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Abstract
In the (maxmin) p-dispersion problem we seek to locate a set of facilities in an area so that the
minimum distance between any pair of facilities is maximized. We study a variant of this problem
where there exist constraints specifying the minimum allowed distances between the facilities. This
type of problem, which we call PDDP, has not received much attention within the literature on
location and dispersion problems, despite its relevance to real scenarios. We propose both ILP and
CP methods to solve the PDDP. Regarding ILP, we give two formulations derived from a classic
and a state-of-the-art model for p-dispersion, respectively. Regarding CP, we first give a generic
model that can be implemented within any standard CP solver, and we then propose a specialized
heuristic Branch&Bound method. Experiments demonstrate that the ILP formulations are more
efficient than the CP model, as the latter is unable to prove optimality in reasonable time, except for
small problems, and is usually slower in finding solutions of the same quality than the ILP models.
However, although the ILP approach displays good performance on small to medium size problems,
it cannot efficiently handle larger ones. The heuristic CP-based method can be very efficient on
larger problems and is able to quickly discover solutions to problems that are very hard for an ILP
solver.
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1 Introduction

Maximum diversity problems arise in many practical settings from facility location to
telecommunications and social network analysis [28]. Arguably, the most famous such
problem is the (maxmin) p-dispersion problem (PDP) [29]. In the PDP we are given a set
of candidate locations P = {1, 2, . . . , n} for p facilities and an n× n matrix (D[i, j]), i, j ∈
P with distances between candidate locations i and j. The goal is to select p items from
P to locate the facilities such that the minimum distance between any pair of facilities is
maximized.

In practice, the PDP occurs whenever a close proximity of facilities is dangerous or for
other reasons undesirable. A standard application is concerned with the location of power
plants, where we wish to minimize the risk of losing multiple plants in the event of an accident
or an enemy attack. To achieve this, locations for the plants are desired so that interplant
distances are as large as possible. Similar applications arise in the military sector, as it
is common to scatter military installations in order to make it difficult for the enemy to
disarm all of them. In a more peaceful context, we may wish to disperse branches of the
same franchise, so that mutual competition between similar shops is minimized, or public
facilities which have overlapping areas of service, e.g., schools, hospitals, electoral districts,
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30:2 The p-Dispersion Problem with Distance Constraints

etc. [25, 16, 28]. In telecommunications, we may wish to disperse radio transceivers to service
cellular phones so as to minimize interference. Another, more recent, area of application
for the PDP, is if distances are not interpreted physically but as a measure of the diversity
between members of a group [33].

Another dispersion problem that has been deeply studied is the maxsum p-dispersion
problem, called p-defence problem in [29], where we seek to locate p facilities so that the
sum of distances between the facilities is maximized [25]. Although the maxsum variant also
has many applications, it is recognized that the PDP is better suited to model situations
where the close proximity of facilities must be definitely avoided (e.g. for safety reasons).
This is because maximizing the sum of distances does not guarantee that no two facilities
will be placed close to each other [25].

In this paper we are concerned with a variant of the PDP where hard constraints specifying
minimum allowed distances exist between facilities. We call this problem p-dispersion
with distance constraints (PDDP). Although this problem was put forward by Moon and
Chaudhry who fist systematically studied location problems with distance constraints and
coined the term p-dispersion [29], it has been rather ignored since, despite its relevance to
real applications. Distance constraints in dispersion problems can stem from operational
needs and regulations, such as clearance distances for safe chemical storage [1], separation
distances between packages containing radioactive materials [40], or between portable fire
extinguishers in an area [41]. Motivated by such applications, a recent study by Dai et
al. considers p-dispersion with distance constraints in the context of circle placement in
non-convex polygons [10].

To further motivate our study of the PDDP, consider a scenario where p identical power
plants need to be located in an area. Assume that due to safety reasons, any two plants
must be more than x km away from one another. If this problem is modeled and solved as a
PDP then either of the following two results will hold: 1) The optimal solution places the
two closest facilities y ≤ x km apart. Then the original problem is infeasible, as the safety
requirements cannot be satisfied for all pairs of facilities, 2) The optimal solution places the
two closest facilities y > x km apart. Then, as y is the minimum distance between any two
plants, all the safety requirements are satisfied and the original problem has been solved.
But what if all power plants to be located are not identical? What if there are differences in
the plants’ sizes, the volume of power generated, the waste produced, etc.?

In such cases, the safety requirements regarding the minimum allowed distances between
plants may not be the same for all pairs of plants. For instance, the allowed distance between
smaller and less dangerous plants will probably be smaller than between larger ones. Hence,
the PDP does no longer suffice to model the problem. This is because an optimal solution
that places the closest plants y km apart does not guarantee that the safety distances will
be satisfied for all pairs of plants. The case of non-identical (heterogeneous) facilities has
not received much attention in the p-dispersion literature, as the predominant explicit or
implicit assumption is that the facilities to be located are indistinguishable (homogeneous).
But in practice, not all power plants will be identical, and the same holds for the branches of
a franchise, for public facilities, and almost any type of facilities that we want to disperse.

We start our study of the PDDP by giving two ILP formulations. The first one is based
on the classic formulation for p-dispersion by Kuby [25], while the second is based on a
state-of-the-art model proposed by Sayah and Irnich [34]. Both these formulations are
extended to deal with heterogeneous facilities and to include distance constraints.

Then, we describe a generic CP model for the PDDP that can be implemented within
any standard CP solver. For the purposes of this study, we have implemented this model
in OR-Tools and Choco. Experimental results demonstrate that the ILP formulations,
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implemented in Gurobi, are more efficient than the CP solvers, as the latter find it very hard
to prove optimality, even for small problems, and are usually slower in locating solutions of
the same quality as the ILP solver.

We further explore the applicability of CP technology by introducing a specialized heuristic
method based on CP. Specifically, using a simpler model of the problem, with fewer variables
and constraints, we have devised a specialized Branch&Bound mechanism, which has been
implemented in a custom CP solver. This method tries to prune the search tree early by
estimating the best cost that can be achieved if the sub-tree rooted at the currently visited
node is explored. If the estimated cost does not improve the cost of the best solution found
so far then the current branch is abandoned. The estimation is carried out through a simple
greedy assignment of the remaining variables. This reasoning achieves significant search tree
pruning, albeit by sacrificing completeness.

In our experimental analysis we first compare the ILP formulations to the CP approaches
on randomly generated problems with 5-30 facilities and at most 80 potential location points.
Results show that the CP model implemented in the standard CP solvers OR-Tools and
Choco cannot compete with the ILP formulations implemented in Gurobi, as the latter solver
is quite efficient in all but the largest class that contains 30 facilities and 80 location points.
The heuristic CP approach very quickly finds solutions, often optimal ones, on all instances,
including those of the hardest class. We then consider harder problems that are generated
using the p-dispersion MDPLIB benchmark library as basis [28]. Results demonstrate that
the ILP formulations are efficient on problems with 10 facilities and 100 potential locations,
but fail to efficiently handle larger problems. On the other hand, the heuristic CP approach
can trivially find solutions of good quality on smaller instances, while it can also handle larger
instances that are very hard for the ILP solver, finding solutions of much better quality.

2 Related Work

The maxmin p-dispersion problem, which is NP-hard on general networks for an arbitrary
p [18], was originally mentioned by Shier, as far back as 1977 [36]. However, the term
p-dispersion first appeared in the analysis of location problems with distance constraints
by Moon and Chaudhry [29]. The first ILP solution was proposed by Kuby [25] while the
first specialized algorithm was given by Erkut [15]. Kincaid proposed simulated annealing
and tabu search methods [24], Ghosh proposed a multi-start heuristic [18] and Resende et
al. applied the GRASP methodology to the maxmin problem [32]. More recently, Sayyady
& Fathi [35] and Sayah & Irnich [34] proposed ILP approaches to the maxmin problem,
which are able to solve large size problems, and as argued in the comprehensive review on
OR methods for dispersion problems given in [28], they tend to make heuristic approaches
obsolete, as they can handle problems of similar size.

Regarding distance constraints, Moon and Chaudhry were the first to systematically study
location problems with distance constraints [29]. The p-dispersion problem with distance
constraints was mentioned by them as a problem that can arise in real-life scenarios, but no
approaches towards solving it were proposed. Recently, Dai et al. revisited this problem as
part of a study on circle (i.e. facility) dispersion in non-convex polygons [10]. A heuristic
method, inspired by the mechanics of the n-body problem in physics, was proposed for the
plain p-dispersion problem in non-convex polygons, and this method was also adapted to the
case where distance constraints exist between pairs of circles.

Distance constraints have also been considered in the context of other location problems.
Some early works considered maximum distance constraints between the demand nodes and
the facility locations [7, 8, 23, 38]. Tansel et al. studied the distance constrained p-center
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problem for the case where the network is a tree [38]. Chaudhry et al. proposed heuristics
for selecting a maximum-weight set of locations such that no two are closer than a given
distance from each other [6]. Moon and Papayanopoulos considered the problem of locating
two facilities so as to minimize the maximum of combined Euclidean distances to unweighted
existing points when the facilities must be separated by at least a specified distance [30].
Comley studied the problem of locating a small number of heterogeneous semi-obnoxious
facilities that interact with each other as well as with other existing facilities [9].

Berman and Huang studied the problem of locating homogeneous obnoxious facilities on
a network so as to minimize the total demand covered, subject to the condition that no two
facilities are allowed to be closer than a pre-specified distance [2]. Drezner et al. proposed
the Weber obnoxious facility location problem where we seek to locate one facility so that
the weighted sum of distances between the facility and demand points is minimized, with
the additional requirement that the facility location is at least a given distance from demand
points because it is obnoxious to them [13]. Drezner et al. considered a continuous multiple
obnoxious facility location problem where a given number of facilities must be located in a
convex polygon with the objective of maximizing the minimum distance between facilities
and a given set of communities subject to distance constraints between facilities [14]. Welch
and Salhi studied the location of obnoxious facilities with interactions between them [39].
Location problems with distance constraints that restrict the placement of facilities near
certain demand points have also been studied, e.g. [31, 4, 27].

There are very few CP-related methods for facility location problems [17, 5, 37] and none
of them concerns p-dispersion problems, with or without distance constraints. Regarding our
heuristic CP-based method, there are works that follow a similar approach, i.e. sacrificing
the completeness of a CP solver to solve optimization problems faster [22, 26, 19]. However,
these works typically do this through a more local reasoning, e.g. by adding extra constraints.

Finally, the p-median problem with distance constraints, originally put forward in [29], is
being studied in a paper that is currently under review (details are suppressed to preserve
anonymity). In such a problem, there exist both facilities and clients that are serviced by
the facilities. The goal is to locate p facilities so that the sum of the distances between the
clients and their closest facility is minimized. As here, ILP and CP models for this problem
are proposed and compared. Results demonstrate that the ILP approach is by far the most
efficient on problems with homogeneous facilities, but it is outperformed by a heuristic CP
approach on some classes of problems with heterogeneous facilities.

3 Background

In a p-dispersion with distance constraints problem (PDDP), p facilities in a set of facilities
F are to be placed in an area. We assume that the set P of potential location points for the
facilities is known. We also assume that the distance between each pair of potential locations
(i, j) is given in a matrix D. Between each pair of facilities fi and fj there is a distance
constraint dis(fi, fj) > dij specifying that the distance dis(fi, fj) between the points where
the facilities fi and fj are located must be greater than dij , where dij is a constant. To
summarize, in a PDDP we have:

P : the set of candidate facility locations.
F : the set of facilities to be located.
p: the number of facilities to be located.
D[i, j]: the distance between any two candidate facility locations.
dij : the lower bound in the allowed distance between each pair of facilities (i, j), where
i, j ∈ F .
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The distance between two points i and j can be given by the straight-line (Euclidean)
distance, e.g. for the location of hazardous facilities, or by the shortest path in a street
network, e.g. for the location of franchises, or by any other suitable metric. The methods
we propose do not depend on any particular distance measure because, as is common in
the literature, we assume that the pairwise distances between all possible location points
are given in a 2-d distance matrix D. However, if necessary, instead of precomputing the
distances and storing them in a distance matrix, they could be computed “on the fly”, under
the condition that this operation takes constant time. This holds for Euclidean or Manhattan
distances given the coordinates of the points, but it does not hold for the shortest path in a
network.

A common assumption in the literature on location problems with distance constraints is
that the lower distance bound dij is fixed to a specific value for all the constraints between
facilities. This is a reasonable assumption in the case where the facilities are homogeneous,
and therefore in essence indistinguishable, but it is not always realistic, especially when
the facilities have different properties, as for example in [1, 40]. In case the facilities are
heterogeneous, the distance bound may vary from constraint to constraint.

The goal in a PDDP is to locate each facility to a node so that the minimum distance
between any two facilities is maximized subject to the satisfaction of all the distance
constraints.

4 ILP models

We first give an ILP model for the PDDP, based on the classic formulation of Kuby for
p-dispersion [25] and then we give a model based on the state-of-the-art model of Sayah
& Irnich [34]. Both formulations are extended to deal with heterogeneous facilities and to
include distance constraints between facilities.

4.1 Kuby based model

We make use of the following additional notation:
C = {(i, j, f1, f2) | i, j ∈ P, f1, f2 ∈ F, D[i, j] ≤ df1f2} ,∀i ∈ P,∀j ∈ P , and for each pair
of facilities (f1, f2): the set of quadruples (i, j, f1, f2) s.t. facilities f1 and f2 cannot be
placed in facility sites i and j, respectively, because i and j are not in a safe distance
between each other with respect to the allowed distance between f1 and f2.
xij = 1 if a facility j ∈ F is located at a facility site i ∈ P and 0 otherwise.
yi = 1 if any facility is located at a facility site i ∈ P and 0 otherwise.
b is the minimum distance between the facilities that we aim to maximize.

For any i ∈ P , variable yi shows whether or not facility site i will host any facility. These
are the variables that are present in Kuby’s formulation for p-dispersion. Given that facilities
are considered identical in the p-dispersion literature, in Kuby’s model we only need to know
whether a site will host a facility or not. But in the case of the PDDP, where facilities can be
different and distance constraints exist between them, we also need to know which particular
facility will be hosted by a site. Hence, we introduce |P | × |F | variables, i.e. one variable
xij ,∀(i, j), i ∈ P, j ∈ F , in order to know whether or not a specific facility j ∈ F is located
at a facility site i ∈ P .

CP 2023
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The extension of Kuby’s model to capture the PDDP can be expressed as:

max b (1)
s.t.

∑
i∈P

yi = p (2)

b ≤M (2− yi − yj) + D[i, j] ∀i, j ∈ P, j > i (3)∑
j∈F

xij = yi ∀i ∈ P (4)∑
j∈F

xij ≤ 1 ∀i ∈ P (5)∑
i∈P

xij = 1 ∀j ∈ F (6)

xif1 + xjf2 ≤ 1 ∀ (i, j, f1, f2) ∈ C (7)
xij ∈ {0, 1} ∀i ∈ P,∀j ∈ F (8)
yi ∈ {0, 1} ∀i ∈ P (9)

b ≥ 0 (10)

The objective function 1 aims at maximizing the shortest distance b between located
facilities. Constraint 2 specifies that p facilities are to be located. Constraint 3 guarantees
that b ≤ D[i, j] whenever both locations i and j are chosen via yi = yj = 1 for the location
of facilities, where M represents a Big M constant. Variables b and yi, i ∈ P , the objective
function 1 and Constraints 2, 3, 9 and 10 form the original formulation of Kuby for the
p-dispersion problem.

As we explained, in the case of the PDDP, we add variables xij ,∀(i, j), i ∈ P, j ∈ F , in
order to know whether or not a specific facility j ∈ F is located at a facility site i ∈ P .
These variables are linked to the yi variables via Constraint 4, which specifies that if any
facility j is located at a facility site i, then variable yi equals 1 and 0 otherwise. To ensure
that no two variables xij and xij′ are set to 1 (i.e. each facility site must host at most one
facility), we add Constraint 5. To ensure that no two variables xij and xi′j are set to 1
(i.e. each facility must be hosted at exactly one facility site), we add Constraint 6. Finally,
Constraint 7 models the distance constraints between facilities. It ensures that each facility
is at a safe distance from all other facilities by not allowing two facilities f1 and f2 to be
established at sites that are at a distance closer than the allowed distance between f1 and f2.
These pairwise constraints are a special case of clique constraints and are an efficient option
to model distance constraints in ILP, as demonstrated in [2].

The original Kuby model for the p-dispersion problem has |P |+1 variables and
∑|P |−1

i=1 i+1
constraints, while our extended Kuby based model for the PDDP has |P | × |F | + |P | + 1
variables and 2×|P |+ |F |+

∑|P |−1
i=1 i + 1 constraints, without considering Constraint 7 which

can give (|P | × |F |)2 constraints.

4.2 Sayah and Irnich based model
We now present a model for the PDDP based on the PDP model proposed by Sayah and
Irnich, which utilizes the fact that the optimal distance is equal to at least one of the entries
of the distance matrix [34]. Let us introduce some additional notation for this model:

E = {(i, j) ∈ P × P : i < j}: the set of edges between any two candidate facility locations.
E (l) = {(i, j) ∈ E : D[i, j] < l}: a subset of edges given any distance l.
L0 < L1 < · · · < Lkmax : the different nonzero values in D[i, j]. The associate index sets
are K = {1, 2, · · · , kmax} and K0 = {0} ∪ K. By definition, ∅ = E

(
L0)

⊊ E
(
L1)

⊊
· · · ⊊ E

(
Lkmax

)
⊊ E holds.

zk = 1 if the location decisions satisfy a minimum distance of at least Lk, k ∈ K and 0
otherwise.
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Similar to the Kuby model, variable yi, for any i ∈ P , shows whether or not facility site i

will host any facility. In addition, variable zk, for any k ∈ K, indicates whether the location
decisions satisfy a minimum distance of at least Lk. These are the variables that are present
in the formulation of Sayah and Irnich for p-dispersion. As we explained in Kuby’s model,
we also need to introduce |P | × |F | variables, i.e. one variable xij ,∀(i, j), i ∈ P, j ∈ F , in
order to know whether or not a specific facility j ∈ F is located at a facility site i ∈ P .

The model for the PDDP using Sayah and Irnich’s model as basis can be expressed as:

max D0 +
∑

k∈K

(
Lk − Lk−1)

zk (11)

s.t.
∑
i∈P

yi = p (12)

zk ≤ zk−1 ∀k ∈ K, k > 1 (13)
yi + yj + zk ≤ 2 ∀k ∈ K, (i, j) ∈ E

(
Lk

)
\ E

(
Lk−1)

(14)∑
j∈F

xij = yi ∀i ∈ P (15)∑
j∈F

xij ≤ 1 ∀i ∈ P (16)∑
i∈P

xij = 1 ∀j ∈ F (17)

xif1 + xjf2 ≤ 1 ∀ (i, j, f1, f2) ∈ C (18)
xij ∈ {0, 1} ∀i ∈ P,∀j ∈ F (19)
yi ∈ {0, 1} ∀i ∈ P (20)
zk ∈ {0, 1} ∀k ∈ K (21)

The objective function 11 aims at maximizing the shortest distance between located
facilities. Constraints 12, 15, 16, 17, 18, 19 and 20 are also present in the Kuby based
formulation, while Constraints 13, 14 and 21 replace Constraints 3 and 10. Constraint 13
models the consistency between the zk variables in the sense that the zk variables are
non-increasing in k, while Constraint 14 ensures that no pair (i, j) of locations with distance
D[i, j] < LK is chosen simultaneously. The consistency Constraint 13 specifies that any
feasible solution fulfills that there exists a unique k ∈ K0 with z1 = z2 = · · · = zk = 1 and
zk+1 = zk+2 = · · · = zkmax

= 0. Variables yi, i ∈ P , and zk, k ∈ K, the objective function 11
and Constraints 12, 13, 14, 20 and 21 form the original formulation of Sayah and Irnich for
the p-dispersion problem.

The addition of variables xij ,∀(i, j), i ∈ P, j ∈ F , in the revised Sayah and Irnich model
for the PDPP yields Constraints 15, 16, 17, and 19, as already explained in Kuby’s model.
In addition, Constraint 18 models the distance constraints between facilities.

The original model of Sayah and Irnich for the p-dispersion problem has |P |+ kmax − 1
variables and kmax + (kmax − 1)×

∑|P |−1
i=1 i− 1 constraints, while our extended Sayah and

Irnich based model for the PDDP has |P | × |F | + |P | + kmax − 1 variables and 2 × |P | +
|F |+ kmax + (kmax − 1)×

∑|P |−1
i=1 i− 1 without considering Constraint 18 which can give

(|P | × |F |)2 constraints.

5 CP approaches to the PDDP

We first give a generic CP model of the PDDP and we then we describe the mechanics
of a specialized heuristic CP solver. The PDDP is modeled as a Constraint Optimization
Problem (COP) (X, Dom, C, O), where X is the set of decision variables, Dom is the set
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of finite domains, C is the set of hard constraints and O is the optimization function. The
model is as follows:
1. For each facility i ∈ F there is a finite domain variable xi. These p variables are the

decision variables in the problem, meaning that |X| = |F | = p. The domain of each
variable xi ∈ X, denoted by Dom(xi), includes as values all the points where a facility
can be located, i.e. ∀xi ∈ X : Dom(xi) = P .

2. Y is a set of auxiliary variables, s.t. for each pair of variables (xi, xj) ∈ X ×X | i < j,
there is a variable yij ∈ Y and a constraint yij = D[xi, xj ]. Hence, each yij ∈ Y models
the distance between xi and xj . In CP solvers, this is implemented using the Element
global constraint, i.e. yij = Element(D, [xi, xj ]).

3. For each variable yij , there is a distance constraint yij > dij .
4. There is a variable z, s.t. z = min(Y ).
5. The objective function is O =maximize(z).

This model contains p + p× (p− 1)/2 + 1 variables, with p being decision variables and
the rest auxiliary, and p× (p− 1) + 1 constraints.

We also considered the use of an AllDifferent constraint, to speed up propagation.
However, the distance constraints already propagate the fact that facilities should be placed
at different locations, as they all have bound greater than 0. Experiments with and without
the AllDifferent constraint showed no noticeable difference in run times.

5.1 A heuristic CP-based method
We now propose a heuristic technique that tries to prune early the parts of the search tree
that do not seem promising, i.e. it is unlikely that exploring them will improve the value
of the optimization function. At each node of the search tree this method tries to estimate
the best value of the optimization function that can be achieved if we explore the sub-tree
rooted at that node. If this value is not better than the cost of the best solution found so far
then the current branch is not further explored.

The proposed method can be embedded in a standard CP solver. However, this cannot
be done at the modeling level by just specifying variables and posting constraints, because it
requires writing specialized code within the solver and possibly a intervention in how the
search process works. Naturally, the estimation of the bound at each node cannot always be
precise (otherwise we would be able to trivially solve the PDDP), and therefore, a solver
that employs this method will not be exact.

To demonstrate our heuristic method, we describe a simple CP solver, specialized for
the PDDP, that applies it. This solver uses a simpler model of the problem, dropping the
auxiliary variables and relevant constraints. Hence, we now have a model with only the
p decision variables and p × (p − 1)/2 distance constraints. The optimization function is
handled within the solver in the following way: Whenever a new solution is found, its cost
is computed so as to determine if this cost is better than the current best cost. If so, then
the best cost found so far is updated. If such an update occurs, it will be propagated to the
decision variables, as described below.

The heuristic pruning technique works as follows: The cost of the first feasible solution
found is used as the initial lower bound denoting the cost of the best solution found so far.
Thereafter, at each node of the search tree, an upper bound for the best possible solution
under the current assignment is computed. This upper bound gives an estimation of the
best possible cost that can be achieved if the sub-tree rooted at the specific node is explored.
If this is not higher than the current best cost then the current branch of the search tree
is abandoned and the search moves on. Each time a solution with a higher cost than the
current lower bound is found, the lower bound is updated.
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The computation of the upper bound estimation at each node is performed in a greedy
fashion. Specifically, assuming that xi is the current variable, (x1 ← v1), . . . , (xi−1 ← vi−1)
is the assignment to past variables and vi is the value under consideration for xi, we greedily
compute the cost of the “best” assignment for the future variables xi+1, . . . , xp. That is, we
visit these variables one by one, starting with xi+1, and for each variable xj , i + 1 ≤ j ≤ p,
and each value vj ∈ Dom(xj), we find the minimum distance between vj and any assignment
(location) among variables (facilities) x1, . . . , xj−1. The value that maximizes this distance
is then (temporarily) assigned to xj . This is repeated until all variables have been assigned.
We then compute the cost of this complete assignment, which gives the upper bound, but
in fact, this may be an underestimation of the real cost. If the computed cost is equal to
or lower than the current lower bound then the assignment of vi to xi is undone and the
current branch of the search tree is abandoned, albeit risking to prune the branch leading to
the optimal solution. This process is depicted by Algorithm 2.

Algorithm PDDP_CP_Solver (Algorithm 1) gives a high level description of the entire
solving process.

Algorithm 1 PDDP_CP_Solver(X, Dom, C, O).

if Propagate(X, Dom, C) = FALSE
return NULL;

depth ← 1;
best_found← 0;
select an unassigned variable xi;
while depth ≥ 1

if all values in Dom(xi) have been tried
depth ← depth-1;

else
select a value a ∈ Dom(xi) that has not been tried;
if depth = n

cur_cost ← Compute_Solution_Cost(X, Dom, C)
if cur_cost > best_found

best_found← cur_cost;
else if Propagate(X, Dom, C, xi ← a) = TRUE

if best_found ̸= 0 AND Bound(X, Dom, C, xi ← a, best_found) = TRUE
depth ← depth+1;
select an unassigned variable xi;

if best_found = 0 return NULL;
return best_found;

Given a PDDP (X, DOM, C, O), where O is the optimization function of the PDDP,
the algorithm starts by propagating the hard constraints in C, as a typical CP solver does.
Function Propagate enforces arc consistency on the distance constraints. If no failure (empty
domain) is detected then the algorithm initializes the depth to 1 and the best cost found
(best_found) to 0 and commences the search by selecting a variable using a variable ordering
heuristic. While the depth of search is greater than 0, denoting that the search space has
not been exhaustively searched, a branching decision is made, i.e. a value is selected and
assigned to the currently selected variable. If all the variables have been assigned (depth = n),
meaning that a feasible solution has been found, the cost of this solution is computed and if
this cost is higher than the best cost found so far then the latter is updated.

If not all variables have been assigned yet then Function Propagate is called to propagate
the value assignment just made. If no failure occurs, the heuristic bounding mechanism
described above is triggered by calling Function Bound (Algorithm 2), provided that at least
one feasible solution has already been found. If this function succeeds, meaning that the
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estimated cost is better than the best bound found so far then the algorithm moves forward
by increasing the depth of search and selecting a new unassigned variable. On the other hand,
if either propagation fails or the estimated bound is not better than the value of best_found

then the current branch is abandoned and a new value for the current variable is selected.

Algorithm 2 Bound(X, Dom, C, xi ← vi, best_found).

for each xj , i + 1 ≤ j ≤ p
val ← dis ← -1;
for each vj ∈ Dom(xj)

temp ← shortest distance between vj and any assigned variable x1 . . . xj−1;
if temp > dis

dis ← temp;
val ← vj ;

xj ← val;
bound ← Compute_Solution_Cost(X, Dom, C);
if bound > best_found return TRUE;
return FALSE;

If the value best_found remains 0 upon termination then the algorithm has proved
that the problem is infeasible and the solver returns NULL. Otherwise, the best cost found
is returned. In the former case, the heuristic part of the algorithm (i.e. the bounding
mechanism) will never be triggered, as no feasible solution will have been found. Hence, the
search space will be systematically explored in a typical CP solver fashion until a backtrack
to depth -1 occurs, proving that the problem is infeasible.

Function Propagate applies arc consistency on the distance constraints, taking into
consideration the value of best_found, i.e. the best cost found so far, to perform extra
pruning, if possible. This is done in typical CP fashion for binary constraints, i.e. using a
queue to insert and then process variables that have their domain filtered. Specifically, if
a variable xi is removed from the queue then for each variable xj constrained with xi, and
each value vj ∈ Dom(xj), we check if there exists a value vi in Dom(xi) s.t. the two values
satisfy the distance constraint between xj and xi and the distance between the two values is
greater than best_found. In other words, for each possible location vj of xj we search for a
location vi for xi s.t. by placing the two facilities at these locations, not only the relevant
distance constraint is satisfied, but we can also improve the cost of the optimization function.
If no such vi exists then by placing xj at vj there is no way to locate xi so that we can
satisfy the distance constraint and improve the cost. Hence, vj can be deleted from D(xj),
i.e. it can be removed from consideration as a potential location point for xj . If such a value
deletion occurs then variable xj is inserted in the queue to propagate the deletion.

Finally, note that the pruning that can be achieved by taking into consideration the
current best cost can also be achieved by a standard CP solver that employs the model
described further above. Such a solver will typically add a constraint z > best_found once a
new solution with better cost than the previously found solutions is located. The propagation
of this constraint may result in the filtering of the yij variables’ domains, which in turn will
be carried over to the decision variables through the distance constraints yij = D[xi, xj ].

6 Experimental Results

We experimented with PDDP instances generated in two different ways. The first is a simple
method that randomly generates a PDDP with a desired number of facilities and location
points. The second uses the p-dispersion benchmark library MDPLIB 2.0 [28] as a basis to
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generate PDDPs. Computations were performed on an Intel i7 CPU 8700 with 16 GB of
main memory, a clock of 3.2 GHz, an L1 cache of 348 KB, an L2 cache of 2 MB, and an L3
cache of 12 MB, running under CentOS 8.4.

The ILP models were solved using Gurobi 9.0.3 [21]. The exact CP model was written
in the CPMpy modeling tool [20] and compiled into OR-Tools [12]. An implementation in
Choco [11] was also tried. The heuristic CP method was implemented in a custom solver
programmed in C. This solver essentially implements the CP_Solve algorithm (Algorithm 1)
described above. Choco and the heuristic solver use the dom/wdeg heuristic for variable
ordering [3] and lexicographic value ordering, while OR-Tools uses its default options. A
time out of 3, 600 seconds was set for each instance. We used only one thread on all solvers,
to get a fair comparison.

The ILP models are stored in compressed sparse column format since the constraint
matrix can sometimes be too large to be stored as a full array in memory. For example, the
largest instance considered in the computational study has a constraint matrix of 5, 425, 061
rows, 105, 038 columns and 11, 212, 542 nonzeros. Its compressed size is only 12MB, while
its size as a full matrix is 530GB.

6.1 Random problems
For an initial evaluation of the proposed approaches to the PDDP, we ran experiments
on problems where we try to locate p ∈ {5, 10, 20, 30} facilities in a 10×10 grid, with
|P | ∈ {30, 80} potential location points selected randomly among the 100 total points. The
distances between the points are computed using the Manhattan distance metric. For
each distance constraint dis(fi, fj) > dij between facilities fi and fj , dij was set to a
random integer in the interval [1, max]/2, where max is the maximum Manhattan distance
between any two potential location points. Ten instances were generated and solved for each
combination of parameter values.

Table 1 compares the following: Our two ILP formulations implemented in Gurobi, with
Gurobik denoting our first model, based on that of Kuby, and Gurobis denoting our second
model, based on that of Sayah & Irnich, and the CP solvers OR-tools and Choco. For each
class, in column

∑
cpu we give the total cpu time taken by the corresponding solver over

all 10 instances, and in brackets we give the number of instances on which the solver timed
out. If the solver timed out on at least one instance then

∑
cpu gives a lower bound on the

actual run time. Column cpuo gives the mean time taken by the solver to locate the optimal
solution. A zero means that less than 0.1 seconds were taken on average. In brackets, we
give the number of instances for which the solver found the optimal solution. Note that the
optimal solutions are known for all instances because at least one solver terminated within
the time limit. When a solver managed to find the optimal solution on at least 8 out of the
10 instances, we compute cpuo, excluding the instances where it timed out. Otherwise, cpuo

is left blank (-), meaning that the solver failed to find the optimal solution on too many
instances for this metric to be meaningful.

From Table 1 it is clear that the ILP approach is more efficient than the CP one in this
type of instances. Gurobik (resp. Gurobis) times out on 1 (resp. 2) out of the 70 instances,
whereas OR-Tools (resp. Choco) timed out on 40 (resp. 42) instances. With respect to the
cases when the optimal solution was located within the time limit, even without proving
optimality, Gurobik (resp. Gurobis) found the optimal solution on 69 (resp. 68 instances),
whereas OR-Tools (resp. Choco) on 59 (resp. 45) instances. This indicates that the CP
solvers find the proof of optimality especially difficult. Regarding the time required to find
the optimal solution (when found), all solvers are quite fast on smaller problems (with 5-10
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Table 1 Comparing exact solvers on random PDDPs. Cpu times are given in seconds.

Class Gurobik Gurobis OR-Tools Choco
(p,|P |)

∑
cpu cpuo

∑
cpu cpuo

∑
cpu cpuo

∑
cpu cpuo

(5,30) 0.7 (0) 0 (10) 1.6 (0) 0 (10) 3 (0) 0 (10) 3.5 (0) 0 (10)
(10,30) 2 (0) 0 (10) 6 (0) 0 (10) 998 (0) 1.7 (10) >11,517 (2) 50 (10)
(20,30) 87 (0) 7 (10) 51 (0) 4 (10) >10h (10) 69 (9) >10h (10) - (4)
(5,80) 7 (0) 0 (10) 20 (0) 0 (10) 13 (0) 0 (10) 3 (0) 0 (10)
(10,80) 12 (0) 0 (10) 78 (0) 0 (10) >10h (10) 0.3 (10) >10h (10) 0 (10)
(20,80) 727 (0) 69 (10) 725 (0) 28 (10) >10h (10) - (4) >10h (10) - (1)
(30,80) >22,207 (1) 2,065 (9) >10,519 (2) 414 (8) >10h (10) - (6) >10h (10) - (1)

facilities). Problems with 20 facilities and 30 potential locations are also easily manageable
by the ILP models, whereas OR-Tools takes more than one minute on average to discover the
optimal solution, and even fails to discover it on one instance. Choco fairs even worse, failing
to find the optimal solution on 6 instances, and failing to find any solution on one instance.

As the size of the problem grows, the ILP models, and even more so the CP solvers, find
it harder to solve the instances. On problems with 30 facilities and 80 location points, the
ILP models start giving time outs and take a long time to find the optimal solution, when
they manage to do so, whereas the CP solvers, and especially Choco, fail to find the optimal
on many instances from the (20,80) and (30,80) classes.

Table 2 compares the exact solvers to the heuristic CP solver (denoted CPh). For this
solver, we report the total cpu time taken over the 10 instances of each class (

∑
cpu) and

the mean cpu time taken to find the best solution it found within the time limit (cpub). We
also report (in brackets) the number of instances in which the solver managed to find the
optimal solution. Then, in the following columns, we give the mean cpu times taken by the
exact solvers to find a solution that at least matches the cost of the best solution found by
the heuristic solver. In this way, we can evaluate the worth of the heuristic CP method as a
heuristic for the PDDP. If the exact solvers manage to quickly match the best solution found
by the heuristic one then there is not much point in using the heuristic solver. Whereas, if
the heuristic solver quickly discovers a solution that the exact ones take very long to match
then it is worth considering this approach for the PDDP. If an exact solver only managed to
find a solution as good as that found by the heuristic solver in some instances, we give in
brackets the number of times that this occurred, and we consider only these instances for
the computation of the mean cpu time.

Table 2 Comparing solvers on random PDDPs. Cpu times are given in seconds.

Class CPh Gurobik Gurobis OR-Tools Choco
(p,|P |)

∑
cpu cpub

(5,30) 0 0 (9) 0 0 0 0
(10,30) 0 0 (10) 0 0 1.7 50
(20,30) 2 0.2 (9) 5 1.7 65 160 (4)
(5,80) 0.1 0 (10) 0 0 0 0
(10,80) 1 0.1 (10) 0 0 0.3 0
(20,80) 2 0.2 (0) 3.5 3 6 0
(30,80) 36 3 (10) 2,218 (9) 1,051 (8) 1,760 (6) 3,453 (1)

As the results in Table 2 demonstrate, CPh is very fast as it managed to complete all 10
instances of each class in at most 2 seconds, except for the (30,80) class, on which it only
took 36 seconds. Importantly, it also discovered the optimal solution in 58 out of the 70
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instances, including all instances of the hard class (30,80) class. On the other hand, it did
not manage to discover the optimal in any instance of the (20,80) class. Comparing the run
times (cpub) of CPh to the exact solvers, results from all but the last class show that Gurobi
manages to quickly match the best solution found by CPh, even if the latter is faster on
average. This does not always hold for OR-Tools which takes more than 1 minute on average
in the (20,30) class. Choco takes 50 seconds on average in the (10,30) class and it manages
to match the best solution of CPh in only 4 instances of the (20,30) class. The benefits
of the heuristic method in hard problems are demonstrated by the (30,80) class where it
takes 3 secs on average to locate the optimal solution, whereas Gurobik and Gurobis require
2,218 and 1,051 secs respectively. OR-Tools found the optimal solution in only 6 out of the
10 instances of this class, taking 1,760 secs on average, while Choco managed to find the
optimal in only one instance in 3,453 secs.

Finally, Table 3 takes a closer look at the performance of CPh, with respect to the effect
of the heuristic pruning method. To investigate this, we report the results obtained by the
solver when the heuristic is deactivated (i.e. Function Bound is not called). In this case,
the solver, denoted as CP−h, operates as a typical CP solver. As in Table 1, we give the
total cpu time taken, and in brackets the number of time outs, and the mean time taken to
locate the optimal solution (the number of instances where the optimal solution was found
is given in brackets). In the following column (cpuh) we give the mean cpu time taken by
CP−h to find a solution that at least matches the cost of the best solution found by CPh,
and in brackets, the number of times that it managed to do so. The next two columns give
the mean numbers of visited search tree nodes for CP−h and CPh (the entry is left blank if
there were time-outs). The last two columns give the average number of calls to Function
Bound in CPh and the percentage of fails caused by this function (i.e. the percentage of
branches pruned by the heuristic).

Table 3 A closer look at the performance of the custom solver, with and without the heuristic.

(p,|P |) CP−h

∑
cpu CP−h cpuo CP−h cpuh CP−h nodes CPh nodes calls %fails

(5,30) 0.2 (0) 0 (10) 0 (10) 1,726 156 140 94
(10,30) 466 (0) 5 (10) 5 (10) 12.5M 229 218 95
(20,30) >21,827 (3) 1 (10) 1 (10) - 4,917 781 80
(5,80) 6 (0) 0.6 (10) 0.6 (10) 7,624 501 477 97
(10,80) >10h (10) - (5) 520 (5) - 877 868 98
(20,80) >10h (10) - (0) - (0) - 835 816 98
(30,80) >10h (10) - (7) 1,044 (7) - 17,207 12,995 81

Table 3 demonstrates the pruning power of our proposed heuristic. Without its use, the
solver is able to handle the easier classes of problems, but not the harder ones, in accordance
with standard CP solvers (Table 1). The solver is very successful compared to OR-Tools and
Choco on the (20,30) class, as it times out in only 3 instances and finds the optimal solution
in 1 sec on average. However, the solver fares badly on the (20,80) class where it is unable to
find the optimal in any instance and actually finds worse solutions that CPh in all instances.
As for the (30,80) class, CP−h finds the optimal solution in 7 instances, which is better than
OR-Tools and Choco, but needs 1,044 secs on average to match the solution found by CPh.
Regarding the pruning achieved by the heuristic when it is activated, it is impressive that in
most of the classes, there is a very high percentage of pruned branches over the total calls to
the heuristic (up to 98%), which explains its success in speeding up search.
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6.2 MDPLIB

The MDPLIB collects a large number of dispersion benchmarks (for both maxmin and
maxsum p-dispersion) divided into various classes [28]. In the GKD, MDG, and SOM
classes, the distances between the potential facility locations are given by Euclidean distances,
random real numbers, and random integers, respectively. We took instances from these
classes, having 100-250 potential facility points and 10-20 facilities, and we generated 10
PDDPs for each instance by randomly adding distance constraints between the facilities.
For each distance constraint dis(fi, fj) > dij between facilities fi and fj , dij was set to a
random number in the interval [1, max]/2, where max is the maximum distance between
any two potential location points, as specified in the base MDPLIB instance.

Table 4 compares the exact solvers on the MDPLIB-based problems. We exclude Choco
as it is clearly inferior to OR-Tools. For each class we give the number of the MDPLIB
instance on which it is based, and in brackets the numbers of potential locations and facilities
to be located, e.g. a1(100,10) for MDG. For each solver, we report the total cpu time taken
over the 10 instances (

∑
cpu columns), the number of times when the optimal solution

was found (#opt) columns, and the mean of the optimization function’s value for the best
solution found within the time limit. In the

∑
cpu columns we give in brackets the number

of instances in which the solvers timed out. In the #opt columns we give in brackets the
number of times when optimality was proved. Finally, in some cases, a solver did not manage
to find any solution within the time limit. In such cases there is a subscript in the value of
cost, giving the number of instances in which at least one solution was found. In such a case,
the value of cost is computed over these instances only. In GKD classes with 250 points and
20 facilities, OR-Tools suffered memory exhaustion and crashed. This is denoted with MEM
in the

∑
cpu column.

The data in Table 4 demonstrates that the PDDPs generated using MDPLIB instances as
basis can be very hard for both the ILP and CP approaches. None of the solvers terminates
within the time limit on any instance with 20 facilities, while problems with 15 and 10
facilities are also quite hard. In addition, there are some instances of the larger classes (e.g.
GKDd1(250,20)) where the solvers are unable to discover any solution within 1 hour of
cpu time, let alone the optimal one. Comparing ILP to CP, Gurobi, with any of the two
formulations, is in general more efficient than OR-Tools. Gurobik (resp. Gurobis) found the
optimal solution in 77 (resp. 74) out of the 220 instances, and proved optimality in 73 (resp.
70) instances, whereas OR-Tools did not prove optimality in any instance (as it timed out on
all of them) and found the optimal in 10 instances only. However, OR-Tools often managed
to find better solutions than Gurobi in hard classes with 20 facilities, as the cost columns
indicate, for instance in classes MDGa2(100,20) and MDGb2(100,20). Comparing Gurobik
to Gurobis, there is no clear winner in terms of run times, but the latter managed to find
solutions of better quality than the former in most of the classes. However, Gurobis proved
optimality or found the optimal solution in slightly fewer instances than Gurobik.

Table 5 compares CPh to the exact solvers. For CPh, we report the total cpu time it
takes over the 10 instances of each class (and the number of time-outs in brackets), the mean
time it takes to find its best solution (cpub), and the mean of the optimization function’s
value for the best solution it finds. For the exact solvers, we report the mean times taken
to match the value of the best solution found by CPh (cpuh) columns, and the number of
instances on which the solvers managed to find a solution that matches or improves the best
solution found by CPh (in brackets). If this number is 0 or close to 0 then the entry in the
cpuh column is left blank (-), as it is impossible or meaningless to compute the value of cpuh.
If a value in the cpub column is blank (-), e.g. GKDd1(100,20), then most of the 10 instances
in this class were infeasible (in brackets we give the number of infeasible instances).
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Table 4 Comparing exact solvers on MDPLIB-generated PDDPs. Cpu times are given in seconds.
The best mean value of the optimization function for each class is denoted in bold.

Class Gurobik Gurobis OR-Tools
(p,|P |)

∑
cpu #opt cost

∑
cpu #opt cost

∑
cpu #opt cost

MDG
a1(100,10) >25,745 (3) 9 (7) 4.67 11,208 (0) 10 (10) 4.68 >10h (10) 7 (0) 4.59
a1(100,20) >10h (10) 0 (0) 0.808 >10h (10) 0 (0) 1.16 >10h (10) 0 (0) 1.17
a2(100,10) 15,327 (0) 10 (9) 4.74 11,412 (0) 10 (10) 4.74 >10h (10) 1 (0) 4.36
a2(100,20) >10h (10) 0 (0) 0.788 >10h (10) 0 (0) 0.839 >10h (10) 0 (0) 1.40
b1(100,10) 11,852 (0) 10 (10) 460.11 >29,171 (2) 10 (8) 460.11 >10h (10) 0 (0) 430.25
b1(100,20) >10h (10) 0 (0) 102.42 >10h (10) 0 (0) 109.35 >10h (10) 0 (0) 77.33
b2(100,10) 10,305 (2) 8 (8) 459.65 27,894 (2) 8 (8) 459.99 >10h (10) 1 (0) 413.85
b2(100,20) >10h (10) 0 (0) 106.779 >10h (10) 0 (0) 81.09 >10h (10) 0 (0) 113.33
GKD
d1(100,10) 4,743 (0) 10 (10) 34.06 5,415 (0) 10 (10) 34.06 >10h (10) 0 (0) 33.04
d1(100,20) >10h (10) 0 (0) - >10h (10) 0 (0) - >10h (10) 0 (0) -
d1(250,10) >15,448 (4) 6 (6) 35.98 34,753 (9) 3 (1) 35.27 >10h (10) 0 (0) -
d1(250,20) >10h (10) 0 (0) 9.954 >10h (10) 0 (0) 10.552 MEM 0 (0) -
d2(100,10) >5,998 (1) 9 (9) 34.34 2,602 10 (10) 34.82 >10h (10) 0 (0) 31.18
d2(100,20) >10h (10) 0 (0) - >10h (10) 0 (0) - >10h (10) 0 (0) -
d2(250,10) >22,334 (6) 4 (4) 35,94 >33,595 (8) 2 (2) 36.31 >10h (10) 0 (0) -
d2(250,20) >10h (10) 0 (0) - >10h (10) 0 (0) - MEM 0 (0) -
SOM
a21(100,10) >20,260 (1) 10 (9) 5 9,585 (0) 10 (10) 5 >10h (10) 1 (0) 4.1
a21(100,15) >34,887 (9) 1 (1) 2.2 >35,371 1 (1) 2.2 >10h (10) 0 (0) 2
a21(100,20) >10h (10) 0 (0) 16 >10h (10) 0 (0) 16 >10h (10) 0 (0) 19

a41(150,15) >10h (10) 0 (0) 2.6 >10h (10) 0 (0) 2.6 >10h (10) 0 (0) 3
a41(150,20) >10h (10) 0 (0) 19 >10h (10) 0 (0) 1.119 >10h (10) 0 (0) 1
b5(200,20) >10h (10) 0 (0) 1.4 >10h (10) 0 (0) 2 >10h (10) 0 (0) -

Results from Table 5 demonstrate the efficiency of the heuristic CP approach. Regarding
run times, CPh times out in only 7 instances and terminates quickly in all instances of
all classes, except for the hard GKDd1(250,20) and GKDd2(250,20). CPh proved the
infeasibility of the 16 infeasible instances of classes GKDd1(100,20) and GKDd2(100,20) and
found solutions in the other 4, whereas none of the other solvers managed to do so in any
instance. Of course, the fast proof of infeasibility is not due to the bounding mechanism of
CPh, as this is not invoked, but most likely due to the lightweight model and mechanics of
the custom-written solver.

Regarding the quality of the solutions, as a downside, CPh finds the optimal in only 2
out of the 80 instances of smaller size, for which the optimal is known (excluding infeasible
ones). However, in these classes, the exact solvers (and especially OR-Tools) can be orders of
magnitude slower than CPh in discovering solutions of the same quality as CPh, which reaches
its best solution in less than 0.1 secs in most cases. This is evident in class SOMa41(150,15)
where CPh found its best solution in less than 0.1 secs on average, while the exact solvers took
more than 1,000 secs to match the solution quality of CPh, on instances where they managed
to do this. However, the best solution discovered by these solvers (including OR-Tools) is
typically better than the best solution discovered by CPh.
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Table 5 Comparing solvers on MDPLIB-generated PDDPs. We denote with bold the mean cost
of CPh on classes where it was better than the mean cost of all the other solvers.

Class CPh Gurobik Gurobis OR-Tools
(p,|P |)

∑
cpu cpub cost cpuh cpuh cpuh

MDG
a1 (100,10) 0.5 (0) 0 4.35 243 (10) 55 (10) 592 (10)
a1 (100,20) 81 (0) 8 1.69 - (0) - (1) - (0)
a2 (100,10) 0.6 (0) 0 4.24 137 (10) 22 (10) 873 (7)
a2 (100,20) 137 (0) 12 1.64 - (0) - (0) - (0)
b1 (100,10) 0.4 (0) 0 428.18 10 (10) 345 (10) 187 (10)
b1 (100,20) 54 (0) 4.5 181.20 - (0) - (0) - (1)
b2 (100,10) 0.7 (0) 0 428.17 27 (10) 41 (10) 723 (3)
b2 (100,20) 92 (0) 8 159.93 - (0) - (0) - (1)
GKD
d1 (100,10) 1.8 (0) 0.1 33.27 94 (10) 224 (10) 717 (5)
d1 (100,20) 405 (0) - (9) - - (0) - (0) - (0)
d1 (250,10) 10 (0) 0.6 34.24 800 (8) 2,074 (6) - (0)
d1 (250,20) >18,689 (3) 1,140 16.949 - (0) - (0) - (0)
d2 (100,10) 1.6 (0) 0 31.29 91 (9) 179 (10) 1,277 (6)
d2 (100,20) 962 (0) - (7) - - (0) - (0) - (0)
d2 (250,10) 8 (0) 0.5 35.06 121 (6) 997 (8) - (0)
d2 (250,20) >23,767 (4) 1,597 13.289 - (0) - (0) - (0)
SOM
a21 (100,10) 0 (0) 0 4 7 (10) 3 (10) 106 (10)
a21 (100,15) 0 (0) 0 2 39 (10) 45 (10) 206 (10)
a21 (100,20) 11 (0) 1 1 41 (6) 49 (6) 522 (9)
a41 (150,15) 2 (0) 0 3 1,170 (6) 1,741 (6) 1,465 (10)
a41 (150,20) 12 (0) 1 1.9 - (0) - (1) - (1)
b5 (200,20) 10 (0) 0.3 2 - (4) 1,272 (10) - (0)

But the power of CPh as a heuristic method for PDDP is truly evident on the larger
classes with 20 facilities where it discovers solutions of (much) better quality than the exact
solvers, and excluding the two hard GKD classes with 250 location points and 20 facilities,
it does this very fast. Also, CPh finds solutions in all 20 instances of the two hard GKD
classes, while Gurobik (resp. Gurobis) in only 4 (resp. 2), and OR-Tools in none.

7 Conclusion

We have studied a variant of the p-dispersion problem where distance constraints exist
between the facilities to be dispersed. We proposed ILP formulations and a CP model for this
problem. We also devised a heuristic CP-based method built around a bounding technique
that prunes the search tree by reasoning about the best possible value of the optimization
function at each node. Experimental results demonstrated that although the ILP formulations
are more efficient than the CP model, they fail to efficiently handle problems with more than
10 facilities, whereas on such problems the heuristic CP method manages to find solutions of
better quality than the ILP and CP models in orders of magnitude shorter run times.
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