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Abstract Text:  

Dantzig’s simplex algorithm was initially proposed in the late 1940s [1]. Since then, 
variants of this algorithm have been studied extensively by numerous researchers [2] 
and have become core routines in many optimization algorithms for linear, integer and 
nonlinear programming [3, 4]. Leading implementations such as CPLEX [5] are 
currently capable of routinely solving linear programs with millions of constraints and 
variables using the simplex algorithm [3, 4]. The algorithm is in use by most Fortune 
500 companies and was recently included in the list of the top-10 algorithms of the 
twentieth century [6]. Given this level of activity in the field and presumed maturity of 
the simplex algorithm, one would think that it would be very difficult, if at all possible, 
to speed up current implementations of the simplex algorithm. In this paper, we show 
that a novel initialization strategy provides a means of considerable acceleration of the 
simplex algorithm. 

We propose novel crash procedures for finding an initial basis for the simplex 
algorithm. The main idea is to obtain a starting basis that is sparse and will reduce the 
fill-ins in LU factorization that forms the core operation of simplex iterations. We 
present extensive computational comparisons on standard benchmarks by supplying 
our initial basis to the state-of-the-art linear programming code CPLEX. The 
computations demonstrate that, in comparison to the CPLEX default crash procedure, 
our initialization strategy on average reduces the running time of CPLEX by 60% in 
the case of primal simplex and by 27% in the case of dual simplex. For large and 
difficult instances, our algorithm reduces the running time of CPLEX by an order of 
magnitude. 
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