvers such as OR-Tools, the constraint y1ij = D[xi, xj] can be implemented using the element global
constraint, that is, y1ij = Element(D, [xi, xj]).

(3) Y2 is a set of auxiliary variables, s.t. for each pair of facilities and clients (xi, ck) ∈ X × CL, there is a variable
y2ik ∈ Y2 and a constraint y2ik = D[xi, ck]. Hence, each y2ik ∈ Y2 models the Euclidean distance between xi and
ck. This can also be implemented using the Element constraint, that is, y2ik = Element(D, [xi, ck]).

(4) S is a set of auxiliary variables, s.t. for each pair of variables and clients (xi, ck) ∈ X×CL, there is a variable sik ∈ S
and a constraint sik = SP[xi, ck]. Hence, each sik ∈ S models the service cost (i.e., shortest path distance) between
xi and ck. Again, this can be implemented using the Element constraint, that is, sik = Element(SP, [xi, ck]).

Iosif et al. 9

Figure 1. Illustration of the p-median with Distance Constraints (pMD) Problem from Example 1. On the Left, an Undirected
Graph of the Problem is Given. The Larger Nodes Represent Demand Nodes (e.g., Node C1), Whereas Smaller Nodes Denote the
Candidate Location Points Where the Two Facilities Could be Placed (e.g., Node A). Weights on the Edges of the Graph (Solid Lines)
Denote the Distance Between Pairs of Nodes. On the right, Euclidean Distance Constraints Between the two Facilities
(D[X1, X2] > 8) and Between Each Facility and all Clients (e.g., D[X1, Ck] > 2,∀k ∈ |CL|) are Demonstrated.

(5) Z is a set of auxiliary variables, s.t. for each client ck ∈ CL, there is a variable zk ∈ Z and a constraint zk = min
(s1k,s2k,. . . ,spk). Hence, each zk ∈ Z models the shortest path distance between each client and its nearest facility.

(6) For each variable y1ij ∈ Y1, there is a distance constraint y1ij > d1ij.
(7) For each variable y2ik ∈ Y2, there is a distance constraint y2ik > d2i.
(8) There is a variable z, s.t. z = sum(Z), capturing the sum of the shortest path distances between clients and their

closest facility.
(9) The objective function is O = minimize(z).

The sik = SP[xi, ck] constraints link the auxiliary variables sik, and therefore also the z variable and the objective
function, with the decision variables. This is because the value of sik is computed by accessing the matrix SP using as
indices the location of ck, which is fixed, and the value (i.e., location) of xi. The bounding constraint that will be added
by a CP solver once a solution with cost cur_cost, that is better than all previous ones is found, will be of the form
z < cur_cost. The propagation of this constraint may result in the domain pruning of the zk variables, which in turn may
force the pruning of the sik variables’ domains, and in the end, through the sik = SP[xi, ck] constraints, this may result in
the pruning of the decision variables’ domains.

We also considered adding to the model an AllDifferent constraint over all variables in X to speed up propagation. Such
a constraint is redundant, as the facility distance constraints already force the facilities to be placed at different locations.
Experiments with and without the AllDifferent showed no noticeable difference in run times, and therefore, we do not
consider this option any further.

Let us now give an example of a small pMD to illustrate the CP model.

Example 1. There are two facilities to be located (i.e., p = |X| = 2), four potential facility sites (|P| = 4) and three clients
(|CL| = 3). The potential facility sites (nodes A, B, C, and D) and the clients are located on a graph, as shown in Figure 1.
There is a binary distance constraint D[x1, x2] > d112 between the two variables x1 and x2 that model the facilities, where
d112 = 8. There are also six unary distance constraints D[xi, ck] > d2i, ∀i ∈ |X|,∀k ∈ |CL| that impose bounds on the
minimum allowed distances between facilities and clients, as shown in Figure 1. The CP model is formulated as follows:

• Variables (19 in total)
• Decision variables:

x1, x2, with Dom(x1) = Dom(x2) = P = {A, B, C, D}.
• Auxiliary variables:

y112, to model the Euclidean distance between x1 and x2.
y2ik (i ∈ {1, 2}, k ∈ {1,… , 3}), to model the Euclidean distance between the two facilities and the three

clients.
sik (i ∈ {1, 2}, k ∈ {1,… , 3}), to model the shortest path distances between facilities and clients.
z1, z2, z3, to facilitate the modeling of the shortest path distance between each client and its nearest facility.
z, to model the objective function.

10 The European Journal on Artificial Intelligence 0(0)

• Constraints (24 in total)
Element(D, [x1, x2], y112)
Element(D, [xi, ck], y2ik), ∀i ∈ |X|,∀k ∈ |CL|
Element(SP, [xi, ck], sik), ∀i ∈ |X|,∀k ∈ |CL|
y112 > 8
y21k > 2,∀k ∈ |CL|
y22k > 1,∀k ∈ |CL|
zk = min(s1k, s2k),∀k ∈ |CL|
z = sum(zk), ∀k ∈ |CL|

• Objective function
minimize z

6 A Heuristic CP Approach to the pMD
Ploskas et al. (2023) proposed a heuristic technique for the p-dispersion problem with distance constraints that tries to
prune early the parts of the search tree for which it seems unlikely that their exploration will improve the value of the
optimization function. Specifically, the cost of the first feasible solution found is used as the initial lower bound denoting
the cost of the best solution found so far. Thereafter, at each node of the search tree, after the currently tried assignment,
xi = a has been propagated, and assuming no failure occurs, an upper bound for the best possible solution under the
current assignment is computed, giving an estimation of the best possible cost that can be achieved if the subtree rooted at
the specific node is explored. If this is not higher than the current lower bound then the current branch of the search tree
is abandoned and the search moves on. Each time a solution with a higher cost than the current lower bound is found, the
lower bound is updated.

We continue this work by adapting this method to pMDs. In our case, the cost of the first feasible solution found is used
as the initial upper bound since we have a minimization problem. Besides the bounding technique, our heuristic method
uses a simpler model of the problem. As our experiments demonstrate, a reason for the failure of OR-Tools to solve large
instances of the pMD is the size of the model it constructs, mainly because of the very large domains, along with a large
number of auxiliary variables. However, in practice, it is not uncommon for location problems to include a very large
number of potential facility sites (hence very large domains in the CP model).

To alleviate this problem, we propose to use a much simpler model (albeit losing propagation power), dropping all
the auxiliary variables and relevant constraints, resulting in a model with only the p-decision variables and the distance
constraints among pairs of variables, and between variables and clients. The optimization function can now be handled
procedurally within the solver by simply computing the cost of any new solution found, so as to determine if this cost is
better than the cost of the best solution discovered so far. If so, then the bound is tightened. Considering the small pMD
demonstrated in Example 1, the simpler model is as follows:

• Decision variables (2 in total)
x1, x2, with Dom(x1) = Dom(x2) = P = {A, B, C, D}.

• Constraints (7 in total)
D[x1, x2] > 8
D[x1, ck] > 2,∀k ∈ |CL|
D[x2, ck] > 1,∀k ∈ |CL|

• Objective function
min

∑
k∈|CL| mini∈|X| SP[xi, ck]

This simple model has 17 fewer variables and 17 fewer constraints compared to the model of Example 1, as the
auxiliary variables and the relevant Element constraints are not present. As a downside, propagation is weakened because
the objective function is no longer linked to the decision variables. Therefore, as we also discuss below, any tightening of
the bound cannot result in the pruning of the decision variables’ domains.

In the following, we first describe the operation of a CP solver that can use the branch pruning heuristic, and then we
detail the inner workings of the heuristic.

Iosif et al. 11

6.1 Search Framework

Algorithm 1 gives a high-level description of the solver in which the pruning heuristic has been implemented. Given a
pMD (X, Dom, C, O), the algorithm starts by propagating the hard constraints in C, that is, the distance constraints, as
a typical CP solver does. Function Propagate enforces node consistency on the unary constraints between facilities and
clients, and arc consistency on the binary constraints between facilities. As explained, these distance constraints are the
only constraints present in the simple pMD model that we use. If no failure (empty domain) is detected then the algorithm
initializes the depth to 1, it sets the best cost found (best_found) to a sufficiently large value, and commences the search by
selecting a variable using a variable ordering heuristic. While the depth of search is >0, denoting that the search space has
not been exhaustively searched, a branching decision is made, that is, a value is selected, using a value ordering heuristic,
and assigned to the currently considered variable.

If all variables have been assigned (depth = n), which means that a feasible solution has been found, the cost of this
solution is calculated and if this cost is better than the best cost found up to that point, then the value of best_found is
updated accordingly. At this point, a standard CP solver would add a constraint of the form z < best_found to the model,
to ensure that any subsequently found solution will be better than the one just discovered. However, this cannot be done in
our model, as there is no z variable. But in this way, we avoid the costly propagation involved. As a downside, while the
search unravels, it is not guaranteed that any newly discovered solution will be better than the best discovered up to that
point.

If not all variables have been assigned yet, function Propagate is called to propagate the value assignment that has
just been made. If no failure occurs, the heuristic bounding mechanism is triggered by calling function Bound_Estimation
(Algorithm 2), provided that at least one feasible solution has already been found (i.e., sol_found=TRUE). If this function
succeeds, meaning that the estimated cost is better than the best bound found up to that point then the algorithm moves
forward by increasing the depth of search and selecting a new unassigned variable. On the other hand, if propagation fails
or the estimated bound is not better than the value of best_found then the current branch is abandoned and a new value for
the current variable is selected, as indicated by the value ordering heuristic. If all values for this variable have been tried
at this depth of search, then the algorithm backtracks to the previously selected variable and tries a new value for it.

Algorithm 1. CP_Solver(X, Dom, C, O)

if Propagate(X, Dom, C)= FALSE
return NULL;

depth ← 1;
best_found ← +∞;
sol_found ← FALSE;
select an unassigned variable xi;
while depth ≥ 1

if all values in Dom(xi) have been tried
depth ← depth-1;

else
select a value a ∈ Dom(xi) that is indicated by the value ordering heuristic;
if depth = n

sol_found ← TRUE;
cur_cost ← Compute_Solution_Cost(X, Dom, C)
if cur_cost < best_found

best_found ← cur_cost;
else if Propagate(X, Dom, C, xi ← a) = TRUE

if sol_found = TRUE
if Bound_Estimation(X, Dom, xi ← a, best_found) = TRUE

depth ← depth+ 1;
select an unassigned variable xi;

else
depth ← depth+1;
select an unassigned variable xi;

if sol_found = FALSE
return NULL;

else
return best_found;

12 The European Journal on Artificial Intelligence 0(0)

If the value best_found remains unchanged upon termination (i.e., sol_found= FALSE), then the algorithm has proved
that the problem is infeasible and the solver returns NULL. Otherwise, the best cost found is returned. In the former case,
the heuristic part of the algorithm (i.e., the bounding mechanism) will never be triggered, as no feasible solution will have
been found. Hence, the search space will be systematically explored in a typical CP solver fashion until a backtrack to
depth 0 occurs, proving that the problem is infeasible.

6.2 Branch Pruning Heuristic
Let us now describe the function Bound_Estimation (Algorithm 2) that implements the branch pruning heuristic. As in
Ploskas et al. (2023), at each node, we relax the problem by considering only the objective function (i.e., the distance
constraints are not taken into account) and we heuristically estimate the cost that can be achieved if the subtree rooted at
that node is explored. But in our case, a lower bound estimation is computed, as we deal with a minimization problem.

The estimation of this lower bound is performed using the reasoning of the greedy heuristic for the p-median problem.
Specifically, assuming that xi is the current variable, (x1 ← v1),… , (xi−1 ← vi−1) is the assignment to past variables
(i.e., the already assigned ones) and vi is the value under consideration for xi, we greedily compute the cost of the “best”
assignment for the future variables (i.e., the unassigned ones) xi+1,… , xp. That is, we visit these variables one by one,
starting with xi+1, and for each such variable xj, i + 1 ≤ j ≤ p, and each value vj ∈ Dom(xj), we find the sum of the
shortest path distances between all demand points and their nearest facility/variable, taking into account the previously
assigned variables x1,… , xj−1 and the assignment xj ← vj. After all values in Dom(xj) have been processed, the value that
minimizes this sum is then (temporarily) assigned to xj. This is repeated until all variables have been assigned. If the cost
of the derived complete assignment is equal to or higher than the current upper bound (i.e., , the value of best_found) then
vi is not assigned to xi. That is, we speculate that the exploration of the subtree rooted at node xi ← vi will not yield an
improvement to the value of best_found.

Algorithm 2. Bound_Estimation(X, Dom, xi ← vi, best_found)

for each xj, i + 1 ≤ j ≤ p
dis ← ∞;
val ← -1;
for each vj ∈ Dom(xj)

xj ← vj;
temp-cost ← sum of SP distances of all clients and their nearest facility among x1,… , xj;

if temp-cost < dis
dis ← temp-cost;
val ← vj;

xj ← val;
if dis < best_found

return true;
else

return false;

6.3 An Example of Erroneous Pruning and a Sampling Technique
The following example demonstrates that the greedy bound estimation that is performed at every node can overestimate
the cost, which may result in the omission of the optimal solution.

Example 2. Consider a network G = {V , E} with V = {a, b, c, d, e, f , g} (Figure 2). Assume that three demand points
are situated at nodes f , g, h and we wish to locate three facilities in the network, modeled by three variables x1, x2, x3.
Assume that there exist distance constraints between facilities and demand nodes and the domains of the variables after
these constraints have been processed are: Dom(x1) = {a, b, c, d, e}, Dom(x2) = {a, b, d} and Dom(x3) = {a, d}. The
distance constraints between facilities are: D[x1, x2] > 1, D[x1, x3] > 1, D[x2, x3] > 1. The labels on the edges denote the
distance between the corresponding nodes, which for simplicity we assume is equal to the Euclidean distance between the
two nodes.

The optimal solution is < x1 = c, x2 = b, x3 = a > with cost 10. Assume that the first solution found, with
cost = 15, is < x2 = a, x3 = d, x1 = c >. Now, assume that as the search for better solutions unfolds, at some point
the algorithm backtracks to the first level of the search tree undoes the decision x2 = a, and then tries the assignment
x2 = b. A lower bound under this assignment will now be computed using the greedy heuristic. Assume that the heuristic

Iosif et al. 13

Figure 2. An Example p-Median with Distance Constraints (pMD) Problem where the Branch Pruning Heuristic Misses the Optimal
Solution.

visits the remaining variables in lexicographic order (i.e., first x1 and then x3). Given the assignment x2 = b, all three values
a, c, e for x1 give the same maximum decrease in the value of the objective function (from 25 to 15). If it chooses according
to the lexicographic order then it will select a for x1 and it will then select value d for x3, as it is the only remaining option.
The lower bound computed will have a value equal to 15, which is not lower than that of the best solution discovered so
far. Hence, the branch rooted at the assignment x2 = b will be abandoned and the search will move on, resulting in the
omission of the optimal solution.

As the example demonstrates, an important drawback of the heuristic bound estimation procedure is that the bound
computed at each node is based on a single run of the greedy heuristic with a fixed ordering of the unassigned variables.
In the above example, if the order in which the greedy heuristic visits the future variables is reversed (i.e., first x3 and then
x1) then the optimal solution will not be pruned and will be later discovered.

To address this, we enhanced our method through a technique that randomly samples over the possible orderings of the
unassigned variables, computing a bound using the greedy heuristic for every sampled ordering. To minimize unnecessary
computations, we set the number of samples equal to the number of all possible permutations (i.e., different variable
orderings) if the latter is smaller than the former. If the estimated lower bound of a sample is lower than the cost of the
best solution found so far, then the current branch is accepted. This results in weaker pruning, and therefore higher CPU
times, but a better approximation of the optimal solution, as our experiments demonstrate. This technique (depicted by
Algorithm 3) modifies the function Bound_Estimation by repeatedly randomly reordering the future variables and running
the greedy heuristic on each obtained ordering.

Algorithm 3. Bound_Estimation_with_Samplings(X, Dom, xi ← vi, best_found, samples)

best_sample_cost ← ∞;
while samples > 0

shuffle future vars xi+1,… , xp in a random way;
for each xj, i+1 ≤ j ≤ p

dis ← ∞;
val ← -1;
for each vj ∈ Dom(xj)

xj ← vj;
temp-cost ← sum of SP distances of all clients and their nearest facility among x1,… , xj;

if temp-cost < dis
dis ← temp-cost;
val ← vj;

xj ← val;
if best_sample_cost > dis

best_sample_cost ← dis;
if best_sample_cost < best_found

return true;
samples ← samples - 1;

return false;

14 The European Journal on Artificial Intelligence 0(0)

6.4 Value Ordering Heuristics
We now introduce four domain-specific value ordering heuristics for pMDs. These heuristics use information about the
current state of search to select a value assignment for the current variable that may maximally contribute to the improve-
ment of the objective value. The first two heuristics only consider the current variable and its available values, meaning
that they only have a local view of the problem, but they are also cheap to compute. The third heuristic takes into account
the already assigned variables too, whereas the fourth one, which is computationally the most expensive, additionally
considers the possible assignments to future variables.

6.4.1 Greedy-Minmax. We call the first heuristic greedy-minmax. This value ordering heuristic selects the value that would
induce the smallest cost in the objective function if we were to solve the 1-center problem. The p-center problem is similar
to the p-median and differs only in the objective function. The goal is to determine the locations of p facilities in a way
that minimizes the maximum distance between any client and their closest facility. The 1-center problem is a special case
of the p-center, where the goal is to locate a single facility (i.e., p = 1).

Therefore, the site that will be selected for the location of the facility under consideration will be the one whose
maximum distance from a client is the smallest among all potential sites. Specifically, suppose that we try to pick a value
for the current variable xi. For each value vi ∈ Dom(xi), we calculate the maximum SP distance between vi and any client.
The value to be assigned to xi is the one with the minimum such distance. Algorithm 4 depicts this process.

Algorithm 4. Greedy_minmax(X, Dom, xi)

min-dist ← ∞;
val ← -1;
for each vi ∈ Dom(xi)

dist ← maximum SP distance between vi and any client;
if dist < min-dist

min-dist ← dist;
val ← vi;

return val;

6.4.2 Greedy-Minsum. The greedy-minsum value ordering heuristic also holds a local view of the problem. However,
instead of solving the 1-center problem, it considers the 1-median. In other words, for each value vi ∈ Dom(xi), we
compute the sum of SP distances between vi and all clients. The value to be assigned to xi is the one with the minimum
sum. Algorithm 5 depicts this process.

Algorithm 5. Greedy_minsum(X, Dom, xi)

min-dist ← ∞;
val ← -1;
for each vi ∈ Dom(xi)

dist ← sum of SP distances between vi and all clients;
if dist < min-dist

min-dist ← dist;
val ← vi;

return val;

6.4.3 Greedy Look-Back. In contrast to the two previous value ordering heuristics, the third one, which we call greedy
look-back, exploits information about past assignments. That is, while trying to find the best location for the current
facility, it also considers the locations of the facilities that have already been placed. This leads to more precise estimations
and therefore may result in more informed branching, as the location of the current facility may not alter the service status
of a client (i.e., there is a facility already located closer to them).

Iosif et al. 15

Specifically, for each value vi ∈ Dom(xi), we calculate the total cost of the assignment xi ← vi, taking into account the
past assignments to variables x1,… , xi−1 and the currently evaluated assignment xi ← vi. That is, we calculate the sum
of distances between clients and their nearest facility, assuming that each client is assigned to the closest facility among
the past ones and the value under consideration (vi) for the current variable (xi). The value selected is the one giving the
minimum sum. Algorithm 6 depicts this process.

Algorithm 6. Greedy_LookBack(X, Dom, xi)

min-cost ← ∞;
val ← -1;
for each vi ∈ Dom(xi)

xi ← vi
temp-cost ← sum of SP distances of all clients and their nearest facility among x1,… , xi;
if dist < min-dist

min-dist ← dist;
val ← vi;

return val;

6.4.4 Greedy Look-Ahead. The final heuristic is called greedy look-ahead. This heuristic considers the information derived
from previous assignments, as greedy look-back does, while also trying to estimate the best cost achievable under the
current branching decision. This is done by greedily assigning values to future variables (i.e., unassigned ones), considering
the relaxed problem (i.e., without distance constraints).

In more detail, suppose that there are p decision variables and xi is the one under consideration. We visit the future
variables one by one and for each variable xj, i + 1 ≤ j ≤ p and each value vj ∈ Dom(xj), we find the sum of SP
distances between all demand points and their nearest facility, taking into account the assignments for variables x1,… , xj−1,
excluding the current one (xi). After all values in Dom(xj) have been processed, the value that minimizes this sum is then
temporarily assigned to xj and this is repeated until all variables (except xi) have been assigned. After the “best” partial
assignment including all variables except xi has been computed, we calculate the best complete assignment by trying the
addition of each value vi ∈ Dom(xi) to the partial assignment, so as to make it complete. The value that minimizes the cost
of the total assignment is selected.

Algorithm 7 depicts this process.

Algorithm 7. Greedy_LookAhead(X, Dom, xi)

min-dist ← ∞;
val ← -1;
for each xj, i + 1 ≤ j ≤ p

dist ← ∞;
tmp_val ← -1;
for each vj ∈ Dom(xj)

xj ← vj;
temp-cost ← sum of SP distances of all clients and their nearest facility among x1,… , xj except xi;
if temp-cost < dist

dist ← temp-cost;
tmp_val ← vj;

xj ← tmp_val;

for each vi ∈ Dom(xi)
xi ← vi;
temp-cost ← sum of SP distances of all clients and their nearest facility among x1,… , xp;
if temp-cost < min-dist

min-dist ← temp-cost;
val ← vi

return val;

16 The European Journal on Artificial Intelligence 0(0)

We also experimented with a similar heuristic, using a slightly different approach for the estimation of the best value
to branch on. This heuristic is computed as follows: for each vi ∈ Dom(xi), we visit the future variables one by one
and for each variable xj, i + 1 ≤ j ≤ p and each value vj ∈ Dom(xj), we find the sum of SP distances between all
demand points and their nearest facility, considering the assignments to variables x1,… , xj−1, including xi ← vi. After all
values in Dom(xj) have been processed, the value that minimizes this sum is then temporarily assigned to xj and this is
repeated until all variables have been assigned. The value for current variable xi that is involved in the complete assignment
with the minimum sum of distances is assigned to xi. This variant is considerably less efficient than the greedy look-ahead
described above, as it is significantly more expensive to compute. Although results are similar on relatively small instances,
experiments with instances that include variables with large domains, demonstrated that this method is computationally
prohibitive. Therefore, we do not consider this heuristic any further.

7 Experiments
Computations were performed on an Intel i7 CPU 8700 with 16 GB of main memory, a clock of 3.2 GHz, an L1 cache
of 348 kB, an L2 cache of 2 MB, and an L3 cache of 12 MB, running under CentOS 8.4. We set a time limit of 3,600 s
for all the experiments reported below. The ILP model was solved using Gurobi 9.0.3 (Gurobi Optimization, LLC, 2023)
and was stored in compressed sparse column format, as the constraint matrix can sometimes be too large to be stored as
a full array. The CP model was written in the CPMpy modeling tool (Guns, 2019) and compiled into CP-SAT OR-Tools
(O.-T. Development Team, 2024). CPMpy is a CP modeling library in Python, based on Numpy, that provides direct solver
access. While a native OR-Tools implementation via the Python API was feasible, CPMpy allows us to maintain solver
flexibility (for further experimentation) without sacrificing efficiency or model integrity. In fact, we have actively verified
that the model generated by CPMpy is identical to the native OR-Tools model.

CP-SAT OR-Tools is a state-of-the-art CP solver that leverages SAT (satisfiability) methods. Since this solver does
not support real-valued domains, which are present in our problems, we scale all values by a sufficiently large factor to
convert them into integers. The results are then transformed back to their original values. In addition, OR-Tools includes
several built-in variable and value selection heuristics. In preliminary experiments, we tested various settings, such as
prioritizing decision variables x ∈ X during branching and applying different value orderings (e.g., min-value). However,
results did not show any significant improvements in runtime or objective value across these settings compared to the
default configuration of OR-Tools, while often giving worse results. Consequently, we used the default OR-Tools settings
for our experiments.

The heuristic CP approach was implemented in a custom (heuristic) solver written in C, following the structure of
Algorithm 1. This solver will be denoted as CPh hereafter. CPh uses the dom/wdeg heuristic for variable ordering, arc
consistency for the propagation of distance constraints between facilities, and node consistency for the constraints between
facilities and clients. Standard lexicographic value ordering was used when comparing CPh to Gurobi and OR-Tools in
Section 7.2.1. An evaluation of the value ordering heuristics described in Section 6.4 was also carried out (Section 7.2.2).

7.1 Problem Generation Models
Given the lack of benchmarks for the pMD, we experimented with pMD instances generated in three different ways.
The first two place the candidate facility sites and the clients on the nodes of a grid, while the third uses the p-median
benchmark library as a basis to create pMDs.

7.1.1 Grid-Based Generation Model. The grid generation model creates problems embedded in an n × n grid. It takes the
following parameters: n, p, |CL|, |P|. We first randomly select |CL| + |P| among the n × n nodes, for the clients and
the potential facility locations. |CL| of these nodes are randomly selected to place the clients and the remaining nodes are
the potential facility locations.

We assume that the weight of each edge in the grid is equal to 1. Therefore, given that we have a grid, the length
of the shortest path between any client and any potential facility site can be, at best, equal to the Manhattan distance
between them. For each distance constraint D[xi, xj] > d1ij between facilities xi and xj, d1ij is randomly set to an integer
number in the interval [0, max_euc∕2], where max_euc is the maximum Euclidean distance between two points on the
grid. Accordingly, for the constraints specifying the distances between facilities and clients, a random integer is set in the
(experimentally selected) interval [0, 3], in order to minimize infeasibilities.

7.1.2 Minimum Weighted Covering Generation Model. The second random generator is a variant of the first one and is
based on the generator used in Berman and Huang (2008) for minimum weighted covering location problems with distance

Iosif et al. 17

constraints. It again creates pMDs embedded in an n×n grid, taking the parameters n, p, |CL|, |P|, plus the extra parameters
t and k. Parameter t takes a value in the interval (0, 1] and determines the tightness of the generated network. That is, given
that the total number of edges in an n×n grid is 2×n×(n−1), the network will contain t×2×n×(n−1) edges. Parameter
k is used for the generation of the constraints, as described below.

The generator first randomly creates a tree with |CL| + |P| nodes in the grid. This is done by first randomly generating
the Cartesian coordinates of the |CL| + |P| nodes in the grid uniformly. Then nodes are connected randomly until a tree is
formed. At this point, the only edges in the grid that are active (i.e., belong to the network under generation) are the |CL|
+ |P| − 1 edges that belong to the tree. Then, the remaining (t × 2 × n × (n − 1)) - |CL| + |P| − 1) required edges are
added to the network by randomly selecting pairs of adjacent nodes1 in the tree and adding the edge that connects them to
the network, if it does not already belong to it. Hence, cycles can be formed in the network through this process. The next
step in the process randomly selects |CL| among the |CL| + |P| nodes to place the clients. The |P| nodes remaining are
the potential locations of the facilities.

We have tried two different ways for the generation of the distance constraints:

(1) For any constraint between variables xi and xj, d1ij is randomly set to an integer number in the interval [0, ⌊n∕k⌋],
where k is a parameter. Accordingly, for the unary constraints specifying the distances between facilities and
clients.

(2) The variables are split into two sets, with the first one corresponding to facilities that need to be placed further
apart, and the second to facilities that can be closer to clients and to one another. The distances for the constraints
are drawn from three intervals, the low, the medium, and the high one. For a constraint where both involved
variables xi and xj belong to the first set, d1ij is set to a random number in the high interval. Accordingly, for a
constraint between variables of the second set, the distance is set to a random number in the low interval, while
for a constraint between variables from different sets, the distance is set to a value in the medium interval. In our
experiments, the three intervals were generated by splitting the interval [0, ⌊n∕k⌋] in three (almost) equal parts.

7.1.3 p-Median Benchmark Library Based Generation. The p-median based generator takes instances from the p-median
benchmark dataset (Beasley, 1985), consisting of problems with 100–900 nodes and 5–200 facilities. We randomly select
|P| nodes to be candidate facilities, while the remaining nodes are clients. We have considered two cases: 1) 80% of the
nodes are candidate facility sites and the remaining 20% are clients. If the resulting number of candidate sites is less than
or equal to p, then we progressively increase the number of candidate sites until |P| > p and the generated instances are
feasible. 2) Twenty percent (20%) of the nodes are candidate facility sites and the remaining 80% are clients. Similarly to
the previous case, we progressively increase the number of candidate sites until |P| > p and the generated instances are
feasible. To set the parameter d1ij, we find the minimum and maximum distance between all pairs of candidate sites and
we set d1ij equal to a random number in the range [min,min+(max−min)∕10]. Similarly for parameter d2i.

From now on, we will refer to the grid model of Subsection 7.1.1 (respectively, 7.1.2) as grid1 (respectively, grid2). For
the grid1 and p-median generation models and each setting of the parameters, 10 instances were generated, whereas for
the grid2 generation model, we generated 20 instances.

Table 1 details the classes generated for pMDs using the three-generation models. For the p-median-based ones, we
give the name of the p-median benchmark used as basis. Each such class is defined by the parameters < |V|, p, |P|, |CL| >.
For example, class < 500, 5, 100, 400 > includes problems with 500 points, 5 facilities, 100 potential locations, and 400
clients. The second column gives classes where the number of clients is larger or equal to the number of candidate sites,
while the third gives classes where there are more candidate sites than clients. Each grid1 class is defined by the parameters
< n, p, |P|, |CL| >. For example, in class <10,20,80,20> we have a 10×10 grid, 20 facilities, 80 potential locations, and
20 clients. In the case of grid2, each class is defined by the parameters < n, p, |P|, |CL|, t, m >. That is, the additional
parameter m is used, denoting the method used for the generation of the distance constraints, taking value 1 or 2, as
detailed in Section 7.1.2. Parameter k was set to 3. All generated pMD instances can be found in the following GitHub
repository (https://github.com/pkiosif/pMD-problems).

7.2 Experimental Results
We first evaluate the performance of the custom solver, which implements the branch pruning heuristic, by comparing
it against Gurobi and OR-Tools on instances generated using the three models described above. Then, we evaluate the
domain-specific value ordering heuristics, and finally, we give results from the sampling method of Section 6.3.

7.2.1 Comparing the Solvers. Table 2 compares the three solvers on p-median-based problems. We report the total CPU
times taken by Gurobi, OR-Tools, and CPh (

∑
cpu columns). The number of instances where any solver reached the cutoff

https://github.com/pkiosif/pMD-problems

18 The European Journal on Artificial Intelligence 0(0)

Table 1. Problem Classes and Their Characteristics.

p-Median based |CL| ≥ |P| |P| > |CL| Grid based grid1 grid2

pmed05 <100,33,40,60> <100,33,80,20> g1 <10,10,80,20> <20,15,70,30,0.3,1>
pmed10 <200,67,100,100> <200,67,160,40> g2 <10,20,80,20> <20,20,115,35,0.3,1>
pmed15 <300,100,150,150> <300,100,240,60> g3 <20,10,350,50> <20,20,80,20,0.2,1>
pmed161

<400,5,80,320> <400,5,320,80> g4 <20,20,350,50> <20,35,150,50,0.5,1>
pmed162

<400,10,80,320> <400,10,320,80> g5 <20,25,350,50> <30,25,250,50,0.3,1>
pmed163

<400,20,80,320> <400,20,320,80> g6 <30,25,250,50> <30,30,300,100,0.35,1>
pmed21 <500,5,100,400> <500,5,400,100> g7 <30,20,300,50> <20,12,70,30,0.6,2>
pmed26 <600,5,120,480> <600,5,480,120> g8 <30,10,500,100> <20,30,245,75,0.5,2>
pmed31 <700,5,140,560> <700,5,560,140> g9 <30,20,500,100> <30,25,230,70,0.25,2>
pmed33 <700,70,350,350> <700,70,560,140> g10 <30,20,700,200> <20,35,170,30,0.5,2>
pmed36 <800,10,400,400> <800,10,640,160> g11 <50,100,1300,200>
pmed38 <900,5,450,450> <900,5,720,180>

limit of 1 h without terminating is given in brackets in these columns. In this case, we count 3, 600 s toward its CPU time
sum and we record the best solution it was able to find. We also report the mean optimality gap for CPh (%gap). If the cost
of the optimal solution found by a complete solver is x and the cost of the best solution found by CPh is y then the gap is
computed as (y − x)/x. As Gurobi solved all instances of all p-median classes, the optimal cost is known in these cases.
Columns tb give the mean CPU time taken by the solvers to find their best solution. Columns tm give the mean CPU time
taken by Gurobi and OR-Tools to find the first solution that matches (or improves) the cost of the best solution found by
CPh. If one is unable to match the best solution found by CPh in some instances, tm is left blank (-). The last column gives
the number of instances where CPh found the optimal solution (#opt). In brackets, we give the number of instances where
the optimal is known2. Finally, OR-Tools suffered memory exhaustion and crashed on all instances of some classes. This
is denoted by MEM in the corresponding

∑
cpu column.

Evidently, Gurobi outperforms OR-Tools in all classes of the p-median-based problems in terms of total CPU time
and mean cost. In fact, Gurobi finds these problems quite easy, terminating within the time limit in all instances. Hence,
it is clearly the best solver for these types of pMDs. Looking at the performance of CPh, it is able to find many near-
optimal solutions, explaining the low optimality gaps in many classes, while managing to locate more than half of the
optimal solutions in some classes (e.g., pmed16, pmed21, pmed26 and pmed31 of |CL| ≥ |P|). On the other hand, CPh’s
performance is much worse than Gurobi’s in classes with a large number of variables (i.e., facilities to be assigned), such
as pmed15 and pmed33. In such problems, not only do run times increase considerably, but also higher optimality gaps
are obtained, meaning that CPh found it hard to locate solutions of good quality.

However, if we compare CPh to OR-Tools, as columns tb and tm indicate, it takes a significant amount of time (often
orders of magnitude longer runs) for OR-Tools to match the solutions found by CPh. OR-Tools finds the p-median-based
pMDs quite difficult to solve, reaching the time limit of 1 h in most classes, and not being able to prove optimality.
Furthermore, in classes with a large number of variables and domain sizes, the model created exceeds the memory capacity
of our machine, resulting in a system crash. On the other hand, CPh, being a lightweight solver that uses a simpler pMD
model, did not face such problems and was quite competitive to Gurobi in classes with a few number of facilities (especially
in category |CL| ≥ |P|).

Table 3 compares the three solvers on problems generated using the grid models. The columns are the same as in
Table 2, except that the mean values of the cost are presented rather than the optimality gaps. This is because the optimal
solutions are unknown in many instances of many classes, as Gurobi and OR-Tools did not manage to terminate within
the time limit. The lowest mean objective value is highlighted in bold. For Gurobi and OR-Tools, we give in brackets (in
the cost column) the number of instances in which they managed to find at least one solution. For CPh, we give in brackets
(in the cost column) the number of instances where it managed to find an equal or better solution than both of the other
solvers. If a solver was unable to find any solution within the time limit in some instances of a class then columns tb and
cost are left blank (-) for this class.

Interestingly, the results differ significantly from those in Table 2. OR-Tools performs better than Gurobi in general,
solving problems in classes that are unreachable for the latter. Gurobi seems to struggle to even find any solution to most
problems of various classes. In fact, in only 7 out of 21 classes, it is able to locate at least one solution in all instances of
the class. On the other hand, OR-Tools is able to locate at least one solution in all instances in 16 out of 21 classes. Gurobi
suffered memory exhaustion in g10 and g11 classes of grid1 problems (as did OR-Tools in the latter). Regarding g1(1) of
grid2 problems, all solvers managed to prove infeasibility for the one infeasible instance of this class, almost instantly.

Iosif et al. 19

Table 2. Comparing Solvers on p-Median-Based pMD Problems.

class Gur
∑

cpu tb tm ORt
∑

cpu tb tm CPh
∑

cpu tb %gap #opt

|CL| ≥ |P|
pmed05 2 (0) 0 0 8,038 (0) 289 177 >22,460 (6) − − 5 (10)
pmed10 27 (0) 2 2 >36,000 (10) 2, 092 – >27,141 (6) 829 2.83 0 (10)
pmed15 137 (0) 12 8 >36,000 (10) 3, 489 – >36,000 (10) 983 3.18 0 (10)
pmed161 101 (0) 5 5 4,078 (0) 36 35 3 (0) 0.2 0.15 6 (10)
pmed162 90 (0) 7 5 >20,834 (5) 786 – 32 (0) 3 0.41 3 (10)
pmed163 34 (0) 2 1 >36,000 (10) 1, 782 – 421 (0) 41 0.83 0 (10)
pmed21 205 (0) 8 8 >13,204 (3) 127 92 5 (0) 0.5 0.16 7 (10)
pmed26 154 (0) 14 13 >13,759 (3) 114 110 9 (0) 0.8 0.25 6 (10)
pmed31 1,093 (0) 41 41 >24,050 (6) 157 155 19 (0) 2 0.23 7 (10)
pmed33 206 (0) 18 16 MEM – – >36,000 (10) 3, 527 14.07 0 (10)
pmed36 2,764 (0) 136 86 >36,000 (10) 2, 463 – 2,210 (0) 209 0.74 0 (10)
pmed38 861 (0) 56 22 >24,717 (6) 470 448 117 (0) 10 0.4 1 (10)

|P| > |CL|
pmed05 4 (0) 0 0 337 (0) 31 31 >7,396 (2) 209 1.51 3 (10)
pmed10 46 (0) 4 4 >29,185 (7) 1, 535 1, 354 >28,440 (7) 1, 566 6.5 0 (10)
pmed15 203 (0) 19 16 MEM – – >36,000 (10) 2, 899 10.6 0 (10)
pmed161 32 (0) 2 2 >36,000 (10) 192 – 52 (0) 5 0.75 1 (10)
pmed162 28 (0) 2 1 >36,000 (10) 2, 386 – 492 (0) 46 2.18 0 (10)
pmed163 45 (0) 3 2 >36,000 (10) 3, 090 – 4,527 (0) 425 5.03 0 (10)
pmed21 90 (0) 7 5 >36,000 (10) 773 – 137 (0) 12 0.35 3 (10)
pmed26 91 (0) 7 6 >36,000 (10) 993 – 149 (0) 13 0.62 4 (10)
pmed31 687 (0) 48 32 >36,000 (10) 1, 557 – 382 (0) 35 0.35 4 (10)
pmed33 441 (0) 42 39 MEM – – >36,000 (10) 3, 508 35.97 0 (10)
pmed36 1,969 (0) 141 80 MEM – – 3,997 (0) 384 0.79 0 (10)
pmed38 561 (0) 37 27 >36,000 (10) 2, 683 – 274 (0) 25 0.8 3 (10)

Note. pMD= p-median with distance constraints.

CPh is usually much more efficient, finding solutions in all instances of all classes within the time limit, apart from
three instances in the g10 grid2 class, but including all instances of the very hard g10 and g11 grid1 classes. In the vast
majority of instances, CPh is able to terminate much faster (sometimes by orders of magnitude) than the two complete
solvers. Regarding solution quality, in the easier classes such as g1 and g2 of grid1, where both complete solvers found
solutions in all instances, the solutions discovered by CPh are typically worse (though not by large margins). However,
in the harder classes (e.g., g9 of grid1 and grid2) that are out of reach for Gurobi and very difficult for OR-Tools, CPh
managed to locate solutions of better quality. Overall, it beat or equaled the best of the other solvers in terms of solution
quality in 73 out of 110 grid1 instances, and 88 out of 200 grid2 instances.

Taking a deeper look at the performance of the solvers, an important factor that seems to affect it is the number of
solutions existing in a problem. Gurobi benefits from the presence of many solutions in an instance, while this does not
hold for CPh and OR-Tools. In contrast, Gurobi finds it hard to deal with problems that only have a few solutions, whereas
the CP solvers handle such problems more efficiently. Let us note that p-median-generated instances, where Gurobi excels,
typically have a very large number of solutions. For example, a simple enumeration of the feasible solutions, using a
complete CP solver without the objective function, counted 13,343,409 solutions in 10 min of CPU time on average for
the 10 instances of pmed38 with |CL| ≥ |P|. The enumeration was stopped after 10 min, meaning that the actual number
of solutions could be much higher.

On the other hand, grid-based problems, where Gurobi falters, typically have few solutions. For instance, we counted
only 11,872 solutions until termination in class g3 of grid2. Further to this, focusing on two contrasting instances of class
g2 of grid1; one having only 58 feasible solutions and another with 87,950,294 solutions, Gurobi was not able to find
a solution in the former, while it managed to match the solution of CPh in 163 secs in the latter. When there are few
solutions, Gurobi is either unable to find any solution within the time limit and/or finds it hard to obtain a good initial
bound, meaning that its progress towards the optimal is very slow. In contrast, in the presence of many solutions, such as
in the p-median-based instances, it starts with a good initial bound and is able to quickly improve it.

20 The European Journal on Artificial Intelligence 0(0)

Ta
bl

e
3.

C
om

pa
ri

ng
So

lv
er

s
on

G
ri

d-
Ba

se
d

pM
D

Pr
ob

le
m

s.

cl
as

s
G

ur
∑ cp

u
t b

t m
co

st
O

R
t
∑ cp

u
t b

t m
co

st
C

P h
∑ cp

u
t b

co
st

#o
pt

G
R

ID
1

g1
8

(0
)

0
0

36
.1

(1
0)

62
(0

)
3

2
36

.1
(1

0)
1

(0
)

0
37

.1
(2

)
2

(1
0)

g2
>

20
,1

39
(5

)
–

–
–

(9
)

86
1

(0
)

33
33

28
.6

(1
0)

27
(0

)
1

28
.9

(7
)

7
(1

0)
g3

>
5,

00
3

(1
)

91
36

13
8.

6
(1

0)
>

36
,0

00
(1

0)
1,

24
4

77
5

14
1.

2
(1

0)
19

9
(0

)
18

14
4.

7
(0

)
0

(9
)

g4
>

36
,0

00
(1

0)
–

–
–

(1
)

>
36

,0
00

(1
0)

1,
42

9
–

12
7.

7
(1

0)
>

32
,8

27
(9

)
1,

48
9

12
2.

1
(9

)
0

(0
)

g5
>

36
,0

00
(1

0)
–

–
–

(0
)

>
33

,3
31

(9
)

–
–

–
(7

)
>

30
,0

20
(7

)
1,

81
0

12
6.

8
(8

)
1

(1
)

g6
>

36
,0

00
(1

0)
–

–
–

(0
)

>
36

,0
00

(1
0)

–
–

–
(3

)
>

23
,4

73
(5

)
93

3
18

9.
6

(1
0)

0
(0

)
g7

>
36

,0
00

(1
0)

–
–

–
(0

)
>

36
,0

00
(1

0)
–

–
–

(9
)

>
36

,0
00

(1
0)

1,
72

7
18

5.
8

(8
)

0
(0

)
g8

>
23

,5
36

(6
)

63
2

55
3

42
5.

6
(1

0)
>

36
,0

00
(1

0)
1,

66
6

–
44

1.
5

(1
0)

1,
60

7
(0

)
14

6
43

9.
8

(1
)

0
(4

)
g9

>
36

,0
00

(1
0)

–
–

–
(0

)
>

36
,0

00
(1

0)
2,

01
7

–
39

3.
3

(1
0)

>
31

,5
46

(8
)

1,
65

7
37

8.
5

(8
)

0
(0

)
g1

0
M

EM
–

–
–

>
36

,0
00

(1
0)

–
–

–
(9

)
>

27
,4

76
(6

)
1,

42
7

77
8.

6
(1

0)
0

(0
)

g1
1

M
EM

–
–

–
M

EM
–

–
–

>
36

,0
00

(1
0)

3,
49

0
94

6.
6

(1
0)

0
(0

)

G
R

ID
2

g1
(1
)

98
8

(0
)

21
10

56
(1

9)
44

7
(0

)
11

9
56

(1
9)

4
(0

)
0.

1
57

.0
5

(7
)

7
(1

9)
g2

(1
)

5,
79

8
(0

)
16

5
71

70
.9

5
(2

0)
>

18
,0

70
(2

)
15

6
39

70
.9

5
(2

0)
83

(0
)

2.
3

72
.8

(7
)

7
(2

0)
g3

(1
)

>
53

,6
59

(1
3)

–
–

–
(1

6)
2,

60
0

(0
)

61
61

40
.7

(2
0)

13
6

(0
)

3
40

.9
(1

8)
18

(2
0)

g4
(1
)

>
69

,9
97

(1
9)

–
–

–
(2

)
>

44
,7

36
(1

0)
1,

19
1

-
99

.1
5

(2
0)

>
29

,5
60

(4
)

80
4

98
.9

5
(1

4)
8

(1
0)

g5
(1
)

>
72

,0
00

(2
0)

–
–

–
(0

)
>

70
,0

92
(1

9)
1,

87
2

–
13

3.
6

(2
0)

>
63

,4
62

(1
6)

1,
20

9
13

6
(9

)
0

(1
)

g6
(1
)

>
68

,8
27

(1
9)

–
–

–
(6

)
>

60
,5

58
(1

5)
1,

60
6

–
30

5.
35

(2
0)

>
37

,2
10

(7
)

1,
06

3
29

8.
7

(1
4)

3
(5

)
g7

(2
)

29
(0

)
0

0
54

.8
5

(2
0)

72
0

(0
)

8
5

54
.8

5
(2

0)
3

(0
)

0
56

.0
5

(7
)

7
(2

0)
g8

(2
)

32
6

(0
)

15
14

17
7.

2
(2

0)
>

72
,0

00
(2

0)
2,

27
0

2,
43

5
18

3.
7

(2
0)

>
10

,1
59

(1
)

39
2

18
3.

75
(1

)
1

(2
0)

g9
(2
)

>
60

,8
79

(1
6)

–
–

–
(1

1)
>

70
,2

85
(1

9)
1,

64
1

–
17

9.
35

(2
0)

>
26

,9
60

(5
)

74
7

17
6.

55
(5

)
0

(5
)

g1
0(

2)
>

29
,6

67
(5

)
–

–
–

(1
7)

>
68

,5
29

(1
9)

94
1

–
46

.1
(2

0)
>

39
,1

89
(9

)
–

–
(6

)
5

(1
5)

N
ot

e.
pM

D
=

p-
m

ed
ia

n
w

ith
di

st
an

ce
co

ns
tr

ai
nt

s.
T

he
lo

w
es

t
m

ea
n

ob
je

ct
iv

e
va

lu
e

fo
r

ea
ch

pr
ob

le
m

cl
as

s
is

hi
gh

lig
ht

ed
in

bo
ld

.I
n

ca
se

of
tie

s,
th

e
va

lu
e

of
th

e
be

st
-p

er
fo

rm
in

g
so

lv
er

is
hi

gh
lig

ht
ed

.

Iosif et al. 21

Table 4. Comparing Value Ordering Heuristics on p-Median Based pMD Problems (|CL| ≥ |P|).
|CL| ≥ |P|

Lexico Greedy-minmax Greedy-minsum

Class
∑

cpu tb cost
∑

cpu tb cost
∑

cpu tb cost

pmed05 >22,460 (6) 453 2,1268 (5) >20,453 (5) 272 2,190.899 (3) >14,008 (3) 341 2,177.229 (6)
pmed10 >27,141 (6) 829 1,638.7 (0) >28,036 (7) 681 1,633.8 (0) >20,710 (5) 513 1,630.6 (1)
pmed15 >36,000 (10) 983 2,119.1 (0) >36,000 (10) 1,599 2,125.7 (0) >36,000 (10) 785 2,121.2 (0)
pmed161 3 (0) 0.2 8,680.2 (6) 1.4 (0) 0 8,682.5 (5) 1 (0) 0 8,677.3 (5)
pmed162 32 (0) 3 7,723.6 (3) 21 (0) 2 7,710.4 (2) 17 (0) 1 7,707.5 (4)
pmed163 421 (0) 41 6,284.1 (0) 364 (0) 35 6271.1 (0) 229 (0) 21 6,285.1 (0)
pmed21 5 (0) 0.5 9,626 (7) 4 (0) 0.3 9,624.4 (7) 3 (0) 0.1 9,623.9 (8)
pmed26 9 (0) 0.8 10,466.3 (6) 6 (0) 0.4 10,462.2 (7) 5 (0) 0.3 10,469.9 (6)
pmed31 19 (0) 1.7 10,464.5 (7) 13 (0) 1 10,453.2 (6) 8 (0) 0.4 10,456.4 (6)
pmed33 >36,000 (10) 3,527 3,755.4 (0) >36,000 (10) 3,478 3,761.4 (0) >36,000 (10) 3,525 3,717.2 (0)
pmed36 2,210 (0) 209 6,388.2 (0) 1,411 (0) 122 6,391.3 (1) 624 (0) 43 6,390.3 (0)
pmed38 117 (0) 10 7,159.8 (1) 93 (0) 6 7,150.9 (4) 77 (0) 5 7,156.7 (2)

Greedy-lookback Greedy-lookahead

pmed05 >21,936 (6) 55 2152.58 (4) >18,387 (5) 41 2,133.758 (4)
pmed10 >28,969 (8) 321 1,628.3 (0) >25,365(6) 718 1,646.2 (1)
pmed15 > 36, 000 (10) 586 2,114.7 (0) >35,290 (9) 1,428 2,113.1 (0)
pmed161 1 (0) 0 8,677.3 (5) 1 (0) 0 8,672.1 (8)
pmed162 10 (0) 0.6 7,712.6 (3) 11 (0) 0.8 7,711.8 (2)
pmed163 141 (0) 12 6,282.7 (0) 339 (0) 32 6,281.3 (0)
pmed21 2 (0) 0 9,623.9 (8) 3 (0) 0.1 9,622.6 (8)
pmed26 4 (0) 0.2 10,458 (8) 4 (0) 0.2 10,461.7 (7)
pmed31 9 (0) 0.4 10,456.4 (6) 7 (0) 0.4 10,448.1 (9)
pmed33 >36,000 (10) 2,894 3,478.2 (0) >35,171 (8) 2,146 3,419.4 (0)
pmed36 549 (0) 35 6,386.5 (0) 335 (0) 14 6,373.8 (1)
pmed38 66 (0) 4 7,156.7 (2) 60 (0) 3 7,138.1 (6)

Note. pMD= p-median with distance constraints.
The lowest mean objective value for each problem class is highlighted in bold. In case of ties, the value of the best-performing setting is highlighted.

7.2.2 Value Ordering Heuristics. Tables 4 to 7 evaluate the performance of CPh under five value ordering heuristics, namely
lexico and the ones presented in section 6.4 (greedy-minmax, greedy-minsum, greedy-lookback and greedy-lookahead).
There are four tables in total, one for each category of problems (pmed with |CL| ≥ |P|, pmed with |P| > |CL|, grid1,
grid2). We report the total CPU time taken by the solver to terminate (

∑
cpu columns) and, in brackets, the number of

instances where the solver timed out. Columns tb give the mean CPU time taken to find the best solution, using each
heuristic, and the cost columns give the mean objective value (in brackets we give the number of instances where the
optimal solution was located). The lowest mean objective value is highlighted in bold. Settings that failed to find a solution
in any instance are excluded from the comparison. Finally, in case the solver did not manage to find any solution in some
instances of a class, we calculate the mean cost and tb over the instances of the class where at least one solution was
discovered. We report the number of these instances with a subscript in the cost column.

When evaluating the heuristics, we need to consider their effect on the quality of the solutions that the solver discovers,
as well as on the CPU time taken. Table 8 summarizes the results, focusing on these two criteria. Specifically, we give the
number of instances over each of the four categories, where each domain-specific value ordering heuristic achieved better,
worse, or similar results compared to lexico. Let us clarify how the comparison is made by explaining what the numbers
in the different columns of the table indicate.

#imp The number of instances where a value ordering heuristic either improves both the objective value and the total
CPU time, compared to lexico, or achieves the same results in one metric and better in the other.
#wor The number of instances where a value ordering heuristic either worsens both the objective value and the total
CPU time, compared to lexico, or achieves the same results in one metric and worse in the other.
#time The number of instances where a value ordering heuristic improves the total CPU time, but worsens the value of
the objective function.

22 The European Journal on Artificial Intelligence 0(0)

Table 5. Comparing Value Ordering Heuristics on p-Median Based pMD Problems (|P| > |CL|).
|P| > |CL|

Lexico Greedy-minmax Greedy-minsum

Class
∑

cpu tb cost
∑

cpu tb cost
∑

cpu tb cost

pmed05 >7,396 (2) 209 426.4 (3) >14,553 (4) 57 430.3 (3) >8,736 (2) 387 424.5 (4)
pmed10 >28,440 (7) 1,566 377.6 (0) >30,122 (8) 1,577 376.2 (0) >29,262 (7) 1,029 366.5 (0)
pmed15 >36,000 (10) 2,899 545.7 (0) >36,000 (10) 1,625 526.7 (0) >36,000 (10) 2,215 524.1 (0)
pmed161 52 (0) 5 1,545.2 (1) 30 (0) 2 1,545.6 (2) 20 (0) 1 1,541.3 (4)
pmed162 492 (0) 46 1,296.7 (0) 419 (0) 37 1,297.4 (0) 187 (0) 13 1,297.7 (0)
pmed163 4,527 (0) 425 990 (0) 3,382 (0) 293 986.7 (0) 1,930 (0) 153 986.7 (0)
pmed21 137 (0) 12 1,794.9 (3) 95 (0) 7 1,795 (3) 42 (0) 2 1,794.6 (3)
pmed26 149 (0) 13 1,936.2 (4) 88 (0) 6 1,939 (1) 50 (0) 2 1,936.3 (2)
pmed31 382 (0) 35 1,994.8 (4) 214 (0) 16 1,999 (3) 116 (0) 6 1,991.1 (6)
pmed33 >36,000 (10) 3,508 1,211.3 (0) >36,000 (10) 3,502 1,106 (0) >36,000 (10) 3,440 1,064.9 (0)
pmed36 3,997 (0) 384 2,065.2 (0) 2,546 (0) 229 2,067.8 (1) 1,328 (0) 100 2,064.6 (0)
pmed38 274 (0) 25 2,497.4 (3) 215 (0) 18 2,494.1 (3) 130 (0) 8 2,488.3 (5)

Greedy-lookback Greedy-lookahead

pmed05 >7,322 (2) 56 424 (6) >3,782 (1) 83 424.4 (4)
pmed10 >23,542 (5) 1,131 368.5 (0) >25,108 (6) 1,194 367.5 (0)
pmed15 >35,145 (7) 1,301 510.4 (2) >36,000 (10) 2,090 524.6 (0)
pmed161 18 (0) 1 1,541.3 (4) 18 (0) 1 1,540.6 (4)
pmed162 166 (0) 10 1,296.2 (0) 131 (0) 8 1,286.5 (1)
pmed163 1,384 (0) 97 986.5 (0) 1,090 (0) 73 986.5 (0)
pmed21 40 (0) 1 1,794.6 (3) 42 (0) 2 1,792.3 (3)
pmed26 61 (0) 3 1,937.7 (2) 43 (0) 2 1,928.5 (7)
pmed31 114 (0) 6 1,991.1 (6) 78 (0) 2 1,992.8 (4)
pmed33 >36,000 (10) 2,252 970.3 (0) >36,000 (10) 2,912 962.2 (0)
pmed36 1,143 (0) 81 2,067.6 (0) 994 (0) 70 2,061.8 (2)
pmed38 113 (0) 6 2,488.3 (5) 90 (0) 4 2,483 (6)

Note. pMD= p-median with distance constraints.
The lowest mean objective value for each problem class is highlighted in bold. In case of ties, the value of the best-performing setting is highlighted.

#cost The number of instances where a value ordering heuristic improves the value of the objective function, but
worsens the total CPU time.
#eq The number of instances where a value ordering heuristic achieves similar results compared to lexico in both
metrics.

Regarding run times, we consider that a heuristic improves the performance if it achieves at least a 30% speed-up
compared to lexico. In any pairwise comparison between one of the four heuristics and lexico we consider the run time
performance as equal on instances where both heuristics terminated in < 1 s.

Tables 4 and 5, as well as Table 8, demonstrate that in the p-median-based classes, greedy-minmax, greedy-minsum,
and greedy-lookback provide slight improvements compared to lexico. However, greedy-lookahead exhibits the best over-
all performance, as it is able to reduce the total run-times in most cases (often, quite considerably), while also notably
improving the quality of the solutions discovered. For example, in classes pmed21 to pmed31 (|P| > |CL|), it is able to
reduce the total run times by an order of magnitude, while discovering better solutions, as well as more optimal ones.
Also, in pmed33 where the solver timed out in all instances (Table 5), while all four heuristics were able to provide better
results in terms of solution quality compared to lexico, greedy-lookahead was the best by considerable margins. Notably,
in the pairwise comparison between greedy-lookahead and lexico given in Table 8, 168 instances are classified in the #imp
column, whereas only 19 are classified in the #wor column. The respective numbers for greedy-lookback are 149 and 20,
meaning that this heuristic is also very efficient compared to lexico.

Accordingly, Tables 6 and 7, as well as Table 8, demonstrate that the value ordering heuristics achieve better results
than lexico in most classes of the grid categories, especially in grid1 problems. In this category, they reduce the average
cost in at least half of the classes (e.g., g4 and g6), and in the most challenging class, g11, the heuristics obtain a significant
cost reduction, with greedy-lookback reducing the cost by more than half. The results in grid2 do not differ significantly,

Iosif et al. 23

Table 6. Comparing Value Ordering Heuristics on Grid Based pMD Problems (GRID1).

GRID1

Lexico Greedy-minmax Greedy-minsum

Class
∑

cpu tb cost
∑

cpu tb cost
∑

cpu tb cost

g1 1 (0) 0 37.1 (2) 1 (0) 0 36.8 (4) 1 (0) 0 36.9 (3)
g2 27 (0) 1 28.9 (7) 30 (0) 0.4 28.9 (7) 28 (0) 0.6 28.9 (7)
g3 199 (0) 18 144.7 (0) 118 (0) 10 145.1 (0) 100 (0) 8 145.6 (0)
g4 >32,827 (9) 1,489 122.1 (0) >32,099 (7) 1,823 120.9 (0) >32,233 (8) 1,592 121.1 (0)
g5 >30,020 (7) 1,810 126.8 (1) >27,204 (6) 724 126.58 (1) >27,895 (6) 1,117 1278 (1)
g6 >23,473 (5) 933 189.6 (0) >22,322 (5) 502 190.229 (0) >22,290 (5) 511 1878 (0)
g7 >36,000 (10) 1,727 185.8 (0) >36,000 (10) 1,630 181.6 (0) >36,000 (10) 1,340 183.3 (0)
g8 1,607 (0) 146 439.8 (0) 1,522 (0) 91 440.1 (0) 786 (0) 58 441.7 (0)
g9 >31,546 (8) 1,657 378.5 (0) >30,816 (8) 1,440 374.7 (0) >31,040 (8) 1,691 372.9 (0)
g10 >27,476 (6) 1,427 778.6 (0) >25,822 (6) 969 773.1 (0) >26,102 (6) 1,013 775.1 (0)
g11 >36,000 (10) 3,490 946.6 (0) >36,000 (10) 3,498 829.1 (0) >36,000 (10) 3,519 790.8 (0)

Greedy-lookback Greedy-lookahead

g1 1 (0) 0 36.9 (4) 1 (0) 0 36.8 (5)
g2 21 (0) 0.7 28.8 (8) 31 (0) 1 28.7 (9)
g3 94 (0) 7 145 (0) 126 (0) 9 146.3 (0)
g4 >31,813 (6) 1,419 121 (0) >32,846 (9) 1,778 121.3 (0)
g5 >27,808 (6) 920 126.58 (1) >30,233 (7) 1,743 127.1 (1)
g6 >22,165 (5) 553 186.58 (0) >23,521 (5) 508 189.888 (0)
g7 >36,000 (10) 1,468 183.4 (0) >36,000 (10) 1,549 (0) 179.3 (0)
g8 1,014 (0) 80 443.1 (0) 930 (0) 78 441.4 (0)
g9 >30,913 (8) 1,551 372.4 (0) >31,403 (8) 1,513 372.1 (0)
g10 >26,193 (6) 902 775.3 (0) >28,358 (6) 770 773.8 (0)
g11 >36,000 (10) 2,093 419.9 (0) >36,000 (10) 2,522 422.7 (0)

Note. pMD= p-median with distance constraints.
The lowest mean objective value for each problem class is highlighted in bold. In case of ties, the value of the best-performing setting is highlighted.

with the heuristics providing better performance in most classes, with the notable exception of greedy-lookahead. Overall,
the greedy-lookback heuristic seems to be the best option in grid problems. As seen in Table 8, the pairwise comparison
between greedy-lookback and lexico classifies 132 instances in the #imp column, and 75 in the #wor column. In contrast,
86 instances fall in the #imp column for greedy-lookahead and 103 in the #wor column. We conjecture that this discrepancy
is most likely due to the small number of solutions present in such problems, resulting in greedy-lookahead being often
misled, but this requires further investigation.

In summary, greedy-lookback and greedy-lookahead demonstrated the best performance among the proposed value
ordering heuristics, with respect to both solution quality and run-time. Our results from p-median-based classes indicate
that when faced with problems that have many feasible solutions, and therefore a higher probability of many promising
paths, a heuristic such as greedy-lookahead can be quite useful. However, using such a heuristic can sometimes be both
expensive and misleading when dealing with highly constrained problems (e.g., grid2 classes), as it may make false
decisions that direct the solver toward unproductive exploration of paths that do not lead to solutions. On the other hand,
greedy-lookback is quite robust, as it dominates the standard lexico option in both types of problems, it is the best heuristic
in grid-based classes and is not far from greedy-lookahead in p-median-based ones.

7.2.3 Sampling. Table 9 demonstrates the effect of the sampling technique on CPU times and solution quality. Four
different settings, with varying numbers of samples, are compared. For each number of samples, we give the total CPU
times (

∑
cpu), mean cost values (cost), and number of optimal solutions discovered (#opt). Time-outs are presented as

in Tables 2 and 3. In these experiments, we used some classes of problems where CPh demonstrated better performance
than Gurobi and OR-Tools, such as g2 and g3. Additionally, we have selected classes where our solver exhibits worse
results (e.g., pmed33), in order to evaluate the ability of the sampling technique to improve solution quality on such hard
problems. Regarding the CPh solver’s settings, we use the greedy-lookback value ordering heuristic, as it demonstrated
the most robust performance among all the tested heuristics. Due to technical reasons, the experiments reported in Table 9,
including those with sample size 1, were conducted on a different machine than those of Tables 2 to 8. This is not a

24 The European Journal on Artificial Intelligence 0(0)

Table 7. Comparing Value Ordering Heuristics on Grid Based pMD Problems (GRID2).

GRID2

Lexico Greedy-minmax Greedy-minsum

Class
∑

cpu tb cost
∑

cpu tb cost
∑

cpu tb cost

g1(1) 4 (0) 0 57.05 (7) 4 (0) 0 56.95 (4) 4 (0) 0 56.79 (9)
g2(1) 83 (0) 2 72.8 (7) 64 (0) 2 73.25 (5) 88 (0) 3 73.2 (3)
g3(1) 136 (0) 3 40.9 (18) 127 (0) 2 40.9 (18) 138 (0) 3 40.7 (20)
g4(1) >29,560 (4) 804 98.95 (8) >29,171 (4) 785 98.5 (7) >29,609 (4) 600 98.45 (7)
g5(1) >63,462 (16) 1,209 136 (0) >62,686 (16) 1,440 134.05 (0) >62,864 (16) 1,464 133.4 (0)
g6(1) >37,210 (7) 1,063 298.7 (3) >37,865 (7) 652 298.2 (1) >37,927 (7) 632 297.75 (3)
g7(2) 3 (0) 0 56.05 (7) 2 (0) 0 55.7 (9) 2 (0) 0 55.4 (12)
g8(2) >10,159 (1) 392 183.75 (1) >12,436 (1) 315 184.1 (0) >11,984 (1) 397 183.65 (0)
g9(2) >26,960 (5) 747 176.55 (0) >28,698 (4) 565 176.25 (0) >33,531 (4) 879 176.7 (0)
g10(2) >39,189 (9) 857 46.4117 (5) >34,884 (9) 784 47.55 (5) >36,641 (8) 880 46.95 (6)

Greedy-lookback Greedy-lookahead

g1(1) 4 (0) 0 56.68 (9) 6 (0) 0.2 56.89 (7)
g2(1) 85 (0) 3 73.35 (3) 89 (0) 1 72.75 (8)
g3(1) 128 (0) 2 40.75 (19) 186 (0) 4 40.7 (20)
g4(1) >29,409 (4) 460 98.35 (8) >36,430 (8) 968 99.1 (7)
g5(1) >62,857 (16) 1,383 133.6 (1) >66,223 (16) 1,546 135.6 (0)
g6(1) >37,404 (7) 447 298.35 (2) >46,409 (9) 1,114 300.45 (3)
g7(2) 2 (0) 0 55.8 (10) 3 (0) 0 55.85 (9)
g8(2) >10,951 (2) 223 183.15 (2) >18,896 (4) 347 181.518 (0)
g9(2) >30,860 (5) 712 175.9 (0) >30,068 (6) 788 176.35 (1)
g10(2) >36,528 (9) 588 47.45 (5) >39,132 (9) 740 46.7516 (5)

Note. pMD= p-median with distance constraints.
The lowest mean objective value for each problem class is highlighted in bold. In case of ties, the value of the best-performing setting is highlighted.

Table 8. Improvements Overall all Instances Between Lexico and Every Greedy Heuristic in all pMD Categories.

Greedy-minmax Greedy-minsum

Class #imp #cost #time #eq #wor #imp #cost #time #eq #wor

|CL| ≥ |P| 54 4 4 29 29 54 1 14 29 22
|P| > |CL| 65 3 23 7 22 86 1 19 3 11
Total (pmed) 119 7 27 36 51 140 2 33 32 33
GRID1 56 1 6 18 29 56 1 8 16 29
GRID2 67 1 9 69 54 74 3 7 68 48
Total (Grid) 123 2 15 87 83 130 4 15 84 77

Greedy-lookback Greedy-lookahead

Class #imp #cost #time #eq #wor #imp #cost #time #eq #wor

|CL| ≥ |P| 61 1 16 28 14 66 1 6 34 13
|P| > |CL| 88 0 23 3 6 102 1 9 2 6
Total (pmed) 149 1 39 31 20 168 2 15 36 19
GRID1 54 1 8 21 26 49 1 9 33 18
GRID2 78 4 4 65 49 37 15 2 61 85
Total (Grid) 132 5 12 86 75 86 16 11 94 103

Note. pMD= p-median with distance constraints.
The total values for each metric in the pmed and Grid categories are highlighted in bold.

Iosif et al. 25

Table 9. The Effect of Sampling on Central Processing Unit (CPU) Times and Solution Quality.

s=1 s=5 s=10 s=20

Class
∑

cpu cost #opt
∑

cpu cost #opt
∑

cpu cost #opt
∑

cpu cost #opt

|CL| ≥ |P|
pmed10 >29,017 (8) 1,628.3 0 >30,906 (8) 1,622.7 1 >32,857 (9) 1,626.4 0 >33,219 (9) 1,633.3 0
pmed15 >36,000 (10) 2,114.7 0 >36,000 (10) 2,115 0 >36,000 (10) 2,114.3 0 >36,000 (10) 2,116.8 0
pmed21 3 (0) 9,623.9 8 7 (0) 9,614.9 9 8 (0) 9,614.9 9 9 (0) 9,614.9 9
pmed31 10 (0) 10,456.4 6 23 (0) 10,442.1 9 27 (0) 10,441 10 29 (0) 10,441 10
pmed33 >36,000 (10) 3,484.1 0 >36,000 (10) 3,501.9 0 >36,000 (10) 3,507.5 0 >36,000 (10) 3,510.5 0
pmed38 85 (0) 7,156.7 2 330 (0) 7,138.5 6 341 (0) 7,134.3 8 356 (0) 7,135.5 8

|P| > |CL|
pmed10 >25,030 (5) 369.2 0 >35,425 (9) 373.7 0 >34,525 (9) 374.4 0 >36,000 (10) 375.2 0
pmed15 >36,000 (10) 511.3 2 >36,000 (10) 518.2 0 >36,000 (10) 518.6 0 >36,000 (10) 519.4 0
pmed21 48 (0) 1,794.6 3 160 (0) 1,788.9 9 202 (0) 1,789.6 7 265 (0) 1,789.4 7
pmed31 138 (0) 1,991.1 6 402 (0) 1,988 8 510 (0) 1,988.5 8 686 (0) 1,987.9 9
pmed33 >36,000 (10) 970.9 0 >36,000 (10) 977 0 >36,000 (10) 978.7 0 >36,000 (10) 979.3 0
pmed38 143 (0) 2,488.3 5 507 (0) 2,481.1 6 637 (0) 2,480 7 766 (0) 2,478.8 9

GRID1

g2 27 (0) 28.8 8 55 (0) 28.6 10 81 (0) 28.7 9 127 (0) 28.6 10
g3 121 (0) 145 0 991 (0) 143.2 0 2,987 (0) 142.1 0 8,554 (0) 141.8 1
g4 >32,830 (9) 124 0 >32,895 (9) 119.569 0 >32,934 (9) 119.899 0 >32,920 (9) 120.229 0
g5 >29,557 (6) 126.58 1 >29,745 (7) 126.258 1 >29,802 (7) 126.258 1 >29,803 (7) 126.138 1
g6 >23,210 (5) 187.258 0 >23,662 (5) 1878 0 >23,766 (5) 1878 0 >23,523 (5) 186.888 0
g8 1,299 (0) 443.1 0 >9,402 (1) 436.3 0 >15,740 (3) 440.2 0 >20,523 (5) 439.5 0

GRID2

g1(1) 5 (0) 56.68 9 21 (0) 56.21 15 45 (0) 56.16 17 107 (0) 56 19
g2(1) 111 (0) 73.35 3 409 (0) 72 9 837 (0) 71.6 12 1,746 (0) 71.3 14
g7(2) 3 (0) 55.8 10 12 (0) 55.15 15 33 (0) 55.05 16 83 (0) 54.95 18
g8(2) >12,107 (2) 183.15 2 >17,128 (4) 182.75 1 >16,889 (4) 181.6 1 >26,912 (3) 181.6 1
g9(2) >34,660 (6) 176.1 0 >45,122 (11) 176.3 0 >48,410 (11) 176.95 1 >54,378 (12) 176.9 0
g10(2) >37,977 (9) 47.55 5 >48,800 (10) 47.2 8 >56,993 (13) 47.65 6 >60,473 (14) 47.80 5

problem, as our goal regarding the sampling technique is to investigate how it affects the CP solver’s performance in terms
of the quality of solutions and the run time. The machine has 20 Intel(R) Xeon(R) Gold 6230 CPU cores at 2.10 GHz and
32 GB of main memory.

As expected, as the number of samples grows, so does the CPU time. This is due to the weaker pruning that is entailed
by the lower bounds being computed, which means that larger portions of the search space are explored, and also to
the overhead caused by the repeated runs of the greedy heuristic while computing the bounds. This overhead can have a
significant impact on problems that CPh found difficult to solve and timed out, and can result in worse solutions. This is
particularly indicated by the results of the pmed15 and pmed33 classes in p-median-based problems. On the other hand,
there is a significant improvement in classes that were relatively easy for the solver. In classes such as pmed21, pmed38
and g2, g8 from both the grid1 and grid2 categories, the solver is able to obtain better solutions and, especially in p-median
classes, more optimal ones. Even with a small number of samples (e.g., s = 5) CPh is able to quite often discover many
more optimal solutions, albeit by increasing the run times.

To conclude, in small problems, or when the cost of the solution is of prime importance, compared to the run time, the
sampling method can be useful, as it helps to obtain solutions of better quality. However, in large problems, or when the
run time is crucial, the sampling method seems to add an unnecessary CPU time overhead.

8 Conclusion
We have investigated the pMD, a variant of the p-median problem where distance constraints exist between facilities and
between facilities and clients. This problem can be used to model the location of semi-obnoxious facilities. We proposed

26 The European Journal on Artificial Intelligence 0(0)

ILP and CP approaches toward modeling and solving pMDs. We also demonstrated how a recent heuristic CP approach for
the p-dispersion problem with distance constraints can be adapted and applied to the pMD. Results showed that incorpo-
rating a greedy branch pruning heuristic into a CP solver along with employing a simpler model of the problem, provides
a solution tool that displays more stable performance across problem classes with different characteristics compared to
standard ILP and CP solvers, despite not being the best option in all the classes tried. Additionally, we proposed four
specialized value ordering heuristics designed to guide the search toward promising directions by exploiting information
of the current search state. Results showed that in many cases these heuristics in combination with the branch pruning
method were able to provide solutions of better quality compared to lexicographic value ordering, as well as better run
times. Finally, we showed that the estimation of the greedy bounding heuristic can be more precise (although sacrificing
CPU time performance) by trying different orderings for the variables it considers during the computation of the bound.
In this way, more optimal solutions can be obtained and the objective cost can be reduced. As for future work, it would
be very interesting to consider real-world case studies for the pMD and to investigate the applicability of the heuristic CP
approach to other types of constraint optimization problems from domains such as scheduling and resource allocation.

ORCID iDs
Panteleimon Iosif https://orcid.org/0009-0001-4589-3346
Nikolaos Ploskas https://orcid.org/0000-0001-5876-9945
Kostas Stergiou https://orcid.org/0000-0002-5702-9096

Funding
The authors received no financial support for the research, authorship, and/or publication of this article.

Declaration of Conflicting Interests
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Notes
1. That is, nodes that are adjacent in the original grid.
2. We include this number for reasons of presentation uniformity, as the optimal is not known for all instances of the other generation

models.

References
Balinski, M. (1965). Integer programming: Methods, uses, computations. Management Science, 12(3), 253–313. https://doi.org/

10.1287/mnsc.12.3.253
Beasley, J. E. (1985). A note on solving large p-median problems. European Journal of Operational Research, 21(2), 270–273.

https://doi.org/10.1016/0377-2217(85)90040-2
Beltran, C., Tadonki, C., & Vial, J. P. (2006). Solving the p-median problem with a semi-lagrangian relaxation. Computational

Optimization and Applications, 35(2), 239–260. https://doi.org/10.1007/s10589-006-6513-6
Berman, O., & Huang, R. (2008). The minimum weighted covering location problem with distance constraints. Computers and

Operations Research, 35(12), 356–372. https://doi.org/10.1016/j.cor.2006.03.003
Bessiere, C. (2006). Constraint propagation. In Foundations of artificial intelligence (Vol. 2, pp. 29–83). Elsevier.

https://doi.org/10.1016/S1574-6526(06)80007-6
Boussemart, F., Hemery, F., Lecoutre, C., & Sais, L. (2004). Boosting systematic search by weighting constraints. In Proceedings of the

16th European conference on artificial intelligence, ECAI’04 (pp. 146–150). IOS Press.
Brimberg, J., & Juel, H. (1998). A minisum model with forbidden regions for locating a semi-desirable facility in the plane. Location

Science, 6(1), 109–120. https://doi.org/10.1016/S0966-8349(98)00050-3
Cambazard, H., Mehta, D., O’Sullivan, B., & Quesada, L. (2012). A computational geometry-based local search algorithm for planar

location problems. In N. Beldiceanu, N. Jussien, & É. Pinson (Eds.), Integration of AI and OR techniques in constraint programming
for combinatorial optimization problems (pp. 97–112). Springer. https://doi.org/10.1007/978-3-642-29828-8_7

Carrizosa, E., & Plastria, F. (1999). Location of semi-obnoxious facilities. Studies in Locational Analysis, 12(1999), 1–27.
https://www.researchgate.net/profile/Frank-Plastria-2/publication/246714839_Location_of_semi-obnoxious_facilities/links/543ec
2810cf21c84f23cb2e3/Location-of-semi-obnoxious-facilities.pdf

Chaudhry, S. S., McCormick, S. T., & Moon, I. D. (1986). Locating independent facilities with maximum weight: Greedy heuristics.
International Journal of Management Science, 14(5), 383–389. https://doi.org/10.1016/0305-0483(86)90079-4

Church, R. L. (2003). Cobra: A new formulation of the classic p-median location problem. Annals of Operations Research, 122,
103–120. https://doi.org/10.1023/A:1026142406234

https://orcid.org/0009-0001-4589-3346
https://orcid.org/0000-0001-5876-9945
https://orcid.org/0000-0002-5702-9096
https://doi.org/10.1287/mnsc.12.3.253
https://doi.org/10.1016/0377-2217(85)90040-2
https://doi.org/10.1007/s10589-006-6513-6
https://doi.org/10.1016/j.cor.2006.03.003
https://doi.org/10.1016/S0966-8349(98)00050-3
https://www.researchgate.net/profile/Frank-Plastria-2/publication/246714839_Location_of_semi-obnoxious_facilities/links/543ec2810cf21c84f23cb2e3/Location-of-semi-obnoxious-facilities.pdf
https://doi.org/10.1016/0305-0483(86)90079-4
https://doi.org/10.1023/A:1026142406234

Iosif et al. 27

Church, R. L., & Meadows, M. E. (1977). Results of a new approach to solving the p-median problem with maximum distance
constraints. Geographical Analysis, 9(4), 364–378. https://doi.org/10.1111/j.1538-4632.1977.tb00589.x

Chvatal, V. (1979). A greedy heuristic for the set-covering problem. Mathematics of Operations Research, 4(3), 233–235.
https://doi.org/10.1287/moor.4.3.233

Comley, W. J. (1995). The location of ambivalent facilities: Use of a quadratic zero-one programming algorithm. Applied Mathematical
Modeling, 19(1), 26–29. https://doi.org/10.1016/0307-904X(94)00004-P

Cornuejols, G., Nemhauser, G. L., & Wolsey, L. A. (1980). A canonical representation of simple plant location problems and its
applications. SIAM Journal on Algebraic Discrete Methods, 1(3), 261–272. https://doi.org/10.1137/0601030

Densham, P. J., & Rushton, G. (1992). Strategies for solving large location-allocation problems by heuristic methods. Environment and
Planning A, 24(2), 289–304. https://doi.org/10.1068/a240289

Drezner, T., Drezner, Z., & Schöbel, A. (2018). The Weber obnoxious facility location model: A big arc small arc approach. Computers
and Operations Research, 98, 240–250. https://doi.org/10.1016/j.cor.2018.06.006

Drezner, Z., Kalczynski, P., & Salhi, S. (2019). The planar multiple obnoxious facilities location problem: A Voronoi based heuristic.
Omega, 87, 105–116. https://doi.org/10.1016/j.omega.2018.08.013

Fazel-Zarandi, M. M., & Beck, J. C. (2009). Solving a location-allocation problem with logic-based benders’ decomposition. In I. P.
Gent (Ed.), Principles and practice of constraint programming—CP 2009 (pp. 344–351). Springer. https://doi.org/10.1007/978-3-
642-04244-7_28

Guns, T. (2019). Increasing modeling language convenience with a universal n-dimensional array, CPpy as python-embedded
example. In Proceedings of the 18th workshop on constraint modelling and reformulation at CP (Modref 2019) (Vol. 19).
https://modref.github.io/papers/ModRef2019_Increasing%20modeling%20language%20convenience%20with%20a%20universal%
20ndimensional%20array.pdf

Gurobi Optimization, LLC (2023). Gurobi optimizer reference manual. https://www.gurobi.com.
Hakimi, L. (1964). Optimum locations of switching centers and the absolute centers and medians of a graph. Operations Research,

12(3), 450–459. https://doi.org/10.1287/opre.12.3.450
Hakimi, L. (1965). Optimum distribution of switching centers in a communication network and some related graph theoretic problems.

Operations Research, 13(3), 462–475. https://doi.org/10.1287/opre.13.3.462
Iosif, P., Ploskas, N., & Stergiou, K. (2024a). A heuristic constraint programming approach to the p-median problem with distance

constraints. In Proceedings of the 13th Hellenic conference on artificial intelligence, SETN ’24 (Article 7, pp. 1–10). Association for
Computing Machinery.

Iosif, P., Ploskas, N., Stergiou, K., & Tsouros, D. C. (2024b). A CP/LS heuristic method for maxmin and minmax location problems
with distance constraints. In P. Shaw (Ed.), 30th international conference on principles and practice of constraint programming, CP
2024, September 2–6, 2024, Girona, Spain, LIPIcs (Vol. 307, pp. 14:1–14:21). Schloss Dagstuhl—Leibniz-Zentrum für Informatik.
https://doi.org/10.4230/LIPIcs.CP.2024.14

Khumawala, B. M. (1973). An efficient algorithm for the p-median problem with maximum distance constraints. Geographical Analysis,
5(4), 309–321. https://doi.org/10.1111/j.1538-4632.1973.tb00493.x

Krarup, J., Pisinger, D., & Plastria, F. (2002). Discrete location problems with push-pull objectives. Discrete Applied Mathematics,
123(1–3), 363–378. https://doi.org/10.1016/S0166-218X(01)00346-8

Kuehn, A. A., & Hamburger, M. J. (1963). A heuristic program for locating warehouses. Management Science, 9, 643–666.
https://doi.org/10.1287/mnsc.9.4.643

Mackworth, A. K. (1977). Consistency in networks of relations. Artificial Intelligence, 8(1), 99–118. https://doi.org/10.1016/
0004-3702(77)90007-8

Maier, A., & Hamacher, H. W. (2019). Complexity results on planar multifacility location problems with forbidden regions.
Mathematical Methods of Operations Research, 89, 433–484. https://doi.org/10.1007/s00186-019-00670-0

Mladenović, N., Brimberg, J., Hansen, P., & Moreno-Pérez, J. A. (2007). The p-median problem: A survey of metaheuristic approaches.
European Journal of Operational Research, 179(3), 927–939. https://doi.org/10.1016/j.ejor.2005.05.034

Moon, D. I., & Chaudhry, S. S. (1984). An analysis of network location problems with distance constraints. Management Science,
30(3), 290–307. https://doi.org/10.1287/mnsc.30.3.290

Moon, I. D., & Papayanopoulos, L. (1991). Minimax location of two facilities with minimum separation: Interactive graphical solutions.
Journal of the Operations Research Society, 42, 685–694. https://doi.org/10.1057/jors.1991.134

Orloff, C. S. (1977). A theoretical model of net accessibility in public facility location. Geographical Analysis, 9, 244–256.
https://doi.org/10.1111/j.1538-4632.1977.tb00577.x

Ortigosa, P. M., Hendrix, E. M., & Redondo, J. L. (2015). On heuristic bi-criterion methods for semi-obnoxious facility location.
Computational Optimization and Applications, 61, 205–217. https://doi.org/10.1007/s10589-014-9709-1

O.-T. Development Team (2024)OR-Tools, CP-SAT solver. https://developers.google.com/optimization/cp/cp-solver.

https://doi.org/10.1111/j.1538-4632.1977.tb00589.x
https://doi.org/10.1287/moor.4.3.233
https://doi.org/10.1016/0307-904X(94)00004-P
https://doi.org/10.1137/0601030
https://doi.org/10.1068/a240289
https://doi.org/10.1016/j.cor.2018.06.006
https://doi.org/10.1016/j.omega.2018.08.013
https://modref.github.io/papers/ModRef2019_Increasing%20modeling%20language%20convenience%20with%20a%20universal%20ndimensional%20array.pdf
https://www.gurobi.com
https://doi.org/10.1287/opre.12.3.450
https://doi.org/10.1287/opre.13.3.462
https://doi.org/10.1111/j.1538-4632.1973.tb00493.x
https://doi.org/10.1016/S0166-218X(01)00346-8
https://doi.org/10.1287/mnsc.9.4.643
https://doi.org/10.1016/0004-3702(77)90007-8
https://doi.org/10.1007/s00186-019-00670-0
https://doi.org/10.1016/j.ejor.2005.05.034
https://doi.org/10.1287/mnsc.30.3.290
https://doi.org/10.1057/jors.1991.134
https://doi.org/10.1111/j.1538-4632.1977.tb00577.x
https://doi.org/10.1007/s10589-014-9709-1
https://developers.google.com/optimization/cp/cp-solver

28 The European Journal on Artificial Intelligence 0(0)

Ploskas, N., & Stergiou, K. (2022). Integer programming models for the semi-obnoxious p-median problem.
https://arxiv.org/abs/2207.05590.

Ploskas, N., Stergiou, K., & Tsouros, D. C. (2023). The p-dispersion problem with distance constraints. In R. H. C. Yap
(Ed.), 29th International conference on principles and practice of constraint programming (CP 2023), Leibniz Interna-
tional Proceedings in Informatics (LIPIcs) (Vol. 280, pp. 30:1–30:18). Schloss Dagstuhl—Leibniz-Zentrum für Informatik.
https://doi.org/10.4230/LIPIcs.CP.2023.30

ReVelle, C. S., & Swain, R. W. (1970). Central facilities location. Geographical Analysis, 2(1), 30–42. https://doi.org/
10.1111/j.1538-4632.1970.tb00142.x

Rosing, K. E., ReVelle, C., & Rosing-Vogelaar, H. (1979). The p-median and its linear programming relaxation: An approach to large
problems. Journal of the Operational Research Society, 30(9), 815–823. https://doi.org/10.1057/jors.1979.192

Rossi, F., Van Beek, P., & Walsh, T. (2006). Handbook of constraint programming. Elsevier.
Sabin, D., & Freuder, E. C. (1994). Contradicting conventional wisdom in constraint satisfaction. In A. Borning (Ed.), Principles and

practice of constraint programming (pp. 10–20). Springer. https://doi.org/10.1007/3-540-58601-6_86
Sorkhabi, S. Y. D., Romero, D. A., Beck, J. C., & Amon, C. H. (2018). Constrained multi-objective wind farm layout

optimization: Novel constraint handling approach based on constraint programming. Renewable Energy, 126(C), 341–353.
https://doi.org/10.1016/j.renene.2018.03.053

Tansel, B. C., Francis, R. L., Lowe, T. J., & Chen, M. (1982). Duality and distance constraints for the nonlinear p-center problem and
covering problem on a tree network. Operations Research, 30(4), 725–744. https://doi.org/10.1287/opre.30.4.725

Tutunchi, G. K., & Fathi, Y. (2019). Effective methods for solving the bi-criteria p-center and p-dispersion problem. Computers &
Operations Research, 101, 43–54. https://doi.org/10.1016/j.cor.2018.08.009

Welch, S., & Salhi, S. (1997). The obnoxious p facility network location problem with facility interaction. European Journal of
Operations Research, 102, 302–319. https://doi.org/10.1016/S0377-2217(97)00111-2

Yapicioglu, H., Smith, A. E., & Dozier, G. (2007). Solving the semi-desirable facility location problem using bi-objective particle
swarm. European Journal of Operational Research, 177(2), 733–749. https://doi.org/10.1016/j.ejor.2005.11.020

https://arxiv.org/abs/2207.05590
https://doi.org/10.1111/j.1538-4632.1970.tb00142.x
https://doi.org/10.1057/jors.1979.192
https://doi.org/10.1016/j.renene.2018.03.053
https://doi.org/10.1287/opre.30.4.725
https://doi.org/10.1016/j.cor.2018.08.009
https://doi.org/10.1016/S0377-2217(97)00111-2
https://doi.org/10.1016/j.ejor.2005.11.020

	1 Introduction
	2 Related Work
	2.1 Distance Constraints

	3 Background and Problem Definition
	3.1 Constraint Programming (CP)
	3.2 Integer Linear Programming (ILP)
	3.3 The p-Median Problem With Distance Constraints

	4 ILP Formulation
	5 CP Formulation
	6 A Heuristic CP Approach to the pMD
	6.1 Search Framework
	6.2 Branch Pruning Heuristic
	6.3 An Example of Erroneous Pruning and a Sampling Technique
	6.4 Value Ordering Heuristics
	6.4.1 Greedy-Minmax
	6.4.2 Greedy-Minsum
	6.4.3 Greedy Look-Back
	6.4.4 Greedy Look-Ahead

	7 Experiments
	7.1 Problem Generation Models
	7.1.1 Grid-Based Generation Model
	7.1.2 Minimum Weighted Covering Generation Model
	7.1.3 p-Median Benchmark Library Based Generation

	7.2 Experimental Results
	7.2.1 Comparing the Solvers
	7.2.2 Value Ordering Heuristics
	7.2.3 Sampling

	8 Conclusion
	ORCID iDs
	Funding
	Declaration of Conflicting Interests
	Notes
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

