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Efficient GPU-based Implementations of Simplex Type
Algorithms

Nikolaos Ploskas, Nikolaos Samaras∗

Abstract

Recent hardware advances have made it possible to solve large scale Linear
Programming problems in a short amount of time. Graphical Processing Units
(GPUs) have gained a lot of popularity and have been applied to linear program-
ming algorithms. In this paper, we propose two efficient GPU-based implemen-
tations of the revised simplex algorithm and a primal-dual exterior point simplex
algorithm. Both parallel algorithms have been implemented in MATLAB using
MATLAB’s Parallel Computing Toolbox. Computational results on randomly
generated optimal sparse and dense linear programming problems and on a set
of benchmark problems (netlib, kennington, Mészáros) are also presented. The
results show that the proposed GPU implementations outperform MATLAB’s
interior point method.

Keywords: Linear Programming; Simplex Type Algorithms; Graphical
Processing Unit; Parallel Computing; MATLAB

1. Introduction

Linear Programming (LP) is perhaps the most important and well–studied
optimization problem. Lots of real world problems can be formulated as Linear
Programming problems (LPs). LP is the process of minimizing or maximizing
a linear objective function z =

∑n
j=1 cjxj to a number of linear equality and

inequality constraints. Simplex algorithm is the most widely used method for
solving LPs. Consider the following linear program (LP.1) in the standard form:

min cTx

s.t. Ax = b (LP.1)

x ≥ 0
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where A ∈ Rm×n, (c, x) ∈ Rn, b ∈ Rm, and T denotes transposition. We assume
that A has full rank, rank(A) = m,m < n. Consequently, the linear system
Ax = b is consistent. The simplex algorithm searches for an optimal solution
by moving from one feasible solution to another, along the edges of the feasible
region. The dual problem associated with the (LP.1) is presented in (DP.1):

min bTw

s.t. ATw + s = c (DP.1)

s ≥ 0

where w ∈ Rm and s ∈ Rn.
The explosion in computational power of hardware has made it possible to solve
large LPs in a short amount of time in PCs. In the past two decades, many par-
allel implementations of LP algorithms have been proposed. Recently, Graphical
Processing Units (GPUs) have gained a lot of popularity and researchers imple-
mented various GPU-based LP algorithms. Using GPU computing for solving
large-scale LPs is a great challenge due to the capabilities of GPU architec-
tures. Jung and O’Leary [17] proposed a CPU-GPU implementation of the
Interior Point Method for dense LPs and their computational results showed a
speedup up to 1.4 on medium-sized Netlib LPs [11] compared to the correspond-
ing CPU implementation. Spampinato and Elster [41] presented a GPU-based
implementation of the revised simplex algorithm with NVIDIA CUBLAS [27]
and NVIDIA LAPACK libraries [28]. Their implementation showed a maxi-
mum speedup of 2.5 on large random LPs compared to the corresponding CPU
implementation. Bieling et al. [3] also proposed a parallel implementation of
the revised simplex algorithm on GPU. They compared their GPU-based im-
plementation with the serial GLPK solver and reported a maximum speedup
of 18 in single precision. Lalami et al. [19] proposed a parallel implementation
of the tableau simplex algorithm on a CPU-GPU system. Their computational
results on randomly generated dense problems showed a maximum speedup of
12.5 compared to the corresponding CPU implementation. Lalami et al. [20] ex-
tended their previous work [19] on a multi-GPU implementation and their com-
putational results on randomly generated dense problems showed a maximum
speedup of 24.5. Li et al. [22] presented a GPU-based parallel algorithm, based
on Gaussian elimination, for large scale LPs that outperforms the CPU-based
algorithm. Meyer et al. [25] proposed a mono- and a multi-GPU implementa-
tion of the tableau simplex algorithm and compared their implementation with
the serial CLP solver. Their implementation outperformed CLP solver on large
sparse LPs. Gade-Nielsen and Jorgensen [10] presented a GPU-based interior
point method and their computational results showed a speedup of 6 on ran-
domly generated dense LPs and a speedup of 2 on randomly generated sparse
LPs compared to the MATLAB’s built-in function linprog. Smith et al. [40]
proposed a GPU-based interior point method and their computational results
showed a maximum speedup of 1.27 on large sparse LPs compared to the cor-
responding multi-core CPU implementation.
To the best of our knowledge, these are all the papers that proposed a GPU-
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based implementation of a LP algorithm. No parallel implementation of the
simplex algorithm has yet offered significantly better performance relative to an
efficient sequential simplex solver [14]; at least not in all type of LPs (sparse or
dense, randomly generated or benchmark). For this reason, there is a strong
motivation for exploring how the simplex type algorithms exploit high perfor-
mance computing architectures. Yet, there has been no attempt to implement
a GPU-based exterior point simplex algorithm. The novelty of this paper is
that we propose GPU-based implementations of the revised simplex algorithm
and a primal-dual exterior point simplex algorithm. The computational results
demonstrate that the proposed GPU implementations outperform MATLAB’s
interior point method on randomly generated optimal dense and sparse LPs and
on a set of benchmark problems (netlib, kennington, Mészáros).
The structure of the paper is as follows. In Section 2, the background of this pa-
per is presented. In Section 3, the revised simplex algorithm and a primal-dual
exterior point simplex algorithm are described. Section 4 presents the GPU-
based implementations of these algorithms. In Section 5, the computational
comparison of the GPU-based implementations with MATLAB’s interior point
method on a set of randomly generated optimal dense and sparse LPs and on a
set of benchmark problems (netlib, kennington, Mészáros) is presented. Finally,
the conclusions of this paper are outlined in section 6.

2. Background

The increasing size of real life LPs demands more computational power and
parallel computing capabilities. Recent hardware advances have made it possible
to solve large LPs in a short amount of time. LP algorithms have been paral-
lelized many times. Some of these implementations use dense matrix algebra
(parallelization of the tableau simplex algorithm using dense matrix algebra or
parallelization of the revised simplex algorithm using dense basis inverse), other
use sparse matrix algebra, while some other use special LP algorithms variants.
Furthermore, with the advances made in hardware, GPUs have been widely
applied to scientific computing applications. GPU is utilized for data parallel
and computationally intensive portions of an algorithm. Two major general
purpose programming languages exist for GPUs, CUDA (Compute Unified De-
vice Architecture) [26] and OpenCL (Open Computing Language) [43]. These
programming languages are based on the stream processing model. CUDA was
introduced in late 2006 and is only available with NVIDIA GPUs, while OpenCL
was introduced in 2008 and is available on GPUs of different vendors and even on
CPUs. Table 1 presents a representative list of parallel (CPU- and GPU-based)
simplex implementations in chronological order.
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3. Simplex Type Algorithms

In this section, the revised simplex algorithm and a primal-dual exterior
point simplex algorithm are described.

3.1. Revised Simplex Algorithm

The most well-known method for the optimization problem is the simplex
algorithm developed by George B. Dantzig [8]. The simplex algorithm begins
with a primal feasible basis and uses pricing operations until an optimum solu-
tion is computed. It also guarantees monotonicity of the objective value. It has
been proved that the expected number of iterations in the solution of a linear
problem is polynomial [5]. Moreover, the worst case complexity has exponential
behavior [18].
Using a basic partition (B,N), the linear problem in (LP.1) can be written as
shown in (LP.2).

min cTBxB + cTNxN

subject to ABxB +ANxN = b (LP.2)

xB , xN ≥ 0

In (LP.2), AB is an m×m non-singular sub-matrix of A, called basic matrix or
basis. The columns of A which belong to subset B are called basic and those
which belong to N are called non basic. The solution xB = (AB)

−1b, xN = 0 is
called a basic solution. A solution x = (xB, xN ) is feasible iff x > 0. Otherwise,
(LP.2) is infeasible. In order to initialize the simplex algorithm, a basic feasible
solution must be available. The solution of (DP.1) is computed by the relation

s = c − ATw, where w = (cB)
T
(AB)

−1 are the simplex multipliers and s are
the dual slack variables. The basis AB is dual feasible iff s ≥ 0.
In each iteration, simplex algorithm interchanges a column of matrix AB with
a column of matrix AN and constructs a new basis AB . A formal description
of the revised simplex algorithm is given in Table 2.

3.2. Primal-Dual Exterior Point Simplex Algorithm

Since Dantzig’s initial contribution, researchers have made many efforts in
order to enhance the performance of simplex algorithm. In the 1990s a totally
different approach arose; namely Exterior Point Simplex Algorithm (EPSA).
The first implementation of an EPSA was introduced for the assignment prob-
lem [29]. The main idea of EPSA is that it moves in the exterior of the feasible
region and constructs basic infeasible solutions instead of feasible solutions cal-
culated by the simplex algorithm. Although EPSA outperforms the original

8



Table 2: Revised Simplex Algorithm

Step 0. (Initialization).
Start with a feasible partition (B,N). Compute (AB)

−1 and vectors xB , w and sN .
Step 1. (Test of optimality).
if sN ≥ 0 then STOP. (LP.2) is optimal.
else
Choose the index l of the entering variable using a pivoting rule.
Variable xl enters the basis.

Step 2. (Minimum ratio test).
Compute the pivot column hl = (AB)

−1Al.
if hl ≤ 0 then STOP. (LP.2) is unbounded.
else
Choose the leaving variable xB[r] = xk using the following relation:

xB[r] =
xB[r]

hil
= min

{
xB[i]

hil
: hil < 0

}
Step 3. (Pivoting).
Swap indices k and l. Update the new basis inverse (AB)

−1, using a basis update scheme.
Go to Step 1.

simplex algorithm, it also has some computational disadvantages. The main
disadvantage is that in many LPs, EPSA can follow a path, which steps away
from the optimal solution. This drawback can be avoided if the exterior path is
replaced with a dual feasible simplex path. The most effective types of EPSA
algorithms are the primal-dual versions. It has been observed that replacing the
exterior path of an EPSA with a dual feasible simplex path results in an algo-
rithm free from the computational disadvantages of EPSA [30]. A more effective
approach is the Primal-Dual Exterior Point Simplex Algorithm (PDEPSA) [38].
PDEPSA can deal with the problems of stalling and cycling more effectively
and as a result improves the performance of the primal dual exterior point algo-
rithms. The advantage of PDEPSA stems from the fact that it uses an interior
point in order to compute the leaving variable in contrast to primal dual exte-
rior point algorithms which use a boundary point. A formal description of the
revised simplex algorithm is given in Table 3. For a full description of PDEPSA
see [38].

PDEPSA needs a dual feasible basic partition (B,N) to start. If the initial
basis B is not dual feasible, then we can apply the algorithm to a big-M problem.
More information about this procedure can be found in [30].

4. GPU-based Implementations

This section presents the GPU architecture of the implementations and the
GPU-based implementations of the simplex type algorithm presented in Section
3.
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Table 3: Primal-Dual Exterior Point Simplex Algorithm

Step 0. (Initialization).
A) Start with a dual feasible basic partition (B,N) and an interior point y > 0 of (LP.2).
Set:

P = N,Q = ∅
and compute

xB = (AB)
−1

b, wT = (cB)
T
(AB)

−1
, sN = (cN )

T − wTAN

B) Compute the direction dB from the relation: dB = yB − xB

Step 1. (Test of optimality and choice of the leaving variable).
if x ≥ 0 then STOP. (LP.2) is optimal.
else
Choose the leaving variable xk = xB[r] from the relation:

al =
xB[r]

−dB[r]
= max

{
xB[r]

−dB[r]
: dB[i] > 0 ∧ xB[i] < 0

}
Step 2. (Computation of the next interior point).
Set:

a = al+1
2

Compute the interior point: yB = xB + adB
Step 3. (Choice of the entering variable).
Set: HrN =

(
A−1

B

)
r.
A.N .

Choose the entering variable xl from the relation:
−sl
HrN

= min
{

−sl
HrN

: Hrj ∧ j ∈ N
}

Compute the pivoting column: hl = (AB)
−1

A.l

if l ∈ P then
P ← P \ {l}

else
Q← Q \ {l}

Step 4. (Pivoting).
Set:

B[r] = l and Q← Q ∪ {k}
Using the new partition (B,N) where N = (P,Q), compute the new basis inverse
A−1

B and the variables xB , w, and sN .
Go to step 0B.

4.1. GPU Architecture

This section briefly describes the architecture of an NVIDIA GPU in terms
of hardware and software. GPU is a multi-core processor having thousands of
threads running concurrently. GPU has many cores aligned in a particular way
forming a single hardware unit. Data parallel algorithms are well suited for such
devices, since the hardware can be classified as SIMT (Single-Instruction Mul-
tiple Threads). GPUs outperform CPUs in terms of GFLOPS (Giga Floating
Point Operations per Second). For example, concerning the equipment utilized
in the computational study presented in Section 5, a high-end Core i7 proces-
sor with 3.46 GHz delivers up to a peak of 55.36 GFLOPs, while a high-end
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NVIDIA Quadro 6000 delivers up to a peak of 1030.4 GFLOPs.
NVIDIA CUDA is an architecture that manages data-parallel computations on
a GPU. A CUDA program includes two portions, one that is executed on the
CPU and another that is executed on the GPU. The CPU should be viewed as
the host device, while the GPU should be viewed as co-processor. The code that
can be parallelized is executed on the GPU as kernels, while the rest is executed
on the CPU. CPU starts the execution of each portion of code and invokes a
kernel function, so, the execution is moved to the GPU. The connection between
CPU memory and GPU memory is through a fast PCIe 16x point to point link.
Each code that is executed on the GPU is divided into many threads. Each
thread executes the same code independently on different data. A thread block
is a group of threads that cooperate via shared memory and synchronize their
execution to coordinate their memory accesses. A grid consists of a group of
thread blocks and a kernel is executed on a grid of thread blocks. A kernel is
the resulting code after the compilation. NVIDIA Quadro 6000, which was used
in our computational experiment, consists of 14 stream processors (SP) with 32
cores each, resulting to 448 total cores. A typical use of a stream is that the
GPU schedules a memory copy of results from CPU to GPU, a kernel launch
and a copy of results from the GPU to CPU. A high level description of the
GPU architecture is shown in Figure 1.

In this paper, both parallel algorithms have been implemented in MATLAB
using MATLAB’s Parallel Computing Toolbox [24]. MATLAB’s Parallel Com-
puting Toolbox provides adequate tools for the solution of computationally and
data-intensive problems using multicore processors, GPUs and computer clus-
ters. The toolbox provides a data structure called GPUArray, which is a special
array that let users perform computations on CUDA-enabled NVIDIA GPUs.
Furthermore, existing CUDA-based GPU kernels can be executed directly from
MATLAB. Finally, multiple GPUs can be utilized using MATLAB workers in
Parallel Computing Toolbox and Distributed Computing Server.
Prior to the presentation of the GPU-based implementations of the revised sim-
plex algorithm and primal-dual exterior point simplex algorithm, we should
describe two specific steps that are part of both implementations. The first
one is the step where the algorithm determines if the linear problem is optimal
in order to terminate its’ execution. The GPU calculates reduced costs and
stores in a flag variable the minimum of them. This flag variable is transferred
to the CPU and the CPU determines if the linear problem is optimal. If the
linear problem is optimal (i.e. the flag variable contains a positive value), the
algorithm terminates, while if it is not the GPU continues finding the index of
the entering variable. Similarly, the second step is the one where the algorithm
determines if the linear problem is unbounded in order to terminate its’ execu-
tion. The GPU finds the index of the entering variable and then transfers to the
CPU another flag variable. The CPU checks the flag variable to determine if the
linear problem is unbounded (i.e. the flag variable is null) in order to terminate
the algorithm. Otherwise, the GPU continues finding the index of the leaving
variable. On both steps, we preferred to implement the if statements in the
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Figure 1: High Level Description of GPU Architecture
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CPU, because the GPU is not suitable for logical branching [16]. This diver-
gence problem exists in all modern GPUs [47]. We concluded to this decision by
computationally comparing the other two alternatives: (i) The GPU calculates
the reduced costs and sends the vector of the reduced costs to the CPU and the
CPU determines if the linear problem is optimal, and (ii) The GPU calculates
the reduced costs and determines itself if the linear problem is optimal. In order
to justify this decision, both GPU-based implementations were executed for all
three scenarios (the one chosen and the two alternatives) over a 4, 000 x 4, 000
randomly generated optimal dense LP. The total execution time for the revised
simplex algorithm is: (i) 154.06, if we transfer the flag variable, (ii) 329.41, if
the GPU calculates the reduced costs and sends the vector of the reduced costs
to the CPU and the CPU determines if the linear problem is optimal, and (iii)
512.35, if the GPU calculates the reduced costs and determines itself if the linear
problem is optimal. Respectively, the total execution time for the primal-dual
exterior point simplex algorithm is: (i) 49.34, if we transfer the flag variable,
(ii) 174.17, if the GPU calculates the reduced costs and sends the vector of the
reduced costs to the CPU and the CPU determines if the linear problem is op-
timal, and (iii) 298.45, if the GPU calculates the reduced costs and determines
itself if the linear problem is optimal.

4.2. Implementation of the GPU-Based Revised Simplex Algorithm

Figure 2 presents the process that is performed in the GPU-based implemen-
tation of the revised simplex algorithm. In the first step, the CPU initializes
the algorithm by reading all the necessary data. In the second step, the CPU
transfers the adequate variables (A, b, and c) to the GPU and the GPU scales
the linear problem. In the third step, the GPU computes a feasible solution
and transfers to the CPU a flag variable. The CPU checks the flag variable
to determine if the linear problem is optimal. If the linear problem is optimal,
the algorithm terminates, while if it is not the GPU finds the index of the en-
tering variable in the fourth step and then transfers to the CPU another flag
variable. The CPU checks the flag variable to determine if the linear problem
is unbounded in order to terminate the algorithm. Otherwise, the GPU finds
the index of the leaving variable in the fifth step and updates the basis and all
the necessary variables in the sixth step. Then, the algorithm continues with
the next iteration until a solution is found.

The aforementioned steps are executed in a serial manner either on the CPU
or on the GPU. Data-parallel steps are executed on the GPU; these steps in-
clude: (i) scaling, (ii) pivoting, and (iii) basis update. In this point, we should
describe the methods that we used for these three steps of the algorithm. Scal-
ing is the most widely used preconditioning technique in linear optimization
solvers. Scaling is an operation in which the rows and columns of a matrix are
multiplied by positive scalars and these operations lead to nonzero numerical
values of similar magnitude. Scaling is used prior to the application of a linear
programming algorithm for four reasons [45]: (a) to produce a compact rep-
resentation of the bounds of variables, (b) to reduce the number of iterations
required to solve LPs, (c) to simplify the setup of the tolerances, and (d) to
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Figure 2: Flow Chart of the GPU-based Revised Simplex Algorithm
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reduce the condition number of the constraint matrix A and improve the nu-
merical behavior of the algorithms. Scaling has been proven to reduce both
the number of iterations and the total execution time of the revised simplex
algorithm [34]. In a previous paper [35], we have reviewed and implemented ten
scaling techniques with a focus on the parallel implementation of them on GPUs
under the MATLAB and CUDA environment. The computational study showed
that the GPU-based arithmetic mean is the fastest scaling method. However,
the equilibration scaling technique leads the revised simplex algorithm to less
iterations than the other methods [34]. So, in this paper the scaling is performed
using the arithmetic mean scaling method followed by the equilibration scaling
method.
Some necessary notation should be introduced before the presentation of the
pseudocode of each scaling method (more details can be found in [35]). Let r be
a 1xm vector with row scaling factors and s be a 1xn vector with column scaling
factors. Let sum row be a 1xm vector with the sum of each row’s elements and
sum col be a 1xn vector with the sum of each column’s elements. Furthermore,
row max be a 1xm vector with each row’s maximum element and col max be a
1xn vector with each column’s maximum element. Finally, let count row be a
1xm vector with the number of each row’s nonzero elements and and count col
be a 1xn vector with the sum of each column’s nonzero elements.
Pseudocodes include “do parallel” and “end parallel” sections, in which the
workload is divided into warps that are executed sequentially on a multipro-
cessor. Although, the scaling process can be applied iteratively, pseudocodes
present only one iteration. Table 4 shows the pseudocode of the implementa-
tion of the arithmetic mean scaling technique on a GPU. In the first for-loop
(lines 2:14), the row scaling factors are calculated in parallel as the number of
nonzero elements of each row to the sum of the same row (line 10). If the ab-
solute value of the sum and the inverse sum of a row are not zero (line 9), then
matrix A and vector b are updated (lines 11:12). Finally, in the second for-loop
(lines 17:31), the column scaling factors are calculated in parallel as the number
of nonzero elements of each column to the sum of the same column (line 25).
If the absolute value of the sum and the inverse sum of a column are not zero
(line 24), then matrix A and vector c are updated (lines 26:27).

Table 5 shows the pseudocode of the implementation of the equilibration
scaling technique on a GPU. In the first for-loop (lines 2:9), the row scaling
factors are calculated in parallel as the inverse of the maximum element of each
row (line 5). If the the maximum element of a row is not zero (line 4), then
matrix A and vector b are updated (lines 6:7). Similarly, in the second for-loop
(lines 12:19), the column scaling factors are calculated in parallel as the inverse
of the maximum element of each column (line 15). If the the maximum element
of a column is not zero (line 14), then matrix A and vector c are updated (lines
16:17).

A crucial step in solving a linear problem with the simplex algorithm is the
selection of the entering variable. This step is performed in each iteration. Good
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Table 4: GPU-based Arithmetic Mean

1. do parallel

2. for i=1:m

3. for j=1:n

4. if A[i][j] != 0

5. sum_row[i] = sum_row[i] + |A[i][j]|

6. count_row[i] = count_row[i] + 1

7. end if

8. end for

9. if count_row[i] != 0 AND sum_row[i] != 0

10. r[i] = count_row[i] / sum_row[i]

11. A[i][:] = A[i][:] * r[i]

12. b[i] = b[i] * r[i]

13. end if

14. end for

15. end parallel

16. do parallel

17. for i=1:n

18. for j=1:m

19. if A[i][j] != 0

20. sum_col[i] = sum_col[i] + |A[i][j]|

21. count_col[i] = count_col[i] + 1

22. end if

23. end

24. if count_col[i] != 0 AND sum_col[i] != 0

25. s[i] = count_col[i] / sum_col[i]

26. A[:][i] = A[:][i] * s[i]

27. c[i] = c[i] * s[i]

30. end if

31. end for

32. end parallel
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Table 5: GPU-based Equilibration

1. do parallel

2. for i=1:m

3. find the maximum element in row i and store it to row_max[i]

4. if row_max[i] != 0

5. r[i] = 1 / row_max[i];

6. A[i][:] = A[i][:] * r[i]

7. b[i] = b[i] * r[i]

8. end if

9. end for

10. end parallel

11. do parallel

12. for i=1:n

13. find the maximum element in column i and store it to col_max[i]

14. if col_max[i] != 0

15. s[i] = 1 / col_max[i]

16. A[:][i] = A[:][i] * s[i]

17. c[i] = c[i] * s[i]

18. end if

19. end for

20. end parallel
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Table 6: GPU-based Steepest Edge

1. do parallel

2. Y = BasisInv * A(:,NonBasicList)

3. dj = sqrt(1 + diag(Y’ * Y))

4. rj = Sn’ ./ dj

5. find the index of the minimum element of the vector rj

6. end parallel

choices can lead to a fast convergence to the optimal solution, while poor choices
lead to worse execution times or even no solutions of the LPs. A pivoting rule
is one of the main factors that will determine the number of iterations that
simplex algorithm performs [23]. In a previous paper [37], we have proposed
six well-known pivoting rules for the revised simplex algorithm on a CPU-GPU
computing environment. The computational study showed that the GPU-based
steepest-edge is the fastest pivoting rule. So, in this paper the pivoting step is
performed using the steepest-edge pivoting rule [12].
Some necessary notations should be introduced, before the presentation of the
aforementioned pivoting rules. Let l be the index of the entering variable and
cl be the difference in the objective value when the non-basic variable xl is in-
creased by one unit and the basic variables are adjusted appropriately. Reduced
cost is the amount by which the objective function on the corresponding vari-
able must be improved before the value of the variable will be positive in the
optimal solution. Steepest Edge Rule selects as entering variable the variable
with the most objective value reduction per unit distance, as shown in Equation
(1):

dj = min

{
cl√

1 +
∑m

i=1 x
2
il

: l = 1, 2, ..., n

}
(1)

Table 6 shows the pseudocode of the implementation of the Steepest Edge on
a GPU (more details can be found in [37]). The index of the incoming variable
is calculated according to the Equation (1) (lines 2 - 5). NonBasicList is an
mx(n−m) vector with the indices of the non basic variables and BasisInv is
an mxm matrix with the basis inverse. Sn is an 1xn vector with dual slack
variables and ./ denotes the element–wise division of two vectors.

The total work of an iteration of simplex type algorithms is dominated by the
determination of the basis inverse [32] [33]. This inverse, however, does not have
to be computed from scratch during each iteration. Simplex type algorithms
maintain a factorization of basis and update this factorization in each itera-
tion. There are several schemes for updating basis inverse. In a previous paper
[36], we proposed a GPU-based implementation for the Product Form of the
Inverse (PFI) [7] and a Modification of the Product Form of the Inverse (MPFI)
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[2] updating schemes. The computational study showed that the GPU-based
MPFI outperformed the GPU-based PFI. So, in this paper the basis update is
performed using the MPFI updating scheme.
Let (AB)

−1 be the previous basis inverse, (hl) be the pivot column, (k) be the
index of the leaving variable and (m) the number of the constraints. Further-
more, let us assume that we have t GPU cores. Table 7 shows the steps that we
used to compute the new basis inverse (AB)

−1 with the MPFI scheme on the
GPU (more details can be found in [36]).

Table 7: GPU-based MPFI
Step 0.
Compute the column vector:

v =
[
−h1l

hrl
· · · 1

hrl
· · · −hml

hrl

]T
Each core computes in parallel m/t elements of v. The pivot element
is shared between all t cores.
Step 1.
Compute the outer product v ⊗ (ABr )

−1 with matrix multiplication.
Each core will compute a block of the new matrix.
Step 2.
Set the rth row of (AB)

−1 equal to zero. Each core computes in parallel
t/p rows of (AB)

−1.
Step 3.
Add matrix (AB)

−1 with the resulted matrix from step 1. Each core
will compute a block of the new basis inverse.

Finally, we have tried to optimize the use of GPU memory. The frequent
and heavy back-and-forth transmission of data between the CPU and GPU
will dominate the computational time, so we reduced the communication time
as far as possible. CPU is used to control the whole iteration while GPU is
used for computing intensive steps. In both GPU-based algorithms presented in
this paper, the communication between the CPU and GPU occurs only in the
following steps of the algorithm: (i) initially, the CPU transfers to the GPU the
matrix A and the vectors b and c, (ii) in each iteration the GPU transfers a flag
variable to the CPU in order to determine if the linear problem is optimal and
terminate the algorithm, (iii) in each iteration the GPU transfers another flag
variable to the CPU in order to determine if the linear problem is unbounded
and terminate the algorithm, and (iv) finally, the GPU transfers the objective
value and the iterations needed to find the solution to the CPU.
Table 8 shows the pseudocode of the implementation of the revised simplex
algorithm on a GPU.

4.3. Implementation of the GPU-Based Primal-Dual Exterior Point Simplex
Algorithm

Figure 3 presents the process that is performed in the GPU-based imple-
mentation of the PDEPSA. In the first step, the CPU initializes the algorithm
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Table 8: GPU-based Revised Simplex Algorithm

1. The CPU reads the linear problem and initialize all the necessary variables.

2. The CPU transfers to the GPU the matrix A and the vectors b and c

3. The GPU scales the linear problem using arithmetic mean followed by

equilibration.

4. The GPU calculates a feasible partition.

5. The GPU transfers a flag variable to the CPU.

6. while linear problem is not optimal

7. The CPU checks the flag variable to determine if the linear problem

is optimal. If the linear problem is optimal, the algorithm

terminates.

8. The GPU calculates the index of the entering variable using the

steepest-edge pivoting rule.

9. The GPU transfers a flag variable to the CPU.

10. The CPU checks the flag variable to determine if the linear problem

is unbounded. If the linear problem is unbounded, the algorithm

terminates.

11. The GPU calculates the index of the leaving variable.

12. The GPU updates the basis using the MPFI updating scheme.

13. The GPU transfers a flag variable to the CPU.

14. end
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Figure 3: Flow Chart of the GPU-based Primal-Dual Exterior Point Simplex Algorithm

by reading all the necessary data. In the second step, the CPU transfers the
adequate variables (A, b, and c) to the GPU and the GPU scales the linear
problem. In the third step, the GPU computes a dual feasible solution and
an interior point. In the fourth step, the GPU computes the direction dB and
transfers to the CPU a flag variable. The CPU checks the flag variable to de-
termine if the linear problem is optimal. If the linear problem is optimal, the
algorithm terminates, while if it is not the GPU finds the index of the entering
variable in the fifth step. In the sixth step, the GPU computed the next interior
point. In the seventh step, the GPU finds the index of the leaving variable and
transfers to the CPU another flag variable. The CPU checks the flag variable
to determine if the linear problem is unbounded in order to terminate the al-
gorithm. Otherwise, in the eighth step the GPU updates the basis and all the
necessary variables. Then, the algorithm continues with the next iteration until
a solution is found.

As described in section 4.2, the scaling is performed using the arithmetic
mean scaling method followed by the equilibration scaling method and the basis
update is performed using the MPFI updating scheme. Again, we reduced the
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Table 9: GPU-based Primal-Dual Exterior Point Simplex Algorithm

1. The CPU reads the linear problem and initialize all the necessary variables.

2. The CPU transfers to the GPU the matrix A and the vectors b and c.

3. The GPU scales the linear problem using arithmetic mean followed by

equilibration.

4. The GPU calculates a dual feasible partition and an interior point.

5. The GPU computes the direction dB.

6. The GPU transfers a flag variable to the CPU.

7. while linear problem is not optimal

8. The CPU checks the flag variable to determine if the linear problem

is optimal. If the linear problem is optimal, the algorithm terminates.

9. The GPU calculates the index of the entering variable.

10. The GPU computes the next interior point.

11. The GPU finds the index of the leaving variable.

12. The GPU transfers a flag variable to the CPU.

13. The CPU checks the flag variable to determine if the linear problem

is unbounded. If the linear problem is unbounded, the algorithm

terminates.

14. The GPU updates the basis using the MPFI updating scheme.

15. The GPU transfers a flag variable to the CPU.

16. end

communication time between the CPU and GPU in the same manner explained
in section 4.2. Table 9 shows the pseudocode of the implementation of the
PDEPSA on a GPU.

5. Computational Results

Computational studies have been widely used in order to examine the prac-
tical efficiency of an algorithm or even compare algorithms. The computational
comparison has been performed on a quad-processor Intel Core i7 3.4 GHz with
32 Gbyte of main memory and 8 cores, a clock of 3700 MHz, an L1 code cache
of 32 KB per core, an L1 data cache of 32 KB per core, an L2 cache of 256 KB
per core, an L3 cache of 8 MB and a memory bandwidth of 21 GB/s, running
under Microsoft Windows 7 64-bit and on a NVIDIA Quadro 6000 with 6 GB
GDDR5 384-bit memory, a core clock of 574 MHz, a memory clock of 750 MHz
and a memory bandwidth of 144 GB/s. It consists of 14 stream processors with
32 cores each resulting in 448 total cores. The graphics card driver installed in
our system is NVIDIA 64 kernel module 320.92. Both GPU-based algorithms
have been implemented in MATLAB 2013b using MATLAB’s Parallel Comput-
ing Toolbox.
In this computational study, we compare the proposed GPU-based algorithms
with MATLAB’s large-scale linprog built-in function. The large-scale algorithm
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is based on Interior Point Solver [48], a primal-dual interior point algorithm.
MATLAB’s linprog function automatically executes on multiple computational
threads, in order to take advantage of the multiple cores of the CPU. The ex-
ecution time of this algorithm already includes the performance benefit of the
inherent multithreading in MATLAB. MATLAB supports multithreaded com-
putation for some built-in functions. These functions automatically utilize mul-
tiple threads without the need to specify commands to handle the threads in a
code. Of course, MATLABs inherent multithreading is not as efficient as a pure
parallel implementation. Execution times for all algorithms have been measured
in seconds using tic and toc MATLAB’s built-in functions. Finally, the results
of the GPU-based implementations are very accurate, because NVIDIA Quadro
6000 is fully IEEE 764-2008 compliant 32- and 64-bit fast double-precision.
The test set used in the computational study was: (i) and a set of randomly gen-
erated sparse and dense optimal LPs (problem instances have the same number
of constraints and variables and the largest problem tested has 6, 000 constraints
and 6, 000 variables), and (ii) a set of benchmark problems (netlib, kennington,
Mészáros) that do not have bounds and ranges sections in their mps files. Sparse
LPs were generated with 10% and 20% density. For each instance we averaged
times over 10 runs. All runs were executed as a batch job. The randomly
generated LPs that have been solved are of the general form (LP.3):

min cTx

s.t. Ax⊕ b (LP.3)

x ≥ 0

where ⊕ =

{
≤
≥

. The ranges of values that were used for the randomly gener-

ated LPs are c ∈ [1...500], A ∈ [10...400] and b ∈ [10...100]. MATLAB’s random
generators rand and sprand were used to generate uniformly distributed random
numbers using the current timestamp as the seed.
Table 11 presents some useful information about the second test bed, which
was used in the computational study. The first column includes the name of
the problem, the second the number of constraints, the third the number of
variables, the fourth the nonzero elements of matrix A and the fifth the optimal
objective value. The test bed includes 14 LPs from Netlib, 1 Kennington and 7
LPs from Mészáros collection.

MATLABs GPU library does not support sparse matrices, so, all matrices
are stored as dense (including zero elements). Hence, we altered MATLAB’s
IPM algorithm in order to use dense matrices and make the comparison with
our algorithms fair.
In Tables 11 - 16 and Figures 4 - 6, the following abbreviations are used: (i)
Primal-Dual Exterior Point Simplex Algorithm running on CPU - PDEPSA,
(ii) MATLAB’s large-scale linprog built-in function - IPM, (iii) Revised Sim-
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Table 10: Statistics of the Netlib, Kennington and Mészáros LPs

Name Constraints Variables Nonzeros A Optimal Objective value
AGG 489 163 2,541 -3.60E+07

BEACONFD 174 262 3,476 3.36E+04
BNL2 2,325 3,489 16,124 1.81E+03
CARI 400 1,200 152,800 5.81E+02
OSA-07 1,119 23,949 167,643 5.35E+05
ROSEN1 520 1,544 23,794 -2.76E+04
ROSEN2 1,032 3,080 47,536 5.44e+04
ROSEN7 264 776 8,034 2.03e+04
ROSEN8 520 1,544 16,058 4.21e+04
ROSEN10 2,056 6,152 64,192 1.74e+05

SCORPION 389 358 1,708 1.88E+03
SCTAP2 1,091 1,880 8,124 1.72E+03
SCTAP3 1,481 2,480 10,734 1.42E+03
SHIP04L 403 2,118 8,450 1.79E+06
SHIP04S 403 1,458 5,810 1.80E+06
SHIP08L 779 4,283 17,085 1.91E+06
SHIP08S 779 2,387 9,501 1.92E+06
SHIP12L 1,152 5,427 21,597 1.47E+06
SHIP12S 1,152 2,763 10,941 1.49E+06
SLPTSK 2,861 3,347 72,465 2.34E+02

STOCFOR2 2,158 2,031 9,492 -3.90E+04
WOOD1P 245 2,594 70,216 1.44E+00
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Table 11: Total execution time over the randomly generated optimal dense LPs

Problem PDESPA IPM RSA-GPU PDESPA-GPU
1,000x1,000 20.68 279.68 7.41 (1.66%) 3.02 (1.23%)
1,500x1,500 41.82 499.05 12.65 (1.41%) 5.06 (1.12%)
2,000x2,000 149.81 1,128.46 23.69 (0.93%) 8.94 (1.23%)
2,500x2,500 457.80 2,794.41 51.20 (0.72%) 17.32 (1.04%)
3,000x3,000 652.34 4,399.06 80.35 (0.63%) 26.46 (0.97%)
3,500x3,500 1,129.34 7,040.20 125.04 (0.54%) 40.26 (0.93%)
4,000x4,000 2,030.42 8,938.19 154.06 (0.46%) 49.34 (0.85%)
4,500x4,500 2,819.71 - 252.41 (0.42%) 70.60 (0.81%)
5,000x5,000 3,456.28 - 428.00 (0.41%) 95.41 (0.79%)
5,500x5,500 4,361.71 - 778.84 (0.34%) 146.23 (0.75%)
6,000x6,000 8,838.89 - 1,261.53 (0.30%) 205.42 (0.73%)
Average 2,178.07 3,582.72 288.65 (0.71%) 60.73 (0.90%)

plex Algorithm running on GPU - RSA-GPU, and (iv) Primal-Dual Exterior
Point Simplex Algorithm running on GPU - PDEPSA-GPU. We also included
execution times for PDEPSA running on CPU, because PDEPSA-GPU is faster
than RSA and IPM; so, PDEPSA is utilized in order to make clear that the ac-
celeration of PDEPSA-GPU is coming from the parallel implementation and
not from the based algorithm. Tables 11 - 13 present the total execution time of
the algorithms over the randomly generated optimal dense LPs, the randomly
generated optimal sparse LPs with density 10% and the randomly generated op-
timal sparse LPs with density 20%, respectively. The total execution time of the
GPU-based implementations of RSA-GPU and PDEPSA-GPU also include the
communication time. The percentage of the communication time to the total
execution time for the GPU-based algorithms is presented in the parentheses.
Tables 14 - 16 present the iterations needed by each algorithm to solve the linear
problem over the randomly generated optimal dense LPs, the randomly gener-
ated optimal sparse LPs with density 10% and the randomly generated optimal
sparse LPs with density 20%, respectively. A time limit of 3 hours was imposed
which explains why there are no measurements for IPM on randomly generated
optimal dense LPs above n = 4000 and for PDEPSA on randomly generated
optimal sparse LPs with density 10% above n = 2500 and on randomly gener-
ated optimal sparse LPs with density 20% above n = 2000.

Figures 4 - 6 present the speedup over the randomly generated optimal
dense LPs, the randomly generated optimal sparse LPs with density 10% and
the randomly generated optimal sparse LPs with density 20%, respectively. The
following abbreviations are used: (i) PDESPA-GPU/PDEPSA is the speedup
of PDEPSA-GPU over PDEPSA, (i) PDESPA-GPU/IPM is the speedup of
PDEPSA-GPU over IPM, (ii) RSA-GPU/IPM is the speedup of RSA-GPU
over IPM, and (iii) PDESPA-GPU/RSA-GPU is the speedup of PDEPSA-GPU
over RSA-GPU.
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Table 12: Total execution time over the randomly generated optimal sparse LPs with density
10%

Problem PDESPA IPM RSA-GPU PDESPA-GPU
1,000x1,000 283.03 78.86 61.02 (0.12%) 9.84 (0.10%)
1,500x1,500 1,502.85 280.80 196.35 (0.08%) 28.58 (0.08%)
2,000x2,000 4,209.14 415.70 270.31 (0.06%) 37.46 (0.08%)
2,500x2,500 10,770.82 1,298.86 688.14 (0.06%) 88.66 (0.07%)
3,000x3,000 - 1,683.41 873.17 (0.05%) 104.01 (0.06%)
3,500x3,500 - 2,539.07 1,236.40 (0.05%) 148.83 (0.05%)
4,000x4,000 - 3,128.60 1,511.56 (0.03%) 182.00 (0.04%)
4,500x4,500 - 3,710.59 1,731.46 (0.03%) 213.49 (0.04%)
5,000x5,000 - 4,466.21 2,049.69 (0.02%) 255.90 (0.03%)
5,500x5,500 - 5,736.32 2,435.80 (0.02%) 315.66 (0.03%)
6,000x6,000 - 7,234.65 3,035.53 (0.02%) 385.42 (0.02%)
Average 4,191.46 2,779.37 1,280.86 (0.05%) 160.90 (0.05%)

Table 13: Total execution time over the randomly generated optimal sparse LPs with density
20%

Problem PDESPA IPM RSA-GPU PDESPA-GPU
1,000x1,000 247.57 88.50 34.26 (0.16%) 8.18 (0.12%)
1,500x1,500 1,260.59 162.82 59.39 (0.10%) 13.21 (0.09%)
2,000x2,000 6,015.30 355.79 127.77 (0.08%) 25.84 (0.09%)
2,500x2,500 - 758.21 232.88 (0.06%) 51.24 (0.07%)
3,000x3,000 - 1,077.84 314.60 (0.05%) 71.28 (0.06%)
3,500x3,500 - 2,487.42 649.23 (0.05%) 139.57 (0.05%)
4,000x4,000 - 3,072.17 776.63 (0.05%) 171.23 (0.05%)
4,500x4,500 - 3,853.41 953.61 (0.04%) 206.81 (0.04%)
5,000x5,000 - 5,024.56 1,237.60 (0.04%) 267.17 (0.04%)
5,500x5,500 - 6,539.02 1,535.80 (0.04%) 339.31 (0.04%)
6,000x6,000 - 8,104.58 1,835.53 (0.03%) 415.32 (0.03%)
Average 2,507.82 2,865.85 705.21 (0.06%) 155.38 (0.06%)
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Table 14: Number of iterations over the randomly generated optimal dense LPs

Problem PDESPA IPM RSA-GPU PDESPA-GPU
1,000x1,000 134 34 118 134
1,500x1,500 103 32 68 103
2,000x2,000 163 29 148 163
2,500x2,500 257 42 249 257
3,000x3,000 170 42 163 170
3,500x3,500 258 45 180 258
4,000x4,000 242 38 220 242
4,500x4,500 323 - 216 323
5,000x5,000 149 - 131 149
5,500x5,500 299 - 280 299
6,000x6,000 415 - 330 415
Average 228.45 37.43 191.18 228.45

Table 15: Number of iterations over the randomly generated optimal sparse LPs with density
10%

Problem PDESPA IPM RSA-GPU PDESPA-GPU
1,000x1,000 1,256 22 1,275 1,256
1,500x1,500 2,069 26 1,836 2,069
2,000x2,000 2,581 28 2,450 2,581
2,500x2,500 3,503 29 2,845 3,503
3,000x3,000 - 24 3,285 4,688
3,500x3,500 - 25 4,675 5,332
4,000x4,000 - 26 5,035 6,801
4,500x4,500 - 27 5,508 7,517
5,000x5,000 - 28 6,516 8,669
5,500x5,500 - 30 7,945 10,314
6,000x6,000 - 31 9,287 12,456
Average 2,352.25 26.91 4,605.18 5,926.00
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Table 16: Number of iterations over the randomly generated optimal sparse LPs with density
20%

Problem PDESPA IPM RSA-GPU PDESPA-GPU
1,000x1,000 1,041 23 1,024 1,041
1,500x1,500 1,832 19 1,340 1,832
2,000x2,000 2,460 24 1,811 2,460
2,500x2,500 - 23 2,650 3,282
3,000x3,000 - 24 2,836 4,190
3,500x3,500 - 30 3,454 4,987
4,000x4,000 - 26 3,889 5,627
4,500x4,500 - 28 4,536 6,438
5,000x5,000 - 30 4,888 7,764
5,500x5,500 - 29 5,653 9,135
6,000x6,000 - 32 6,781 11,341
Average 1,777.67 26.18 3,532.91 5,281.55

Figure 4: Speedup over the randomly generated optimal dense LPs
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Figure 5: Speedup over the randomly generated optimal sparse LPs with density 10%

Figure 6: Speedup over the randomly generated optimal sparse LPs with density 20%
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Table 17: Total execution time over the Netlib, Kennington and Mészáros LPs

Name PDESPA IPM PDESPA-GPU
AGG 1.12 0.59 0.73

BEACONFD 0.15 0.08 0.11
BNL2 1,386.43 46.89 17.10
CARI 7.12 2.26 2.31
OSA-07 412.18 115.34 12.62
ROSEN1 15.81 1.54 2.22
ROSEN2 149.06 8.12 6.76
ROSEN7 1.43 0.41 1.02
ROSEN8 17.78 1.45 2.76
ROSEN10 1,907.00 45.31 24.75

SCORPION 0.56 0.21 0.43
SCTAP2 215.14 7.01 2.70
SCTAP3 215.14 17.76 4.18
SHIP04L 2.35 0.56 1.12
SHIP04S 0.86 0.28 0.59
SHIP08L 17.81 2.09 2.34
SHIP08S 2.56 0.48 1.11
SHIP12L 65.64 5.01 5.05
SHIP12S 8.50 0.93 2.07
SLPTSK 2,889.50 245.51 15.54

STOCFOR2 1,120.04 37.43 9.44
WOOD1P 8.96 0.84 1.12
Average 383.87 24.55 5.28

Table 17 presents the total execution time of the algorithms over the Netlib,
Kennington and Mészáros LPs. We excluded RSA from this computational
study, because PDEPSA-GPU is clearly superior to it. Table 18 presents the
iterations needed by each algorithm to solve the linear problem over the Netlib,
Kennington and Mészáros LPs. Execution times with bold emphasize indicate
the best execution time for the specific linear problem. Figure 7 presents the
speedup over the Netlib, Kennington and Mészáros LPs. The following abbrevi-
ations are used: (i) PDESPA-GPU/PDEPSA is the speedup of PDEPSA-GPU
over PDEPSA, and (ii) PDEPSA-GPU/IPM is the speedup of PDEPSA-GPU
over IPM.

Before the discussion of the results, we should note again that MATLAB’s
large-scale linprog built-in function is not completely parallelized, but utilizes
the inherent multithreading in MATLAB. We have selected this algorithm be-
cause it is a sophisticated commercial LP solver and it is implemented in MAT-
LAB as our algorithms. So, we believe that it is fair to use MATLAB’s large-
scale linprog built-in function as a reference point for the comparison with our
GPU-based algorithms. We also present the execution time of our CPU-based
implementation for PDEPSA in order to make clear that the acceleration is
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Table 18: Number of iterations over the Netlib, Kennington and Mészáros LPs

Name PDESPA IPM PDESPA-GPU
AGG 146 20 146

BEACONFD 21 10 21
BNL2 2,146 32 2,146
CARI 456 15 456
OSA-07 918 31 918
ROSEN1 525 14 525
ROSEN2 1,113 15 1,113
ROSEN7 239 12 239
ROSEN8 582 14 582
ROSEN10 2,450 15 2,450

SCORPION 92 14 92
SCTAP2 377 17 377
SCTAP3 631 20 631
SHIP04L 217 12 217
SHIP04S 157 12 157
SHIP08L 428 14 428
SHIP08S 231 13 231
SHIP12L 864 16 864
SHIP12S 576 15 576
SLPTSK 1,438 29 1,438

STOCFOR2 1,205 26 1,205
WOOD1P 186 25 186
Average 681.73 17.77 681.73

Figure 7: Speedup over the Netlib, Kennington and Mészáros LPs
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coming from the parallel implementation and not from the based algorithm.
The results show a large speedup of both proposed GPU-based algorithms over
MATLAB’s large-scale linprog built-in function on randomly generated sparse
and dense LPs. From the results over the randomly generated LPs, we observe:
(i) GPU-based PDEPSA achieves a maximum speedup over IPM of about 181
(on average 143) on dense LPs, about 19 (on average 15) on sparse LPs with
density 10%, and about 20 (on average 16) on sparse LPs with density 20%,
(ii) GPU-based RSA achieves a maximum speedup over IPM of about 58 (on
average 50) on dense LPs, about 2 (on average 2) on sparse LPs with den-
sity 10%, and about 4 (on average 4) on sparse LPs with density 20%, (iii)
GPU-based PDEPSA is much faster than GPU-based RSA on all LPs, (iv) our
CPU-based PDEPSA algorithm is much faster than IPM over the randomly gen-
erated dense LPs, but much slower over the randomly generated sparse LPs, (v)
GPU-based PDEPSA outperforms CPU-based PDEPSA on all instances, and
(iv) the percentage of the communication time to the total execution time on
both GPU-based algorithms is very small. For the sake of completeness, we also
present the number of iterations needed by each algorithm to solve the linear
problem in Tables 13 - 15, but only the total execution time of the algorithms
is used to compare the algorithms. This is because interior point methods con-
verge after a few iterations, but with a large computational cost per iteration.
The computational study over the benchmark LPs shows that our GPU-based
PDEPSA is on average 2.30 times faster than IPM and 32.25 times faster than
the CPU-based PDEPSA. Furthermore, the CPU-based PDEPSA is slower than
IPM on all instances. This observation shows that the speedup gained over
the IPM algorithm stems from the parallelization and not the base algorithm.
Moreover, the speedup gained over the benchmark LPs is much lower than the
speedup over the randomly generated LPs, because MATLABs GPU library
does not support sparse matrices and all matrices are stored as dense, as stated
before.
These findings are significant because they show that primal-dual exterior point
simplex algorithms are more efficient for GPU-based implementations than the
revised simplex algorithm. To the best of our knowledge this is the only pa-
per presenting a parallelization of an exterior point simplex algorithm on GPUs.
Furthermore, our GPU-based implementations presented great speedup not only
on randomly generated sparse and dense LPs, but also on benchmark LPs.

6. Conclusions

GPUs have been already applied for the solution of linear optimization algo-
rithms, but GPU-based implementations of an exterior point simplex algorithm
have not yet been studied. In this paper, we proposed two efficient GPU-based
implementations of the revised simplex algorithm and a primal-dual exterior
point simplex algorithm. We performed a computational study on large-scale
randomly generated optimal sparse and dense LPs and found that both GPU-
based algorithms outperform MATLAB’s interior point method. The primal-
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dual exterior point simplex algorithm was the fastest GPU-based implementa-
tion and the maximum speedup gained over MATLAB’s interior point method
was about 181 on dense LPs and about 20 on sparse LPs. Furthermore, the
GPU-based primal-dual exterior point simplex algorithm shows a great speedup
(on average 2.3) over MATLAB’s interior point method on a set of benchmark
LPs.
In future work, we plan to port our implementation using CUDA C/C++ in
order to take advantage of a high performance computing language and com-
pare it with other state-of-the-art solvers, like CPLEX and GUROBI. Finally,
we plan to experiment with other primal-dual exterior point simplex algorithm
variants.
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