
Vol.:(0123456789)1 3

European Food Research and Technology 
https://doi.org/10.1007/s00217-023-04347-1

ORIGINAL PAPER

Application of UV–Vis spectroscopy for the detection of adulteration 
in Mediterranean honeys

Dafni Dimakopoulou‑Papazoglou1  · Nikolaos Ploskas2  · Salud Serrano3  · Carolina Santos Silva4,5  · 
Vasilis Valdramidis4,6  · Konstantinos Koutsoumanis1  · Eugenios Katsanidis1 

Received: 31 May 2023 / Revised: 24 July 2023 / Accepted: 29 July 2023 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
The present study aimed to identify adulteration of honey with sugar syrups and colorants using UV–Vis spectroscopy, 
combined with multivariate statistical analysis. A total of 209 honeys were used, including 151 commercial honey samples 
(thyme, pine, and polyfloral honeys) collected from different countries of Mediterranean (Greece, Malta, Spain, Tunisia, and 
Turkey) and 58 adulterated Greek thyme honey samples by adding syrups and colorants. Honey adulteration was identified 
using Principal Component Analysis (PCA) along with Random Forest (RF), Partial Least Squares – Discriminant Analy-
sis (PLS-DA), and Data Driven-Soft Independent Modelling of Class Analogies (DD-SIMCA) using the spectral range of 
220–550 nm. Comparatively, DD-SIMCA models produced better results in terms of accuracy and sensitivity in most cases 
evaluated. The results support the good predictive capability of UV–Vis spectroscopy combined with chemometrics for the 
determination of honey adulteration, and thus, it could be utilized as a rapid, inexpensive, and simple method.

Keywords Mediterranean honey · UV–Vis spectroscopy · Adulteration · Sugars · Colorants · Multivariate statistical 
analysis

Introduction

Honey has been characterized as a functional food and its 
consumption has gained in popularity due to its nutritional 
qualities and beneficial health effects [1]. Generally, honey 
is produced by Apis mellifera bees from the nectar of flow-
ers and secretion of plants or insects which are collected 
from a great variety of florals [2]. Honey is composed of 
70–80% saccharides (mainly glucose and fructose and in 
minor quantities maltose and sucrose), 15–20% water and 
small amounts of beneficial substances, such as proteins, 
amino acids, phenolics, vitamins, pigments, enzymes, and 
other biological compounds [3, 4]. The variety of these 
compounds makes honey a nutritionally valuable product 
that differs significantly from simple sweeteners like sugar 
syrups [5] and therefore has a higher commercial value. 
Therefore, honey is a target for adulteration worldwide [6], 
usually by the addition of inexpensive ingredients, such as 
sugar syrups and colorants, an illegal practice that decreases 
the cost and the nutritional value of honey.

One of the most crucial challenges in quality assurance 
and food safety is food authentication, which is of concern 
to regulatory agencies, food producers, distributors, retailers, 
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and consumer advocacy organizations [7]. Detecting honey 
adulteration can be challenging due to honey’s high natu-
ral diversity that results from the habitat and the plethora 
of plant species from which honey is produced, as well as 
from the maturity level and the processing and storage con-
ditions [7–9]. The most common method for honey adultera-
tion is the addition of low-cost sugars at some point during 
production or processing [10]. Specifically, this is accom-
plished by either overfeeding the bees with sugar during 
nectar flow period to get more honey, or by adding sugar 
syrups to honey after production [11]. For the adulteration 
of honey, several low-cost sugars, such as sucrose syrup, 
glucose syrup, fructose syrup, maltose syrup, corn syrup, 
cane sugar, rice syrup, beet syrup, inverted syrup, etc., have 
been used [12–15]. Additionally, another type of adultera-
tion, which occurs to a lesser extent, is the addition of color-
ants to honey (caramel color, classes E150c and E150d), as it 
is widely accepted that darker coloured honey is associated 
with stronger antioxidant activity due to its high phenolic 
compounds content [3, 16].

The authenticity of honey is crucial for both commer-
cial and health reasons. So far, physicochemical analysis 
has been successfully used to determine various adulterants 
such as water, sucrose, invert sugar, dextrin, and starch [17]. 
However, often classical physicochemical analyses are not 
enough to determine whether or not the honey is fraudulent, 
so more sophisticated analytical techniques need to be used, 
such as high-performance liquid chromatography (HPLC) 
[18, 19], gas chromatography–mass spectrometry (GC–MS) 
[20], nuclear magnetic resonance (NMR) spectroscopy [21, 
22], and carbon isotope ratio analysis [23, 24]. Despite 
the efficacy of these techniques, they are time consuming, 
require expensive equipment, intricate sample preparation, 
and experienced personnel. Hence, due to the need for rapid 
results and economic and simple methods for the detection 
of adulteration in honey, alternative techniques were effec-
tively developed, such as spectroscopic techniques including 
Fourier transform infrared spectroscopy (FTIR) [5, 25, 26], 
near infrared spectroscopy (NIR) [13, 27, 28], Raman spec-
troscopy [29–31], and fluorescence spectroscopy [32, 33].

A promising spectral technique is ultraviolet – visible 
(UV–Vis) spectroscopy that has been successfully used to 
determine the botanical and geographical origin of honey 
[34–38]. However, studies regarding the detection of 
honey adulteration using UV–Vis spectroscopy are scarce 
[39–42] and limited only to the adulteration with sugar 
syrups. Specifically, de Souza et al. [39] utilized one-class 
classification methods for detecting honey adulteration 
with sugar syrups (corn syrup, agave syrup, and sugarcane 
molasses) using 235 samples. Suhandy et al. [40] used 
Principal Component Analysis (PCA) to discriminate pure 
(Sumbawa monofloral honey) and adulterated honey with 
high fructose corn syrup using a dataset of 50 samples. 

Mitra et al. [41] applied four machine learning classifiers 
to detect honey adulteration using 19 samples. Valinger 
et al. [42] utilized Partial Least Squares and Artificial 
Neural Network models for the detection of adulteration 
using acacia honey samples (15 pure and 135 adulterated 
honey samples). To the best of our knowledge, there are 
no studies using UV–Vis spectroscopy for the detection of 
honey adulteration that: (i) includes samples from various 
countries, (ii) aims to detect both colorant and sugar syrup 
adulterations, and (iii) compares the results of one-class 
and binary-class classification methods. In view of the 
above, the objective of the present study was to investigate 
the suitability of UV–Vis spectroscopy combined with 
multivariate statistical analysis to detect the adulteration 
of Mediterranean thyme honeys with sugar syrups, color-
ants, or the combination of both adulterants.

Materials and methods

Honey samples and sample preparation

A total of 209 honey samples were used in this study 
including 151 commercial samples (72 thyme, 20 pine, and 
59 polyfloral honeys) from different Mediterranean coun-
tries (46 honeys from Greece, 42 from Tunisia, 31 from 
Turkey, 22 from Spain, and 10 from Malta) and 58 adul-
terated samples. Four commercial thyme honeys collected 
from Greece (two light-coloured and two dark-coloured 
honeys), were used in order to prepare the adulterated sam-
ples. The adulteration of the samples was performed by 
adding (a) different sugar syrups, (b) different colorants, 
and (c) both sugar syrup and colorants. The sugar syrups 
used were either (a.1) rice syrup (La Finestra sul Cielo, 
S.A., Italy; ingredients: water, rice 35%) or (a.2) invert 
sugar (invert sugar, Innovative Cooking S.L., Madrid, 
Spain; Ingredients: invert sugar syrup, potassium sorbate). 
The colorants used were either (b.1) ammonia caramel, 
E150c (Krendal, S.A.S., Italy) or (b.2) sulfite ammonia 
caramel E150d (Krendal S.A.S., Italy). The honey samples 
were adulterated by syrups in a concentration level of 5, 
10 and 25% (w/w), while the colorants were added either 
directly to the honey at concentration level of 50, 100 and 
150 ppm, or to the rice syrup at the same concentrations 
and, subsequently to the honey in a concentration level 
of 25% (w/w). The addition of colorants occurred only in 
the light-coloured honey samples, as this type of adultera-
tion takes place in order to make the colour of the honeys 
darker. The preparation and the composition of the adul-
terated honey samples is shown in Table 1. After prepara-
tion, the samples were kept in clean plastic containers and 
stored under refrigeration until analysis.
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UV–Vis spectra data acquisition

In order to dissolve any crystals and obtain homogeneous 
samples, honeys were heated at 40 °C for 1 h in a water bath 
before spectra acquisition. Authentic and adulterated honey 
samples were diluted with double-distilled water to a con-
centration level of 3% (w/w) and the UV–Vis spectra acqui-
sition was carried out with a spectrophotometer (UV–1700, 
Shimadzu Corporation, Japan) in the wavelength range of 
190–900 nm at 0.5 nm interval. Likewise, sugar syrups were 
diluted to a concentration level of 3% as honey samples, 
while the colorants were diluted in double-distilled water 
at 100 mg/Kg. For the spectroscopic measurements, diluted 
honey samples and adulterants were placed in quartz cells 
and distilled water was used as blank. All measurements 
were performed at room temperature. Five specimen repli-
cates were used for each sample and the average spectrum 
of each honey sample was used for further analysis and con-
struction of the chemometric models.

Data pre‑processing and multivariate statistical 
analysis

Different pre-processing methods, such as Savitzky–Golay 
smoothing, 1st and 2nd derivatives (with a second order 
polynomial and 11-point window size) and standard nor-
mal variate (SNV), were evaluated for the elimination of 
systematic variations on the baseline. For all spectra pro-
cessing, the SNV and 1st derivative transformations were 
eventually used, as they produced the best results. PCA 
was used in the original and pre-processed data in order 

to visualize and explore the similarities and differences 
among the samples. For classification purposes, PCA was 
followed by the Random Forest (RF) algorithm, Partial 
Least Squares – Discriminant Analysis (PLS-DA), and 
Data Driven-Soft Independent Modelling of Class Analo-
gies (DD-SIMCA) for predicting whether or not a sample 
was adulterated.

Generally, DD-SIMCA is a supervised classification 
method which assigns new objects to the class when the degree 
of similarity obeys the decision criteria [37]. RF is a com-
monly used machine learning algorithm that combines the 
output of several decision trees to reach a single result. RF is a 
non-parametric method that can handle non-linearities. As an 
ensemble method, RF aggregates the predictions of all deci-
sion trees into the most popular results, thus achieving good 
results in various applications [43]. PLS-DA is a classification 
technique that maximizes the covariance between the spectral 
profiles and the classes to which the samples belong [44]. In 
contrast to DD-SIMCA, PLS-DA uses information from both 
target and non-target objects to optimize the model. Whilst 
DD-SIMCA uses information only from the target class to 
optimize the model. Previous studies on modelling approaches 
state that PLS-DA is not the best option to tackle food authen-
tication issues [45, 46]. This is because, among other reasons, 
it is hard or even impossible to anticipate the adulteration 
scenarios of a specific food product, hampering the develop-
ment of a robust discriminant analysis model that correctly 
classifies authentic food products without representative non-
target samples in the training stage. However, in the present 
study PLS-DA was employed to explore the spectral ranges 

Table 1  Composition of 
adulterated honey samples

Fraud scenario Sugar addition (w/w) % Colorant addition

Sugar adulteration Rice syrup – 5
Invert sugar – 5
Rice syrup – 10

Invert sugar – 10
Rice syrup – 25

Invert sugar – 25
Colorant adulteration E150c – 50 ppm

E150c – 100 ppm
E150c – 150 ppm
E150d – 50 ppm
E150d – 100 ppm
E150d – 150 ppm

Sugar and colorant adulteration Rice syrup – 25 E150c – 50 ppm
Rice syrup – 25 E150c – 100 ppm
Rice syrup – 25 E150c – 150 ppm
Rice syrup – 25 E150d – 50 ppm
Rice syrup – 25 E150d – 100 ppm
Rice syrup – 25 E150d – 150 ppm
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that maximizes the differences between the adulterated honey 
samples (target class) and the authentic samples.

For the discrimination of authenticity of the honeys, both 
one-class classification methods, i.e., DD-SIMCA, and binary 
class classification methods, i.e., RF and PLS-DA, were used. 
The data set was split into two groups, the training set for 
building the models and the test set for validating the trained 
models. Two different strategies were used to split the dataset 
intro training and test set since we use a one-class classifi-
cation method and two binary class classification methods. 
Specifically, for DD-SIMCA, 80% of the adulterated samples 
was used in the training set and the remaining 20% of the adul-
terated samples along with the authentic samples were placed 
in the test set. On the other hand, for RF and PLS-DA, 80% 
of the adulterated samples and 80% of the authentic samples 
were used in the training set, while the remaining 20% of both 
classes were placed in the test set. Therefore, in the case of 
DD-SIMCA, we aimed to test its ability to predict whether a 
sample is adulterated or not, while in the case of RF and PLS-
DA, the samples are categorized in adulterated or authentic. 
The models were cross-validated using random blocks vali-
dation with 10 iterations. For RF and PLS-DA approaches, 
classes for both target (adulterated), and non-target (authentic 
honey samples) samples were considered. In contrast, the DD-
SIMCA approach was used as an outlier detection method, by 
modelling only target (adulterated honey) class and excluding 
authentic honey samples that do not met the similarity criteria. 
The significance level was set at 5% (α = 0.05) for all models. 
The evaluation was performed utilizing accuracy, sensitivity, 
and specificity as figures of merit for DD-SIMCA, and accu-
racy, precision, recall, and F1-score for RF and PLS-DA. The 
evaluation criteria were calculated according to the following 
equations.

where TP: True Positives, TN: True Negatives, FP: False 
Positives, and FN: False Negatives from the confusion 
matrix.

(1)Accuracy =
(TP + TN)

Total
=

(TP + TN)

(TP + FP + FN + TN)

(2)Precision =
TP

Predicted positive
=

TP

(TP + FP)

(3)Recall or Sensitivity =
TP

Actual positive
=

TP

(TP + FN)

(4)Specificity =
TN

Actual negative
=

TN

(FP + TN)

(5)F1 − score = 2 ×
(Precision × Recall)

(Precision + Recall)

In the rest of the paper, all values for the criteria refer to 
those achieved in the test set. In the case of the DD-SIMCA 
models, we calculated the sensitivity on both the training 
and test set since the test set included only 20% of the true 
positive samples (as the rest of the true positive samples 
were included in the training set).

The experimental study was performed in Python using 
the scikit toolbox [47] of accessing the implementation of 
PCA, RF, and PLS-DA. The DD-SIMCA models were built 
using a MATLAB code available at https:// github. com/ yzont 
ov/ dd- simca.

Results and discussion

Analysis of UV–Vis spectra

Representative UV–Vis spectra of an authentic honey sam-
ple, adulterated samples of the same honey, and pure adul-
terants are depicted in Fig. 1. The UV–Vis spectra of the 
authentic and adulterated samples exhibit differences in the 
wavelength range of 250–350 nm (Fig. 1). According to 
Roshan et al. [37], the ultraviolet – visible region between 
200 and 500 nm contains information about various compo-
nents, such as phenolics, flavonoids, and conjugated systems 
that absorb in this spectral range. Generally, the range of 
250–350 nm is related to the absorbance of sugars (primar-
ily glucose and fructose), amino acids (mainly tryptophan), 
proteins and phenolic compounds [36, 38, 48].

For the determination of sugar adulteration, the addition 
of two different sugar types to honey, namely rice syrup and 
invert sugar (hydrolysed sucrose), was examined. In order 

Fig. 1  The original UV–Vis spectra of authentic honey, pure adulter-
ants, and adulterated samples with sugars and colorants in the highest 
concentration in the range of 190–900 nm
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to investigate the difference between the types and quantify 
the percentage of adulteration, four Greek honey samples 
were selected, two light-coloured and two dark-coloured 
honeys. As illustrated in Fig. 2a, the UV–Vis spectrum of 
pure rice syrup results in higher absorbance than that of 
authentic honey samples, while the spectrum of pure invert 
sugar results in lower absorbance. The spectra of rice syrup 
and invert sugar demonstrated an absorbance band at around 
260 nm. Therefore, as the level of adulteration increased, the 
peak height and the absorbance intensity also increased. The 
addition of syrups to the honey samples at low concentration 
(5 and 10% w/w) resulted in increased absorbance intensity 
at 280 nm, while the addition of higher concentration shifted 
the absorbance band in lower wavelengths in all tested honey 
samples (Fig. 2a). Specifically, the addition of rice syrup 
shifted the peak to 268 nm, while the addition of invert sugar 
to 265 nm. These results are in agreement with Guellis et al. 
[49], who studied polyfloral honey adulterated with corn 
syrup, and confirmed that the spectrum of syrup presented 
an intense band at 285 nm, whereas authentic honey showed 
a band with lower absorption intensity. On the other hand, 
Suhandy et al. [40], who studied the adulteration of Sum-
bawa honey with high fructose corn syrup, noticed that when 
syrups were added to the honeys at concentration level of 
10%, the absorbance peak at 280 nm decreased. It is noted 
that these results are in agreement with the literature, as the 
absorbance band 200–250 nm is related to sugars, mainly 
glycose and fructose, present in honey [36].

For the determination of colorant adulteration, the addi-
tion of colorants, ammonia caramel (E150c) and sulfite 
ammonia caramel (E150d), was examined only in the case 
of light-coloured honey samples as this addition occurs only 
when the colour of the honey is very light. The two differ-
ent colorants were added directly to the honey samples in 
three different concentrations, namely 50, 100, and 150 ppm. 
The addition of colorants resulted in a slight increase in the 
absorbance band at 279 nm. Small differences were observed 

in the spectra of the honeys adulterated with different levels 
of colorants; however, these differences do not seem to be 
considerable (Fig. 2b). The UV–Vis spectra of pure color-
ant E150d at a concentration level of 100 mg/Kg (diluted 
in water) displayed absorbance peaks at 220 and 276 nm, 
however these peaks are not clearly seen in the spectra of 
adulterated honey samples.

Lastly, the simultaneous addition of both rice syrup and 
colorants was examined. The two different colorants (E150c 
and E150d) were added into the rice syrup in three differ-
ent concentrations, namely 50, 100, and 150 ppm, and the 
mixture was added to the honey samples at a ratio of 25%. 
As noted above, the addition of rice syrup (at a ratio of 25%) 
increased the absorbance and shifted the band slightly to 
lower wavelengths, i.e., at 270 nm for all samples. In most 
cases, adding a different amount of colorant did not cause 
significant peak shifting and changes in absorbance intensity 
(Fig. 2c). Hence, we can conclude that the addition of syrup 
resulted in UV–Vis spectra with higher intensities than those 
with the addition of colorants.

Principal component analysis

PCA was applied to differentiate the honeys into authen-
tic and adulterated samples. For this reason, the range of 
220–550 nm was selected for further analysis, as this range 
contains the most useful information [50]. As depicted in 
Fig. 3a there was no trend of clear separation between the 
adulterated and the authentic thyme honey samples using 
original UV–Vis spectra, except for those adulterated with 
higher concentration of sugars. Specifically, according to the 
scatter plot of the first two PCs, the adulterated samples with 
the simultaneous addition of rice syrup and colorants (red 
circles) are clearly separated from the authentic thyme sam-
ples which are depicted with yellow circles (Fig. 3a). On the 
other hand, the samples adulterated only with syrups (blue 
circles), depending on the concentration of the adulteration, 

Fig. 2  The original UV–Vis spectra of authentic honey, pure adulterants, and adulterated samples with (a) syrups, (b) colorants, and (c) both 
syrups and colorants in different concentrations in the range of 190–500 nm
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are intermediate between the two previous groups, while 
the samples to which colorants were added (green circles) 
are located in the area of authentic honeys. According to 
the PCA, the total explained variance for the first three PCs 
was 99.3%, with the first and second PCs accounted for 86.3 
and 14.3%, respectively. The loading plot (Fig. 3b) indicates 
that several spectrum bands at around 240, 250, 278, 285, 
290, and 330 nm seem to be the most influential variables 
to classify honey samples. In order to remove baseline shifts 
for obtaining better results, pre-processing techniques, SNV 
and 1st derivative were applied for models’ construction.

Results from predictive models

Given that the adulteration is defined as the addition of any 
adulterant to honey, regardless of its type and concentration 
[2], RF, PLS-DA, and DD-SIMCA models were constructed 
in order to identify if a honey is adulterated or authentic 
using (i) only thyme honeys and (ii) all honey samples in 
the validation set. Considering all types of adulterated sam-
ples in the training set, RF, PLS-DA, and DD-SIMCA mod-
els achieved an accuracy of 92, 92, and 89%, respectively, 
when only thyme honeys were used in the validation set. The 
aforementioned models achieved 89, 92, and 97% of sensi-
tivity/recall in the validation set, which reflects the number 
of correct positive decisions divided by the total number of 
positive cases, and therefore these models can identify the 
adulterated samples with high accuracy. More specifically, in 
the case of DD-SIMCA models, only one adulterated sample 
with low concentration of colorant addition was misclassi-
fied, while eleven authentic honeys were misclassified as 
adulterated (Fig. 4(1b)). The predictive model misclassified 

nine Greek thyme samples out of 26, while only one out of 
31 from Tunisia and one out of 3 from Turkey. These results 
were expected because only Greek honeys were used for 
adulteration and, hence, the model recognized similarities 
in the spectrum with Greek authentic honeys. In our previ-
ous work, which aimed to distinguish the geographical and 
botanical origin of honeys, a good differentiation of thyme 
honeys among samples from different geographical origins 
was performed [50]. Thus, the prediction of the present mod-
els could be increased if thyme honeys from other countries 
are also used in the adulterated honey data set. Ιt is worth 
noting that it is more important in most applications for a 
model to correctly identify the majority of adulterated sam-
ples even if it misclassifies a proportion of authentic ones 
(i.e., aiming for larger recall/sensitivity than specificity in 
the case of DD-SIMCA), than the opposite. This may add 
some extra effort in cases that the model falsely misclassifies 
unadulterated honey samples, as additional tests need to be 
performed to detect the authenticity of the honeys by food 
authorities, but it will avoid making wrong estimates about 
adulterated samples.

Based on the aforementioned good performance of these 
models, polyfloral and pine honeys were also added in the 
data set. RF, PLS-DA, and DD-SIMCA models achieved 
an accuracy of 95, 88, and 93%, respectively. RF and DD-
SIMCA resulted in an increased accuracy when utilizing a 
larger data set (Table 2). As illustrated in the acceptance plot 
of the validation set in Fig. 4(1c), the DD-SIMCA model 
misclassified only one adulterated sample out of 58, while 
seventeen authentic samples out of 151 were predicted as 
adulterated, of which fourteen were from Greece (ten thyme 
and four polyfloral honeys). These results are in agreement 

Fig. 3  PCA score plots (a) and loading plots of first three components 
(b) of the authentic and adulterated thyme honey samples using the 
original UV–Vis spectra in the range of 220–550 nm (yellow circles: 

authentic thyme honey samples, blue circles: adulterated samples 
with syrups, green circles: adulterated samples with colorants, red 
circles: adulterated samples with both syrup and colorants)
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with de Souza et al. [39] who applied DD-SIMCA models, 
using a wavelength range of 320–800 nm, and confirmed that 
the adulteration of honey with corn syrup, agave syrup, and 
sugarcane molasses could be identified, achieving a 100% 
of sensitivity and specificity. Moreover, Suhandy et al. [40], 
who used only PCA, observed a visual separation between 
authentic and adulterated Sumbawa honeys with high fruc-
tose corn syrup, using a wavelength range of 230–400 nm.

Regarding the identification of the type of the honey adul-
teration, honeys adulterated with both syrup and colorants 
were used to build the models, while the authentic honeys 
were used for validation. RF, PLS-DA, and DD-SIMCA 

models achieved an accuracy of 98, 99, and 99% using only 
thyme honey samples in the validation set, respectively, 
while an accuracy of 97, 99, and 93% was attained using 
all honey samples for validation. According to the results 
from DD-SIMCA models, only one adulterated honey sam-
ple (which contained the colorant E150d at 50 ppm) was 
misclassified, while all authentic honeys were correctly cat-
egorized as unadulterated, as depicted in Fig. 4(2b).

With regards to sugar adulteration, the results from the 
developed models showed a good performance, achiev-
ing an accuracy of 91, 92, and 94% for RF, PLS-DA, and 
DD-SIMCA, respectively, using all honey samples in the 

Fig. 4  Acceptance plot of the training set (1a and 2a,) and validation 
set (1b, 1c, and 2b) obtained by DD-SIMCA models using UV–Vis 
spectra, pre-processed with SNV and 1st derivative, for detection 
of adulteration using only thyme samples (1a and 1b) and all honey 
samples (1a and 1c) in the validation set and adulteration with simul-
taneous addition of syrup and colorants (2a and 2b) using all honey 

samples in the validation set. [Acceptance plot for training set: train-
ing samples are illustrated in green circles, while extreme objects are 
illustrated in orange circles between the green and red lines. Accept-
ance plot for validation set: the honey samples for target class are 
illustrated in green circles, while samples for non-target class are 
depicted in red circles.]
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validation set. According to the results, some adulterated 
samples with invert sugar were misclassified as authentic 
ones, possibly, due to the fact this added sugar is similar in 
carbohydrates composition than honey (glucose and fruc-
tose). On the other hand, rice syrup has a different com-
position with maltose and maltotriose as main carbohy-
drates. When all samples that were adulterated with syrups 
(all honey samples that were adulterated either with syrup 
or syrup and colorant) were used in the training set, the 
accuracy of the models increased for all cases considered 
(Table 2). This is reasonable because more samples, with 
higher concentration of syrup were added for training the 
models, and thus, the sensitivity and specificity of the mod-
els were also increased.

In relation to the colorant adulteration, two types of color-
ants at three concentration levels were considered. RF, PLS-
DA, and DD-SIMCA achieved an accuracy of 98, 92, and 
99%, respectively, when considering all honey samples in 
the validation set. Despite its good accuracy, PLS-DA fails 
to recognize the adulterated samples, and this leads to poor 
performance in terms of the other evaluation criteria (preci-
sion, recall, and F1-score are approximately equal to 20%). 
Similar results (98, 95, and 98% for RF, PLS-DA, and DD-
SIMCA, respectively) were obtained for the case where only 
the thyme honey samples were included in the validation set. 
When all samples that were adulterated with colorants (all 
honey samples that were adulterated either with only color-
ant or colorant and syrup) were used in the training set, the 
accuracy of the models slightly increased in most cases, as 
more samples were added into the training set.

All predictive models achieved good results (in the major-
ity of cases an accuracy of more than 90% was achieved). 
DD-SIMCA was the winner in terms of accuracy in four out 
of six cases when all honey samples were included in the 
validation set and three out of six cases when only thyme 
honey samples were included in the validation set. Similar 
conclusions were drawn if the comparison criterion is recall/
sensitivity.

Conclusions

In the present work, UV–Vis spectroscopy combined with 
multivariate statistical analysis was used in order to iden-
tify honey adulteration with sugar syrups and colorants. The 
results showed that UV–Vis spectra processed with chemo-
metrics were successfully used to identify the adulteration 
of thyme and other Mediterranean honeys, with high accu-
racy. The wavelength range of 220–550 nm was utilized for 
the models’ construction, since PCA of the spectra showed 
that the wavelengths at around 240, 250, 278, 285, 290, 
and 330 nm are the most useful for discrimination of honey 
adulteration. RF, PLS-DA, and DD-SIMCA models were 

developed to identify honey adulteration and the predic-
tion accuracy was over 90% for most models. DD-SIMCA 
achieved better accuracy and recall/sensitivity scores than 
RF and PLS-DA in most cases. Since comparing one class 
vs binary class classification methods is not straightforward, 
we conclude that DD-SIMCA is more suitable in the case of 
the application needs to maximize the sensitivity, while RF 
is more suitable for applications that prioritize the specific-
ity. Hence, the results from the present study support that 
UV–Vis spectroscopy has great potential for identifying 
honey adulteration in a quick and non-destructive manner, 
and also having the advantage of being a simple, inexpen-
sive, and fast method. However, further studies with a larger 
number of honey samples are necessary, in order to develop 
and verify robust models.
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