
A Computational Comparison of Basis Updating
Schemes for the Simplex Algorithm on a CPU-GPU

System

Nikolaos Ploskas∗and Nikolaos Samaras†

Department of Applied Informatics, School of Information Sciences, University of
Macedonia, Greece

August 18, 2013

Abstract

Linear Programming is a significant area in the field of operations research. The compu-
tation of the basis inverse is the most time-consuming step in simplex type algorithms and
must be carefully designed and implemented. This inverse does not have to be computed from
scratch at any iteration, but updating schemes can be applied to accelerate this calculation. In
this paper, we perform a computational comparison in which the basis inverse is computed
with five different updating schemes. Then, we propose a parallel implementation of two up-
dating schemes on a CPU-GPU System. All these schemes have been implemented under the
MATLAB and CUDA environment. Finally, a computational study on randomly generated full
dense linear programs is presented to establish the practical value of GPU-based implementa-
tion.
Keywords: Simplex Algorithm; Basis Inverse; Graphics Processing Unit; MATLAB; Compute
Unified Device Architecture

1 Introduction
Linear Programming (LP) is the process of minimizing or maximizing a linear objective function
z =

∑n
j=1 cjxj to a number of linear equality and inequality constraints. Simplex algorithm is the

most widely used method for solving Linear Programming problems (LPs). Consider the following
linear programming problem in the standard form:

∗Email: ploskas@uom.gr; Corresponding author
†Email: samaras@uom.gr

1

min cTx

subject to Ax = b (LP.1)

x ≥ 0

where A ∈ Rm×n, (c, x) ∈ Rn, b ∈ Rm, and T denotes transposition. We assume that A has full
rank, rank(A) = m,m < n. Consequently, the linear system Ax = b is consistent. The simplex
algorithm searches for an optimal solution by moving from one feasible solution to another, along
the edges of the feasible set. The dual problem associated with the (LP.1) is:

min bTw

subject to ATw + s = c (DP.1)

s ≥ 0

where w ∈ Rm and s ∈ Rn.
The past twenty years have been a time of remarkable developments in optimization solvers. Real
life LPs tend to be large in size. A growing number of problems demand parallel computing ca-
pabilities. The explosion in computational power (CPUs and GPUs) has made it possible to solve
large and difficult LPs in a short amount of time. As in the solution of any large scale mathemat-
ical system, the computational time for large LP problems is a major concern. The basis inverse
dictates the total computational effort of an iteration of simplex type algorithms. This inverse does
not have to be computed from scratch at any iteration, but can be updated through a number of
updating schemes. All efficient versions of the simplex algorithm work with some factorization of
the basis matrix B or its inverse B−1.
Dantzig and Orchard-Hays [1] have proposed the Product Form of the Inverse (PFI), which main-
tains the basis inverse using a set of eta vectors. Benhamadou [2] proposed a Modification of the
Product Form of the Inverse (MPFI). The key idea is that the current basis inverse (AB)

−1 can be
computed from the previous inverse (AB)

−1 using a simple outer product of two vectors and one
matrix addition.
LU decomposition produces generally sparser factorizations that PFI [3]. The LU factorization
for the basis inverse has been proposed by Markowitz [4]. Markowitz used LU decomposition to
fully invert a matrix, but used the PFI scheme to update the basis inverse during simplex iterations.
Bartels and Golub [5] have later proposed a scheme to update a sparse factorization, which was
more stable than using PFI. Their computational experiments, however, proved that it was more
computationally expensive. Forrest and Tomlin [6] created a variant of the Bartels-Golub method
by sacrificing some stability characteristics causing the algorithm to have a smaller growth rate in
the number of non-zero elements relative to the PFI scheme. Reid [7] proposed two variants of the
Bartels-Golub updating scheme that aim to balance the sparsity and the numerical stability of the
factorization. A variant of the Forrest-Tomlin update was proposed by Suhl and Suhl [8]. Other
important updating techniques can be found in Saunders [9] and Goldfarb [10]. A full description
of most of these updating methods can be found in Nazareth [11] and Chvatal [12].

2

There have been many reviews and variants of these methods individually, but only a few compar-
isons between them that are either obsolete or don’t compare all these updating schemes. McCoy
and Tomlin [13] report the results of some experiments on measuring the accuracy of the PFI
scheme, Bartels-Golub method and Forrest-Tomlin scheme. Lim et al. [14] provide a comparative
study between Bartels-Golub method, Forrest-Tomlin method and Reid method. Badr et al. [15]
perform a computational evaluation of PFI and MPFI updating schemes. Ploskas et al. [16] com-
pare PFI and MPFI updating schemes both on their serial and their parallel implementation.
Originally, GPUs used to accelerate graphics rendering. GPUs have gained recently a lot of popu-
larity and High Performance Computing applications have already started to use them. The com-
putational capabilities of GPUs exceeds the one of CPUs. GPU is utilized for data parallel and
computationally intensive portions of an algorithm. NVIDIA introduced Compute Unified Device
Architecture (CUDA) in late 2006. CUDA enables users to execute codes on their GPUs and it
is based on a SIMT programming model. Any performance improvements in the parallelization
of the revised simplex algorithm would be of great interest. Using GPU computing for solving
large-scale LPs is a great challenge due to the capabilities of GPU architectures.
Some related works have been proposed on the GPU parallelization for LPs. O’Leary and Jung
[17] proposed a CPU-GPU implementation of the Interior Point Method for dense LPs. Their
computational results on Netlib Set [18] showed that some speedup can be gained for large dense
problems. Spampinato and Elster [19] presented a GPU-based implementation of the Revised
Simplex Algorithm on GPU with NVIDIA CUBLAS and NVIDIA LAPACK libraries [20]. Their
impementation showed a maximum speedup of 2.5 on randomly generated LPs of at most 2000
variables and 2000 constraints. Bieling et al. [21] also proposed a parallel implementation of the
Revised Simplex Algorithm on GPU. They compared their GPU-based implementation with GLPK
solver and found a maximum speedup of 18 in single precision. Lalami et al. [22] proposed a par-
allel implementation of the standard Simplex on a CPU-GPU systems. Their computational results
on randomly generated dense problems of at most 4000 variables and 4000 constraints showed a
maximum speedup of 12.5. Meyer et al. [23] proposed a mono and a multi-GPU implementation
of the standard Simplex algorithm and compared their implementation with the CLP solver. Their
implementation outperformed CLP solver on large sparse LPs. Li et al. [24] presented a GPU-
based parallel algorithm, based on Gaussian elimination, for large scale LPs that outperforms the
CPU-based algorithm.
This paper presents a computational study in which the basis inverse is computed with five differ-
ent updating schemes: (i) Gaussian Elimination, (ii) the built-in function inv of MATLAB, (iii) LU
decomposition, (iv) Product Form of the Inverse and (v) a Modification of the Product Form of the
Inverse; and incorporate them with the revised simplex algorithm. Then, we propose a parallel im-
plementation of PFI and MPFI schemes, which were the fastest among the five updating methods,
on a CPU-GPU System, which is based on MATLAB and CUDA.
The structure of the paper is as follows. In Section 2, a bried description of the revised simplex
algorithm is presented. In Section 3, five methods that have been widely used for basis inver-
sion are presented and analyzed. Section 4 presents the computational comparison of the updating
schemes. Computational tests were carried out on randomly generated LPs of at most 5000 vari-
ables and 5000 constraints. Finally, the conclusions of this paper are outlined in section 5.

3

2 Revised Simplex Method
Using a partition (B,N) (LP.1) can be written as follows:

min cTBxB + cTNxN

subject to ABxB + ANxN = b (LP.2)

xB, xN ≥ 0

In the above problem, AB is an m×m non-singular submatrix of A, called basic matrix or basis.
The columns of A belonging to subset B are called basic and those belonging to N are called non
basic. The solution of the linear problem xB = (AB)

−1b, xN = 0 is called a basic solution. A
solution x = (xB, xN) is feasible iff x ≥ 0; otherwise, the solution is infeasible. The solution of
the (DP.1) is computed by the relation s = c − ATw, where w = (cB)

T (AB)
−1 are the simplex

multipliers and s are the dual slack variables. The basis AB is dual feasible iff s ≥ 0.
In each iteration, simplex algorithm interchanges a column of matrix AB with a column of matrix
AN and constructs a new basis AB. Any iteration of simplex type algorithms is relatively expen-
sive. The total work of an iteration of simplex type algorithms is dictated by the computation of
the basis inverse. This inverse, however, does not have to be computed from scratch during each
iteration of the simplex algorithm. Simplex type algorithms maintain a factorization of basis and
update this factorization in each iteration. There are several schemes for updating basis inverse. In
Section 3 we present eight well-known methods for the basis inverse. A formal description of the
revised simplex algorithm [25] is presented in Table 1.

3 Basis Inversion Updating Schemes

3.1 Gaussian Elimination
Gaussian elimination is a method for solving systems of linear equations, which can be used to
compute the inverse of a matrix. Gaussian elimination performs the following two steps: (i) For-
ward Elimination: reduces the given matrix to a triangular or echelon form and (ii) Back Substi-
tution: finds the solution of the given system. Gaussian elimination with partial pivoting requires
O(n3) time complexity.
Gaussian elimination has been implemented on MATLAB using the mldivide operator. In order to
find the new basis inverse using Gaussian elimination, one can use the following equation:

(AB)
−1 = AB \ I (1)

3.2 Built-in Function Inv of MATLAB
The basis inverse can be computed using the built-in function of MATLAB called inv, which uses
LAPACK routines to compute the basis inverse. Due to the fact that this function is already com-
piled and optimized for MATLAB, its execution time is smaller compared with the other relevant
methods that compute the explicit basis inverse; time-complexity, though, remains O(n3).

4

Table 1: Revised Simplex Algorithm
Step 0. (Initialization).
Start with a feasible partition (B,N). Compute (AB)

−1 and vectors xB, w and sN .
Step 1. (Test of optimality).
if sN ≥ 0

then STOP. (LP.1) is optimal.
else

Choose the index l of the entering variable using a pivoting rule.
Variable xl enters the basis.

Step 2. (Minimum ratio test).
Compute the pivot column hl = (AB)

−1Al.
if hl ≤ 0 then

STOP. (LP.1) is unbounded.
else

Choose the leaving variable xk = xB[r] using the following relation:

xB[r] =
xB[r]

hil
= min

{
xB[i]

hil
: hil < 0

}
Step 3. (Pivoting).
Swap indices k and l. Update the new basis inverse (AB)

−1, using an updating scheme.
Go to Step 1.

3.3 LU Decomposition
LU decomposition method factorizes a matrix as the product of an upper (U) and a lower (L)
triangular factors, which can be used to compute the inverse of a matrix. In order to compute the
U and L factors, the built-in function of MATLAB called lu has been used. LU decomposition can
be computed in time O(n3).

3.4 MPFI
MPFI updating scheme has been presented by Benhamadou [2]. The main idea of this method is
that the current basis inverse (AB)

−1 can be computed from the previous inverse (AB)
−1 using a

simple outer product of two vectors and one matrix addition, as shown in the following equation:(
AB

)−1
=

(
AB

)−1

r.
+ v ⊗ (AB)

−1
r. (2)

5

The updating scheme of the inverse is shown in equation (3).

(AB)
−1 :

∣∣br1 · · · brr · · · brm
∣∣

(AB)
−1 =

∣∣∣∣∣∣∣∣∣∣∣

b11 · · · b1m
...
0 0 0
...

bm1 · · · bmm

∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

−h1l

hrl...
− 1

hrl...
−hml

hrl

∣∣∣∣∣∣∣∣∣∣∣∣
(3)

The outer product of equation (3) requires m2 multiplications and the addition of two matrices
requires m2 additions. Hence, the complexity is Θ(m2).

3.5 PFI
The PFI scheme, in order to update the new basis (AB)

−1, uses information only about the entering
and leaving variables along with the current basis (AB)

−1. The new basis inverse can be updated
at any iteration using the (4).

(AB)
−1 = (ABE)−1 = E−1(AB)

−1 (4)

where E−1 is the inverse of the eta-matrix and can be computed by the following equation:

E−1 = I − 1

hrl

(hl − el) e
T
l =

1 −h1l

.
1/hrl

... . . .
−hml/hrl 1

 (5)

If the current basis inverse is computed using regular multiplication, then the complexity of the
PFI is Θ(m3).

4 Computational Results of Serial Implementations
Computational studies have been widely used, in order to examine the practical efficiency of an
algorithm or even compare algorithms. The computational comparison of the aforementioned five
updating schemes has been performed on a quad-processor Intel Core i7 3.4 GHz with 32 Gbyte of
main memory running under Microsoft Windows 7 64-bit. The algorithms have been implemented
using MATLAB Professional R2012a. MATLAB (MATrix LABoratory) is a powerful program-
ming environment and is especially designed for matrix computations in general. All times in the
following tables are measured in seconds.
The test set used in the computational study was randomly generated. Problem instances have the
same number of constraints and variables. The largest problem tested has 5, 000 constraints and

6

1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7
x 10

4

Problem Size

T
im

e
(s

ec
)

Gaussian Elimination
inv
LU Decomposition
PFI
MPFI

Figure 1: Basis Inverse Time Comparison

5, 000 variables. All instances are dense. For each instance, we averaged times over 10 runs. A
time limit of 20 hours was set that explains why there are no measurements for some updating
methods on large instances. It should be noted that in MATLAB R2012a multithreading is enabled
by default thus our implementations are automatically parallelized and executed using the available
multicore CPU.
Table 3 presents the results from the execution of the above mentioned updating schemes. We
have also included the execution time from MATLAB’s linprog built-in function, a function for
solving linear programming problems. MATLAB’s linprog function includes two algorithms for
large-scale and medium-scale optimization. The large-scale algorithm is based on Interior Point
Solver [26], a primal-dual interior-point algorithm. LIPSOL used a Cholesky-infinity factoriza-
tion that causes overhead during the factorization of dense matrices and as a result it cannot solve
problems with more than 1,500 variables and constraints. Due to this restiction, we have used in
our comparison the medium-scale algorithm, which is a variation of the simplex method. Table 2
includes the execution time for the basis inverse of each updating scheme, while Table 3 presents
the total execution time. The execution time of the basis inverse and the whole algorithm for each
updating scheme is also graphically illustrated in Figures 1 and 2, respectively.
The MPFI updating scheme has the best performance. On the other hand, LU updating method has
the worst performance. Another significant issue is the performance of Gaussian elimination, PFI,
function inv and linprog of MATLAB which are close to each other and the results are not quite
satisfactory.

7

Table 2: Basis Inverse Time (secs)

Problem
size

Gaussian
Elimina-

tion
inv

LU
Decompo-

sition
PFI MPFI

1,000 793.30 702.85 2,314.62 555.65 83.36
1,250 1,173.10 1,036.74 2,820.17 845.49 121.18
1,500 3,487.13 3,075.34 10,351.52 2,160.71 292.43
1,750 7,746.69 6,843.46 23,153.03 5,743.58 680.61
2,000 12,157.33 10,622.34 36,338.81 9,411.65 981.08
2,250 22,547.04 19,288.01 66,437.50 17,156.07 1,667.49
2,500 21,209.41 18,336.32 63,775.88 22,266.25 2,228.82
2,750 47,205.29 34,422.09 - 27,952.71 2,648.20
3,000 60,134.08 50,964.37 - 41,204.74 3,762.74
3,250 - - - - 7,100.16
3,500 - - - - 8,793.45
3,750 - - - - 11,785.46
4,000 - - - - 13,087.66
4,250 - - - - 19,432.13
4,500 - - - - 23,344.92
4,750 - - - - 28,534.90
5,000 - - - - 32,317.85

1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7

8
x 10

4

Problem Size

T
im

e
(s

ec
)

Gaussian Elimination
inv
LU Decomposition
PFI
MPFI
linprog

Figure 2: Total Time Comparison

8

Table 3: Total Time (secs)

Problem
size

Gaussian
Elimina-

tion
inv

LU
Decompo-

sition
PFI MPFI linprog

1,000 871.81 774.15 2,025.42 631.22 155.51 171.68
1,250 1,269.92 1,134.50 2,446.59 940.03 216.97 3,453.09
1,500 3,746.93 3,330.55 8,946.89 2,384.46 509.71 7,097.17
1,750 8,245.07 7,347.78 19,905.57 6,255.89 1161.56 11,682.54
2,000 12,875.85 11,340.48 31,160.31 10,140.09 1670.73 19,267.61
2,250 23,709.13 20,453.34 56,804.33 18,345.68 2798.21 36,614.81
2,500 34,249.22 22,975.68 59,233.99 23,828.22 3730.49 44,998.08
2,750 49,312.02 36,202.77 - 29,762.26 4,384.83 -
3,000 62,646.43 53,472.82 - 43,740.40 6,242.79 -
3,250 - - - - 14,200.80 -
3,500 - - - - 20,147.04 -
3,750 - - - - 28,776.84 -
4,000 - - - - 34,235.18 -
4,250 - - - - 42,196.15 -
4,500 - - - - 51,210.67 -
4,750 - - - - 62,919.07 -
5,000 - - - - 70,058.59 -

9

5 Parallel Implementation of PFI and MPFI Updating Schemes
on a CPU-GPU system

PFI and MPFI were the fastest updating schemes. In this section, we present the GPU-based imple-
mentations of these updating methods taking advantage of the power that modern GPUs offer. The
parallel implementations of these updating methods are implemented on MATLAB and CUDA.
The updating methods are built using both native MATLAB code and CUDA MEX files.
Both methods take as input the previous basis inverse (AB)

−1, the pivot column (hl), the index of
the leaving variable (k) and the number of the constraints (m).

5.1 GPU-based PFI
Let us assume that we have t gpu cores. Table 4 shows the steps that we used to compute the new
basis inverse (AB)

−1 with the PFI scheme on the GPU.

Table 4: GPU-based PFI
Step 0.
Compute the column vector:

v =
[
−h1l

hrl
· · · 1

hrl
· · · −hml

hrl

]T
Each core computes in parallel m/t elements of v. The pivot
element is shared between all t cores.
Step 1.
Replace the rth column of an identity matrix with the column
vector v. Each core assigns in parallel m/t elements to the iden-
tity matrix. This matrix is the inverse of the Eta-matrix.
Step 2.
Perform a matrix multiplication according to (4). Each core will
compute a block of the new basis.

5.2 GPU-based MPFI
Table 5 shows the steps that we used to compute the new basis inverse (AB)

−1 with the MPFI
scheme on the GPU.

10

Table 5: GPU-based MPFI
Step 0.
Compute the column vector:

v =
[
−h1l

hrl
· · · 1

hrl
· · · −hml

hrl

]T
Each core computes in parallel m/t elements of v. The pivot
element is shared between all t cores.
Step 1.
Compute the outer product v⊗ (ABr)

−1 with matrix multiplica-
tion. Each core will compute a block of the new matrix.
Step 2.
Set the rth row of (AB)

−1 equal to zero. Each core computes in
parallel t/p rows of (AB)

−1.
Step 3.
Add matrix (AB)

−1 with the resulted matrix from step 1. Each
core will compute a block of the new basis inverse.

6 Computational Results of Parallel Implementations
The same randomly generated test set is also used in order to test the performance of the GPU-
based implementations. The computational comparison of the parallel implementations has been
also performed on a quad-processor Intel Core i7 3.4 GHz with 32 Gbyte of main memory running
under Microsoft Windows 7 64-bit and NVIDIA Quadro 6000 with 6 Gbyte of memory and 448
CUDA cores. The mex files have been implemented using CUDA 4.2 and Microsoft Visual Studio
2012. Table 6 presents the results from the execution of the GPU-based implementations of PFI
and MPFI updating schemes. For each implementation, the table shows the CPU time for the basis
inverse and the total time.

Table 7 presents the speedup obtained by the GPU-based implementations regarding the CPU
time for the basis inverse and the total time. We now plot the ratios taken from Table 7 in Fig. 3.
The total time is in logarithmic scale.

From the above results, we observe: (i) the MPFI scheme is much faster than PFI both in se-
rial and in GPU-based implementation, (ii) using PFI scheme, the speedup gained from the GPU
implementation is around 7 for the time of basis inverse and 5.5 for total time when the problem
size reaches to 3, 000x3, 000, and (iii) using MPFI scheme, the speedup gained from the GPU im-
plementation is around 19 for the time of basis inverse and 5 for total time when the problem size
reaches to 5, 000x5, 000.

11

Table 6: Basis Inverse and Total Time of the GPU-based Implementations (secs)

Problem PFI MPFI
Time of basis

inverse
Total
time

Time of basis
inverse

Total
time

1,000 149.56 208.57 41.56 101.42
1,250 198.98 275.93 37.50 113.80
1,500 455.32 625.03 65.55 239.37
1,750 1,122.77 1,509.01 123.63 510.37
2,000 1,611.04 2,166.60 147.14 704.66
2,250 2,868.02 3,765.82 230.96 1,147.32
2,500 3,838.33 5,043.59 293.38 1,512.32
2,750 4,480.71 5,867.20 309.58 1,712.80
3,000 5,846.40 7,820.77 405.98 2,372.87
3,250 - - 702.99 5,108.20
3,500 - - 775.44 6,806.43
3,750 - - 938.33 8,964.75
4,000 - - 1,005.20 9,923.24
4,250 - - 1,305.05 11,163.00
4,500 - - 1,409.72 12,738.97
4,750 - - 1,659.01 14,139.12
5,000 - - 1,709.94 14,067.99

Table 7: Speedup Obtained by the GPU-based Implementations

Problem PFI MPFI
Basis inverse Total Basis inverse Total

1,000 3.72 3.03 2.01 1.53
1,250 4.25 3.41 3.23 1.91
1,500 4.75 3.81 4.46 2.13
1,750 5.12 4.15 5.51 2.28
2,000 5.84 4.68 6.67 2.37
2,250 5.98 4.87 7.22 2.44
2,500 5.80 4.72 7.60 2.47
2,750 6.24 5.07 8.55 2.56
3,000 7.05 5.59 9.27 2.63
3,250 - - 10.10 2.78
3,500 - - 11.34 2.96
3,750 - - 12.56 3.21
4,000 - - 13.02 3.45
4,250 - - 14.89 3.78
4,500 - - 16.56 4.02
4,750 - - 17.20 4.45
5,000 - - 18.90 4.98

12

1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

6

8

10

12

14

16

18

20

Problem Size

S
pe

ed
up

PFI Basis Inverse
PFI Total
MPFI Basis Inverse
MPFI Total

Figure 3: Speedup Comparison

7 Conclusions
The basis inverse is the most time-consuming step in simplex type algorithms, so it is essential to
implement a fast and numerically stable updating method. In this paper, we performed a computa-
tional comparison of five updating schemes and incorporate them to the revised simplex algorithm.
The results of the computational study showed that MPFI updating scheme is the fastest when
solving large dense LPs.
We proposed a GPU-based implementation for PFI and MPFI updating schemes, which were the
fastest serial implementations, and implemented them on MATLAB and CUDA. We performed
again a computational study and find that GPU-based implementations of PFI and MPFI outper-
form the serial ones. More specifically, the speedup for PFI method is up to 7 for the time of basis
inverse and 5.5 for the total time and the speedup for MPFI method is up to 19 for the time of basis
inverse and 5 for total time. Our approach allow us to solve problems of size 10, 000x10, 000.
In future work, we plan to implement all the steps of the algorithm in order to fully parallelize the
revised simplex method for GPUs. Moreover, we plan also to test sparse LPs and also port our
application to a multi-GPU architecture.

8 Acknowledgements
The authors thank NVIDIA for support through their Academic Partnership Program.

References
[1] G. B. Dantzig and W. Orchard-Hays, ”The product form of the inverse in the simplex

method”, Math. Comp., Vol. 8, 1954, pp. 64–67.

13

[2] M. Benhamadou, ”On the simplex algorithm ’revised form’”, Advances in Engineering Soft-
ware, Vol. 33, 2002, pp. 769–777.

[3] R. K. Brayton, F. G. Gustavson and R. A. Willoughby, ”Some results on sparse matrices”,
Mathematics of Computation, Vol. 24, 1970, pp. 937–954.

[4] H. Markowitz, ”The elimination form of the inverse and its applications to linear program-
ming”, Management Science, Vol. 3, 1957, pp. 255–269.

[5] R. H. Bartels and G. H. Golub, ”The simplex method of linear programming using LU de-
composition”, Communications of the ACM, Vol. 12, 1969, pp. 266–268.

[6] J. J. H. Forrest and J. A. Tomlin, ”Updated triangular factors of the basis to maintain sparsity
in the product form simplex method”, Mathematical Programming, Vol. 2, 1972, pp. 263–
278.

[7] J. Reid, ”A sparsity-exploiting variant of the Bartels-Golub decomposition for linear pro-
gramming bases”, Mathematical Programming, Vol. 24, 1982, pp. 55–69.

[8] L. M. Suhl and U. H. Suhl, ”A fast LU update for linear programming”, Annals of Operations
Research, Vol. 43, No. 1, 1993, pp. 33–47.

[9] M. Saunders, ”A fast and stable implementation of the simplex method using Bartels-Golub
updating”, In: J. Bunch and S.T. Rachev, Eds., Sparse Matrix Computation, Academic Press,
New York, 1976, pp. 213–226.

[10] D. Goldfarb, ”On the Bartels-Golub decomposition for linear programming bases”, Mathe-
matical Programming, Vol. 13, 1977, pp. 272–279.

[11] J. L. Nazareth, ”Computer Solution of Linear Programs”, Oxford University Press, Oxford,
UK, 1987.

[12] V. Chvatal, ”Linear Programming”, W. H. Freeman and Company, New York, USA, 1983.

[13] P. F. McCoy and J. A. Tomlin, ”Some experiments on the accuracy of three methods of
updating the inverse in the simplex method”, Technical Report, Stanford University, 1974.

[14] S. Lim, G. Kim and S. Park, ”A comparative study between various LU update methods in
the simplex method”, Journal of the Military Operations Research Society of Korea, Vol. 29,
No. 1, 2003.

[15] E. S. Badr, K. Paparrizos, N. Samaras and A. Sifaleras, ”On the basis inverse of the exterior
point simplex algorithm”, Proceedings of the 17th National Conference of Hellenic Opera-
tional Research Society (HELORS), Rio, Greece, 16–18 June 2005, pp. 677–687.

14

[16] N. Ploskas, N. Samaras and K. Margaritis, ”A parallel implementation of the revised sim-
plex algorithm using OpenMP: some preliminary results”, Optimization Theory, Decision
Making, and Operational Research Applications, Springer Proceedings in Mathematics &
Statistics, Vol. 31, 2013, pp. 163–175.

[17] D. P. O’Leary and J. H. Jung, ”Implementing an interior point method for linear programs
on a CPU-GPU system”, Electronic Transactions on Numerical Analysis, Vol. 28, 2008, pp.
879-899.

[18] D. M. Gay, ”Electronic mail distribution of linear programming test problems”, Mathematical
Programming Society COAL Newsletter, Vol. 13, 1985, pp. 10–12.

[19] D. G. Spampinato and A. C. Elster, ”Linear optimization on modern GPUs”, Proceedings of
the 23rd IEEE International Parallel and Distributed Processing Symposium, IPDPS 2009,
2009, Rome, Italy.

[20] NVIDIA Corporation, ”CUDA-CUBLAS Library 2.0”, 2013.
https://developer.nvidia.com/cublas

[21] J. Bieling, P. Peschlow and P. Martini, ”An efficient GPU implementation of the revised Sim-
plex method”, Proceedings of the 24th IEEE International Parallel and Distributed Processing
Symposium, IPDPS 2010, April 2010, Atlanta, USA.

[22] M. E. Lalami, V. Boyer and D. El-Baz, ”Efficient Implementation of the Simplex Method on
a CPU-GPU System”, Proceedings of the 2011 IEEE International Symposium on Parallel
and Distributed Processing Workshops and PhD Forum, IPDPSW 2011, 2011, Washington,
USA, pp. 1999–2006.

[23] X. Meyer, P. Albuquerque and B. Chopard, ”A multi-GPU implementation and performance
model for the standard simplex method”, Proceedings of the 1st International Symposium
and 10th Balkan Conference on Operational Research, 22 - 25 September 2011, Thessaloniki,
Greece, pp. 312–319.

[24] J. Li, R. Lv, X. Hu and Z. Jiang, ”A GPU-Based Parallel Algorithm for Large Scale Linear
Programming Problem”, In: J. Watada, G. Phillips-Wren, L. Jai and R. J. Howlett, Eds.,
Intelligent Decision Technologies, SIST 10, Springer Berlin Heidelberg, Springer-Verlag,
Berlin, 2011, pp. 37-46.

[25] G. B. Dantzig, A. Orden and P. Wolfe, ”The Generalized Simplex Method”, RAND P-392-1,
1953.

[26] Y. Zhang, ”Solving Large-Scale Linear Programs by Interior-Point Methods Under the MAT-
LAB Environment”, Technical Report TR96-01, Department of Mathematics and Statistics,
University of Maryland, July 1995, Baltimore, USA.

15

