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ABSTRACT Precision agriculture is a rapidly developing field aimed at addressing current concerns
about agricultural sustainability. Machine learning is the cutting edge technology underpinning precision
agriculture, enabling the development of advanced disease detection and classification methods. This
paper presents a review of the application of machine learning and deep learning techniques in precision
agriculture, specifically for detecting and classifying plant diseases. We propose a novel classification
scheme that categorizes all relevant works in the associated classes. We separate the studies into two main
categories depending on the methodology that they use (i.e., classification or object detection). In addition,
we present the available datasets for plant disease detection and classification. Finally, we perform an
extensive computational study on five state-of-the-art object detection algorithms on PlantDoc dataset to
detect diseases present on the leaves, and eighteen state-of-the-art classification algorithms on PlantDoc
dataset to predict whether or not there is a disease in a leaf. Computational results show that object detection
accuracy is high with YOLOv5. For the image classification task, the networks ResNet50 and MobileNetv2
have the most optimal trade-off on accuracy and training time.

INDEX TERMS Classification, deep learning, disease detection, machine learning, object detection,
precision agriculture.

I. INTRODUCTION
Any nation’s economic development depends significantly
on agriculture. Meeting the population’s current food needs
has become a difficult problem because of the growing pop-
ulation, frequent changes in weather, and limited resources.
On top of the aforementioned challenges, crop diseases have
been increasing in severity and scale. Crop diseases cause
production losses that can be mitigated with continuous
monitoring. Researchers from the Food and Agriculture
Organization of the United Nations predicted that plant
diseases alone cost the global economy about US$220 billion
annually [1]. Developing new methods to detect diseases on
plants or leaves at an early stage can significantly increase
yield potential.
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Precision agriculture is a rapidly developing field aimed at
addressing current concerns about agricultural sustainability.
Machine learning (ML) is the cutting edge technology
underpinning precision agriculture, allowing the machine
to learn without having to be programmed directly, and
in conjunction with Internet of Things (IoT) enabled farm
equipment, is the future of agriculture. There are several
studies that have employed or proposedMLmethods to detect
or classify plant diseases. The majority of these works take as
input a plant/leaf image and detect whether or not there is a
disease. These works treat the problem as a classification one,
either binary classification (healthy or diseased plant/leaf)
or multi-class classification (where various diseases are
targeted). Classical ML methods, like Random Forest (RF)
and Deep Learning (DL) ones, have been utilized for this
purpose. On the other hand, there are fewer works that aim to
detect both the type of the disease and the diseased regions
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of the input image, i.e., treating the problem as an object
detection one. The latter problem is more important than
the classification problem in cases where either there exist
multiple plant diseases in the input image or we want to
know the exact region of the diseased plants in an image
that covers a large part of the crop (such images are taken
by Unmanned Aerial Vehicles (UAVs)). Moreover, the object
detection problem is more difficult than the classification
problem and the DL methods used to detect objects do not
have good results in uncontrolled places, i.e., in images where
the objects are placed in a noisy environment.

In this paper, we aim to review ML and DL methods
that have been applied to either classify or detect plant
diseases. Various papers reviewed ML and DL methods
in precision agriculture. Below, we present those papers
that include works focused on plant disease detection. For
example, Mekonnen et al. [2] provided a study of how
different ML techniques are used in sensor data analytics in
the agricultural sector. The authors highlighted the benefits of
Artificial Intelligence (AI) in agriculture and emphasized that
IoT and AI are increasingly becoming essential components
for enhancing agricultural productivity and efficiency. They
concluded that although clustering is the most common
learning model for such problems, there is no general
prescription for selecting algorithms, and most of the time,
it is a trial and error process in doing so. Finally, they
examined some of the ML methods used in agriculture such
as regression algorithms, Decision Trees (DT), ensemble
learning, Bayesian models, Support VectorMachines (SVM),
and Artificial Neural Networks (ANNs).

Benos et al. [3] presented a review of various works
aimed at exploringML in agriculture. Initially, they described
the four basic categories in which ML algorithms are
involved. Cropmanagement is subdivided into five categories
(yield prediction, disease detection, weed detection, crop
recognition, and crop quality), water management, soil
management, and livestock management. They performed
an extensive search on various search engines and selected
articles for the period from 2018 to 2020. Finally, they
concluded that: (i) a large percentage of research articles were
about crop management, (ii) ANNs were the most effective
ML models, (iii) the most investigated crops in the papers
were maize, wheat, rice, and soybean, and finally, (iv) the
most utilized input data was mainly RGB images and then
weather, soil, water, and crop quality.

Li et al. [4] presented a review of the research progress
of DL methods for crop leaf disease identification. Initially,
they reviewed the relevant metrics, the datasets used in
the computational experiments, and the data enhancement
methods. Then, they presented works based on DL methods
in order to predict diseases in crop leaves. Finally, they
concluded that: (i) most DL frameworks are not robust,
achieving good results only on specific datasets, (ii) most
works use synthetic images generated in the laboratory, and
(iii) studies focused on early detection of disease are limited.

FIGURE 1. Publications per year for papers including the words ‘‘plant’’,
‘‘disease’’, ‘‘detection’’, and ‘‘machine learning’’ either on their title or
abstract or keywords (source: Scopus).

Liu and Wang [5] reviewed works focusing on methods
for detecting plant diseases and pests published during the
period from 2014 to 2020. They presented various methods
proposed in the literature and discussed their advantages and
disadvantages. They also presented the publicly available
datasets for plant diseases and pest detection methods.
Finally, they concluded that: (i) the majority of research
findings are limited to the laboratory setting and are solely
relevant to plant disease and pest images obtained during that
period, (ii) early diagnosis is very difficult, and thus, only a
few works deal with this, and (iii) less time- and memory-
consuming DL models are in need for real-time prediction of
diseases and pests.

Yuan et al. [6] examined the progress in technologies
utilized for agricultural disease image recognition such as DL
and transfer learning. They also analyzed key challenges that
require attention to progress research in this field, including
creating image datasets, choosing big data auxiliary domains,
and improving transfer learning techniques. It is essential
to create image datasets captured under actual production
conditions to develop a feasible image recognition system for
agricultural diseases.

Although there are numerous review papers discussingML
and DL techniques used in precision agriculture, there are
only a few review papers that focus on plant disease detection
methods, and none of them discusses the twomain techniques
used in the literature, classification and object detection
methods. Typically, the review papers devote a section for
plant disease detection methods. In addition, all reviews
present works published until 2020. As shown in Figure 1,
the publications that deal with ML and DL methods for plant
disease detection have doubled since 2020. Therefore, there
is a need for a comprehensive review onML and DLmethods
for plant disease detection and classification.

In addition, computational comparisons of algorithms used
for plant disease detection and classification are missing
in the literature. Most papers in this area compare their
proposed algorithm with a single state-of-the-art method.
In this work, we present a comparison of five state-of-the-
art object detection algorithms for identifying diseases on
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plants and eighteen state-of-the-art classification algorithms
for plant disease classification on a widely used dataset.

Our contributions can be summarized as follows:
• We present a detailed review of ML and DL algorithms
for plant disease detection and classification. Most
studies review works until 2020 and we also include
recent works (published until June 2022).We distinguish
these works based on the goal of the methods used, i.e.,
whether classification or object detection is targeted.
We present a thorough review on 65 works for classi-
fication and 14 works for object detection.

• We propose a novel classification scheme that cate-
gorizes all relevant works in the associated classes.
By classifying relevant papers according to these
classes, we can easily provide an overview of different
techniques used in the field.

• We provide a summary of the existing datasets that are
being used for plant disease detection and classification
tasks. We include details about the types of data they
contain, as well as the classes and labels available within
these datasets.

• We perform extensive computational analysis on five
state-of-the-art object detection algorithms for plant
disease detection and eighteen state-of-the-art classifi-
cation algorithms for plant disease classification on a
widely used dataset. This is the first time that such a
systematic study has been carried out.

• We discuss gaps in the existing literature and future
directions for this field.

The structure of the paper is as follows. Section II reviews
research works that proposed/utilized ML and DL algorithms
for predicting/recognizing plant diseases. In this section,
we separate the papers according to whether they used
classification or object detection techniques. In Section III,
we propose a classification scheme, categorize all relevant
works in the associated classes and present statistics of
the most common methods/algorithms/datasets/metrics used
by the reviewed papers. Section IV provides an overview
of the datasets that are commonly used in the literature
for plant disease detection and classification using both
object detection and classification techniques. Section V
includes the computational comparison of five state-of-the-
art object detection algorithms for plant disease detection
and eighteen state-of-the-art classification algorithms for
plant disease classification. In Section VI, we highlight the
practical implication of our findings. Section VII includes the
open challenges that need to be addressed, while Section VIII
includes the future directions for addressing these open
challenges. Finally, Section IX summarizes the work of this
paper.

II. LITERATURE REVIEW
This section provides a detailed literature review of disease
detection techniques. All papers have been published prior
to October 2022. To identify relevant studies on ML and
DL methods for plant disease detection and classification,

we conducted a search using various search engines,
including Scopus, ScienceDirect, Scholar, and Web of Sci-
ence. Keywords like ‘‘machine learning’’, ‘‘deep learning’’,
‘‘classification’’, ‘‘disease detection’’, ‘‘healthy plant’’, and
‘‘diseased plant’’, were used. Once a relevant work was
identified, its references were scanned in order to find
relevant works that were not found in the initial search
procedure. The abstract of each paper was reviewed in order
for all co-authors to decide its appropriateness and inclusion
in the paper. All papers that did not have a focus on the ML
algorithms were excluded. For example, there exist papers
that refer to plant disease detection using ML methods but
their main focus is the data gathering part, e.g., through UAVs
or Unmanned Ground Vehicles (UGVs). In addition, non-
English texts, technical reports, review papers, and Master’s
and Doctoral theses were excluded. Overall, 79 papers (65 for
classification and 14 for object detection) were discovered.

A. CLASSIFICATION
Mohanty et al. [7] trained AlexNet [8] and GoogLeNet
[9] for detecting 26 diseases on 14 crop species using
the PlantVillage dataset [10] with 54, 306 images. In the
preprocessing step, they downsized images to 256 × 256.
They also experimented with the original PlantVillage
dataset, with a gray-scaled version of this dataset, and a
version in which the leaves were segmented. The models
were trained from scratch as well as by utilizing pre-trained
models on the ImageNet dataset through transfer learning.
The authors reported an accuracy of 99.35% and 85.53%
using the GoogLeNet and AlexNet models, respectively.

A plant disease detection approach based on Convolutional
Neural Network (CNN) using the Caffe DL framework [11]
was proposed by Sladojevic et al. [12]. They collected images
from various sources and they used data augmentation tech-
niques (affine transformation, perspective transformation,
and rotation) to generate more images. In the preprocessing
step, they downsized images to 256 × 256 and removed the
duplicates. In addition, they did not consider images with
smaller resolution than 500px. They modified the CaffeNet
architecture by altering the last layer and the output of
the softmax layer. They achieved an accuracy of 96.3% on
average.

In their work, Amara et al. [13] applied the LeNet archi-
tecture [14] to classify diseases in banana leaves, belonging
to three different categories. In the preprocessing step, they
downsized images to 60×60 and converted to grayscale. They
tested the proposed architecture on the PlantVillage dataset,
achieving an accuracy between 92% and 99%.

Brahimi et al. [15] used two CNN models, AlexNet
and GoogleNet, on the PlantVillage dataset for predicting
diseases on tomato leaves. They pre-trained the models on
ImageNet and then fine-tuned them by replacing the output
layer with a new one having nine classes, as the number of the
diseases that they consider in this study. In the preprocessing
step, they downsized images to 256 × 256. GoogleNet
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achieved an accuracy from 97.71% to 99.19%, while AlexNet
achieved an accuracy from 94.35% to 98.66%.

Cruz et al. [16] implemented a CNN network based on the
LeNet architecture for detecting olive quick decline symp-
toms. They initially trained the network on the PlantVillage
dataset, then retrained on a custom dataset. They improved
the performance of the network by providing information
about the edge patterns and the shape information. In the
preprocessing step, they downsized images to 256×256. The
authors reported an accuracy of 99%.

DeChant et al. [17] proposed a three-stage approach using
CNN models for identifying NLB-infected maize plants.
A three-stage approach was utilized in this study by initially
training various CNNs to detect lesions in small patches of
the images. Then, the CNNs generated heat maps indicating
regions in the images that may be affected. Finally, they
trained the CNN models using as input the heat maps of
the original images. They generated a custom dataset of
1, 796 images. Their approach resulted in a classification
accuracy of 96.7%.

In their study, Liu et al. [18] employed the AlexNet
architecture to detect apple leaf diseases, utilizing a dataset of
13, 689 images that contained four diseases: mosaic, brown
spot, rust, and Alternaria leaf spot. Prior to classification, they
performed image preprocessing by rotating and sharpening
the images. Their approach yielded an overall accuracy
of 97.62

Lu et al. [19] introduced a multi-stage CNN architecture
that was based on AlexNet, aimed at identifying diseases
in rice plants. The authors collected images for their study
from an agricultural pest and insect pests database, as well as
from a book that contained images of diseased plants. They
preprocessed the images by resizing them to 512×512 pixels
and then applied the ZCA-Whitening technique to remove
the correlation between data. The accuracy of the proposed
model was 95.48%.

Oppenheim and Shani [20] used a CNN based on VGG
[21] to classify potatoes into five classes, four diseased ones
and a healthy potato class. They acquired 400 images of
contaminated potatoes using three simple digital cameras and
augmented data by flipping and cropping the images. In the
preprocessing step, they downsized images to 224× 224 and
converted to grayscale. They experimented with different
ratios of train-test sets and concluded that the CNN can
achieve an accuracy between 83% for the model trained with
only 10% of the data to 96% for the model trained with 90%
of the data.

Wang et al. [22] trained and fine-tuned four CNN models,
i.e., VGG16 [21], VGG19 [21], InceptionV3 [23], and
ResNet50 [24], for detecting apple leaf black rot. The authors
utilized the PlantVillage dataset, which contained two classes
of images: healthy apple leaves and apple leaf black rot.
The images were further categorized by botanists into four
stages: healthy, early stage, middle stage, and end-stage.
In the preprocessing step, they downsized images to various

ratios according to the CNN that they used. They evaluated
several models, and the VGG16 model produced the best
results, achieving an accuracy of 90.4%.

Abdulridha et al. [25] demonstrated a non-destructive
remote sensing approach for detecting the LaurelWilt disease
in infected avocado trees. They used a portable spectral
data collection system to classify the data into healthy or
not based on causes that elicit comparable symptoms, such
as iron and nitrogen deficiency. Two sets of images with
spectral resolutions of 10nm and 40nmwere gathered in order
to feed the DT and MultiLayer Perceptron (MLP) neural
network model. They concluded that MLP has a near-perfect
classification accuracy (100% at the early stage and 91% at
the late stage) compared to DT (82% at the early stage and
82% at the late stage).

Barbedo [26] investigated the major factors influencing
the design and performance of CNNs for plant disease
recognition. To anticipate corn diseases, they used the PDDB
dataset [27] that includes 50,000 images and 171 diseases.
They also studied nine factors that influence disease detection
in maize fields. They trained the model with four different
datasets and the best accuracy was 87% with a subdivided
dataset.

Ferentinos [28] employed simple leaf images to perform
plant disease detection and analysis using CNN models.
They used the PlantVillage dataset with 87,848 images. This
dataset has 25 plants and 58 distinct classes. Furthermore,
five different CNN algorithms were used: AlexNet, AlexNe-
tOWTBn [29], GoogLeNet, Overfeat [30], and VGG. In the
preprocessing step, they downsized images to 256 × 256.
The best results were obtained by the VGG algorithm with
99.48% success rate at the original image dataset and 98.87%
success rate at the preprocessed image dataset.

Lu et al. [31] studied the possibility of detecting multiple
diseases on tomato leaves at different stages using a portable
high-resolution spectral sensor. They utilized the K-Nearest
Neighbor (KNN) algorithm to classify the sensor data into
four categories: healthy, asymptomatic, early stage, and
late stage. Principal Component Analysis (PCA) was used
to analyze 57 spectral vegetation indices. They used six
principal components and two spectral vegetation indices
compositions. The healthy leaves had an accuracy between
85.7% and 100%, the asymptomatic leaves between 86.4%
and 100%, the early stage leaves between 73.5% and
93.0%, and the late stage leaves between 77.1% and 100%,
depending on the principal component.

In their study, Fuentes et al. [32] proposed a diagnosing
system based on a refinement filter bank for detecting dis-
eases and pests on tomato plants. They aimed to overcome the
issues of class imbalance and false positives by constructing a
refinement filter bank framework. The primary diagnosis unit
was the bounding box generator, which was used to create
bounding boxes containing the diseased area’s position. The
secondary diagnosis unit was the CNN filter bank, which was
used to validate the results. The proposed method achieved
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a recognition rate of around 96% on a set of 5, 000 images
collected from various tomato farms in South Korea.

Kerkech et al. [33] presented a method that uses a CNN,
namely LeNet, and histograms to forecast diseased areas of
grapevines and identify symptoms in vineyards. In order to
overcome memory constraints, the streaming technique was
utilized in the learning process for loading a small amount of
data in each iteration. They collected the data through visible-
domain images taken by UAVs. They conducted experiments
by utilizing various color spaces, vegetation indices, and their
combination, to detect plant diseases. The approach achieved
an accuracy of 95.8

Pineda et al. [34] predicted the disease caused by the
bacterium Dickeya dadantii in melon leaves. They used three
ML algorithms to train models and they used thermography
and fluorescence imaging techniques to produce more
accurate results. The ML algorithms that they used were
Logistic Regression Analysis (LRA), SVM, and ANNs. They
found that ANNs had better accuracy than the other models
(99.1%) when classifying images as entire leaves.

Sharif et al. [35] proposed a two-phase hybrid technique
for detecting and categorizing diseases in plants, specifically
citrus fruits and leaves. The first phase involved identifying
lesion areas, while the second phase focused on classifying
the type of disease present. To select the most relevant
features, the authors used a hybrid feature selection method
that included PCA score, entropy, and a skewness-based
covariance vector. This information is provided as input into
the MultiClass SVM (M-SVM) for disease classification.
They used images from open databases (PlantVillage and
Citrus Diseases Database [36]) and a custom-collected image
database. The proposedmethod achieved an accuracy of 97%.

Zhang et al. [37] enhanced maize leaf disease recognition
accuracy and reduced the number of network parameters.
They gathered 500 images from several sources, including
the PlantVillage dataset, and divided the data into eight
categories for diseased maize leaves and one category for
healthy leaves. To increase the sample of images, they rotated
the images by 90°, 180°, and 270°. They used Cifar10 [38]
and GoogLeNet, changing the base learning rate to impact the
network’s identification accuracy. They additionally tweaked
hyperparameter settings and enhanced the models. In the
preprocessing step, they downsized images to 224 × 224.
They achieved an accuracy of 98.9% for the GoogLeNet
model and 98.8% for the Cifar10 model.

An early disease detection technique for avocado trees to
identify Laurel Wilt was proposed by Abdulridha et al. [39].
They classified the data into five main categories: Laurel
Wilt disease, healthy trees, trees infected by phytophthora
root rot, and trees with iron and nitrogen deficiencies.
To produce better results, they used image acquisition and
preprocessing techniques, and feature extraction techniques.
The classification was performed with two classification
methods, MLP and KNN. They used a custom dataset
acquired through two sensing systems. The best results to

predict Laurel Wilt was achieved from the MLP method with
an accuracy of 99%.

Al-Saddik et al. [40] studied the optimal spectral bands for
the development of a multispectral camera used on a UAV
for recognizing diseased grapevine fields with the disease
Flavescence dorée. The specific disease is a contagious one
that is incurable and can lead to severe production loss.
For selecting the optimum spectral bands capable of distin-
guishing infected from healthy leaves, two spectral analysis
methodologies were presented. The first one performs a
feature selection strategy, utilizing the successive project
algorithm with several spectral preprocessing approaches.
The second method looks at a variety of classic vegetation
metrics. The two classifiers employed in this research are the
SVM and discriminant analysis. The most accurate models
were calculated as a function of the grapevine variety in
question. The successive projection algorithm approach was
better when it came to common vegetation metrics, with an
accuracy in classification greater than 96%.

A new dataset consisting of a large number of labeled
images of leaves captured in real environments was intro-
duced by Arsenovic et al. [41]. They also proposed an
augmentation technique that utilizes Generative Adversarial
Networks (GANs). A two-stage CNN algorithm was then
proposed for plant disease detection, and the proposed model
achieved an accuracy of 93.67%.

The focus of Barbedo [42] was on a distinct issue
related to disease detection. They pointed out that current
databases lacked the necessary images to accurately represent
the various conditions and characteristic symptoms, which
could not be reproduced using existing data augmentation
techniques. As a result, they looked at using particular lesions
and areas for the task, instead of looking at the entire leaf.
They managed to expand the existing database because each
region has its own characteristics. They created a dataset with
images taken from typical cameras, smartphones, or DSLR
cameras. In the preprocessing step, they downsized images
to 224 × 224 × 3. They achieved 12% higher accuracy
than in the original image dataset. Four categories were
predicted: healthy leaves with an accuracy of 89%, leaves
with mild disease with an accuracy of 31%, leaves with
moderate disease with an accuracy of 87%, and leaves with
severe disease with an accuracy of 94%.

Coulibaly et al. [43] developed a feature extraction-
based methodology that was predicated on the CNN model
VGG16, which has been pre-trained on ImageNet. They
used 124 images of pearl millet from the ImageNet dataset,
with mildew diseases and healthy plants. Additionally, a data
augmentation technique was utilized to augment the dataset
by increasing the number of images. In the preprocessing
step, they downsized images to 150× 150. Transfer learning
was employed with feature extraction, resulting in an
accuracy of 95%.

Dhingra et al. [44] presented methods for recognizing
the diseases on the leaves of basil using digital image
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processing techniques. They used nine different classifiers
to classify the diseases. The researchers gathered images
from an herb garden and standardized the surface condition
by removing any non-uniform distribution of dust across
the leaves, ensuring consistency across all leaf categories.
The nine classifiers used were DT, SVM, linear models,
Naives Bayes, KNN, AdaBoost, discriminant analysis, RF,
and ANNs. The classification separated the images into
two categories, diseased and healthy. The dataset includes
200 healthy and 200 diseased leaves. Out of the nine
classifiers used, RF achieved the highest accuracy of 98.4%.

Hu et al. [45] presented a low-shot learning method to
predict diseases in tea leaves. They created their image
dataset by using UAVs. The tea disease spots in the images
were separated using the SVM method. Conditional Deep
Convolutional Generative Adversarial Networks (CDCGAN)
[46] were used to supplement disease spot samples, while
VGG16 DL networks are used to identify disease spots.
They compared five different methods: SVM, DT, RF, and
two different CNN methods, CDCGAN and VGG16, and
they concluded that CNN achieved better results. The results
obtained for the prediction of tea red scab, tea red leaf spot,
and tea leaf blight, reached an average accuracy of 90% for
the CNN methods.

The goal of Huang et al. [47] was to develop a decision
support system for spraying machines that could identify
Helminthosporium leaf spots in wheat fields using remote
sensing data from a UAV. The dataset was divided into
four categories based on disease severity: normal, light,
medium, and heavy. In the preprocessing step, they extracted
100 × 100 samples from the images. A CNN was used for
classification, and the proposed method achieved an accuracy
of 91.43%.

In their study, Abdulridha et al. [48] aimed to detect
two diseases in tomato crops using hyperspectral imaging
captured by a UAV in the range of 380–1020nm. The
tomato leaves were classified into four categories: healthy,
asymptomatic, early, and late disease stages. They generated
35 spectral vegetation indices to identify the best indica-
tors for disease detection and diagnosis and used MLP
and Stepwise Discriminant Analysis (STDA) classification
methods. They found that the blue band (408–420nm), red
band (630–650 nm), and red edge (730–750 nm) were the
most effective wavebands for disease detection. The spectral
signatures of the two diseases were significantly different
at all stages of disease progression, despite having similar
symptoms in the early stages. Both laboratory and field tests
showed satisfactory results for detecting both diseases in
asymptomatic, early, and late stages. The MLP algorithm
outperformed STDA, achieving an accuracy of 97% to 99%
for all stages.

Abdulridha et al. [49] proposed nondestructive methods
to detect diseases that affect tomato crops in two different
datasets, a dataset created at the laboratory (benchtop
scanning) and a dataset with images captured in the field

(using a UAV). These images consisted of images from
healthy and diseased plants. The diseases that they targeted
were: bacterial spot, target spot, and tomato yellow leaf
curl. The diseased plants were identified and classified using
several Vegetative Indices and the M statistic technique.
They utilized two classification methods, STDA and RBF.
For all diseases, both in the symptomatic and asymptomatic
stages (i.e., before symptoms become obvious to direct visual
observations), the classification results showed extremely
accurate discrimination between healthy and diseased plants.
In the field, the best classification results were achieved for
tomato yellow leaf curl, bacterial spot, and target spot with
accuracies of 100%, 98%, and 96%, respectively.

In their study, Abdulridha et al. [50] aimed to detect
Powdery mildew in squash at various stages of disease
development, including asymptomatic, early, intermedi-
ate, and late stages. They utilized hyperspectral imaging
(380–1020nm) and machine learning (ML) algorithms to
perform the detection, collecting data both in the lab and in
the field using a UAV. The radial basis function (RBF) was
used as the classification method, and the most significant
bands for distinguishing between healthy and diseased
stages were identified (388nm, 591nm, 646nm, 975nm, and
1012nm). The RBF method was able to diagnose Powdery
mildew disease even in the asymptomatic phases, achieving a
classification accuracy of 82% and 89% for the asymptomatic
and early stages, respectively, in both laboratory and field
settings. The best classification results were obtained in the
very late stages of disease progression, with 96% and 99%
accuracy in laboratory and field settings, respectively.

Agarwal et al. [51] introduced a CNN model with
eight hidden layers that is lightweight and designed for
classifying nine types of diseases in tomato crops. The model
outperformed traditional ML techniques and pre-trained
models with an accuracy of 98.4% on the publicly available
PlantVillage dataset, which had 200–1400 images in different
classes. The study used various assessment metrics such
as accuracy, precision, recall, and F1-score to evaluate the
performance of the proposed algorithm. The authors also
employed image preprocessing and augmentation techniques
to enhance the performance of the CNN. In the preprocessing
step, they downsized images to 128 × 128. Overall, the
proposed model achieved a high accuracy of 98.4% on the
PlantVillage dataset.

Anagnostis et al. [52] proposed a CNN model that
can categorize images of walnut tree leaves based on
whether or not they are infected with anthracnose. For
this purpose, a set of grayscale and RGB images were
used and Fourier transformation was applied to extract
features. A CNN architecture was chosen on the basis of
its performance. Feature extraction is significantly impacted
by the Fourier transformation in grayscale images, as it
emphasizes the abrupt changes and edges of the leaves.
Infected leaves are more edgy in comparison to healthy
ones. In the preprocessing step, they downsized images to
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256 × 256. The proposed CNN architecture has better or
similar performance to widely-used CNN architectures such
as ResNet50, VGG16, InceptionV3, and DenseNet121 [53],
which are often used as benchmarks in image classification
challenges. The accuracy achieved by the proposed CNN
architecture was 99%.

Chen et al. [54] compared Lasso, RF, gradient boosting,
and generalized linear models in predicting the possibility of
a high rate of occurrence and severity of grape downy mildew
using a dataset of nine years of observations. The algorithms
evaluated in this study use the date of initial infection,
as well as average monthly temperatures and precipitation
as input parameters. Among these algorithms, Lasso, RF,
and gradient boosting perform better than generalized linear
models. Precipitation is found to have a larger impact on
accuracy than temperature among weather inputs, while the
date of disease onset has a greater impact on accuracy than
weather inputs. The best-performing algorithm is selected
based on results for high incidence and severity on leaves
and bunches and is used to assess the influence of various
climatic scenarios on grape downy mildew risk levels. The
study found that reduced rainfall and higher temperatures in
April-May decrease the probability of grape downy mildew
during bunch closure. The highest area under the ROC curve
achieved in this study was 86%.

An image processing technique for identifying plant
diseases was proposed by Cristin et al. [55] that is efficient.
The input image undergoes preprocessing to eliminate noise
and artifacts. The preprocessed image is then segmented
using a piecewise fuzzy C-means clustering method to
obtain the segments. Texture features such as information
gain, histogram of oriented gradients, and entropy are
extracted from each segment during the feature extraction
stage. A Deep Belief Network (DBN) is employed in the
classification step, which was trained with the Rider-CSA
algorithm, combining the Rider Optimization Algorithm
(ROA) with the Cuckoo search method. The Rider-CSA-
based DBN method proposed in the study outperformed
previously used methods, with a maximum accuracy of 87%,
sensitivity of 86%, and specificity of 87% in the experiments.

Lee et al. [56] used four CNN models, i.e., VGG16,
InceptionV3, GoogLeNet, and GoogLeNetBN [57], for plant
disease identification. They utilized three datasets, PlantVil-
lage, IPM [7], and Bing [7]. They compared the performance
trained from scratch and using transfer learning from existing
pre-trainedmodels. In the preprocessing step, they downsized
and cropped images to different ratios according to the type of
CNN. The VGG16 network performed better than the other
CNN architectures, achieving an accuracy of 99% on seen
crops and 65% on unseen crops.

Giraddi et al. [58] presented a DL system with image
processing techniques to detect fungal diseases in maize
leaves. They used image classification techniques along with
AlexNet, a deep CNN. Their model can detect three different
classes of fungal disease, Northern blight, Southern Blight,

and Rust. They experimented with two different problems.
The first problem is with three classes: healthy, common
rust, and Northern blight images, and the second problem is
with four classes: healthy, common rust, Northern blight, and
multiple diseases in one image. For the first problem, three
distinct disease detectionmodels were generated, trained, and
evaluated. In the preprocessing step, they downsized images
to make them the same size. They used 300 images in the
training set, 100 for each class. They also used 150 images
in the testing set, 50 for each class. The training set for
the second problem consists of 400 images, 100 for each
class, while the testing set includes 200 images, 50 for
each class. They obtained an accuracy of 98% on the three-
class classification problem and an accuracy of 70.5% on the
four-class classification problem.

A CNN-based approach for plant disease diagnosis and
recognition is proposed by Guo et al. [59]. The model
is designed to improve accuracy, generality, and training
efficiency. The approach first uses the Region Proposal
Network (RPN) [60] to detect and locate the leaves in a
challenging environment. Then, the Chan-Vese (CV) method
[61] is used to segment the images based on the results of the
RPN algorithm, which captures the features of the symptoms.
Finally, the segmented leaves are fed into the transfer learning
model, which is trained using the PBPC [62] of diseased
leaves in a simple environment. The approach is tested
for black rot, bacterial plaque, and rust disease, achieving
an accuracy of 83.75%, which is higher than conventional
methods, and can help minimize the impact of diseases on
agricultural production.

Habib et al. [63] introduced an agromedical expert system
for papaya disease identification that relies on machine
vision and analyzes images taken using portable devices. The
proposed system focuses on two main objectives: disease
detection and disease classification. The effectiveness of
the system was tested through several experiments. Initially,
they defined a set of features that can help differentiate
between the different diseases. Then, they used the K-means
clustering algorithm to segment the disease-affected area in
the collected images and extracted the relevant features to
classify the diseases using the support vector machine (SVM)
algorithm. In the preprocessing step, they downsized images
to 300 × 300. The system achieved an accuracy of 90.15%.
Karadağ et al. [64] proposed a method for identifying

fusarium disease on peppers utilizing a spectroradiometer
from the reflections obtained from pepper leaves in a
laboratory. Four sets of pepper leaves were grown in
a confined setting to obtain reflections. They proposed a
two-step disease detection framework. Subsequently, the
extracted feature vector was utilized in the classification
process, employingANNs, Naive Bayes (NB), andKNN. The
obtained accuracy for KNN was 100%, 97.5% for ANN, and
90% for NB.

Karlekar and Seal [65] proposed a computer vision method
to identify and categorize leaf diseases present in soybean
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crops. Initially, the proposed approach separates the leaf
section by removing the complex background from the entire
image. Following this, a deep learning Convolutional Neural
Network (CNN) known as SoyNet, trained on a 16-class
dataset called PDDB [27], categorizes the segmented leaf
images. In the preprocessing step, they downsized images
to 100 × 100. The proposed model attains an identification
accuracy of 98.14%,with high precision, recall, and F1-score.

Karthik et al. [66] proposed two alternative deep neural
network (DNN) models to identify the type of infection
present in tomato leaves. The first model applies residual
learning on top of a feed-forward CNN to learn crucial
classification features, while the second model utilizes the
strengths of the attention mechanism and residual learning on
CNNs. To assess the performance of the proposedmodels, the
PlantVillage dataset was used, which includes three diseases:
early blight, late blight, and leaf mold. They reported
an accuracy of 95% and 98% for the two architectures,
respectively.

The detection of mildew disease in vineyards using a
CNN on UAV images was proposed by Kerkech et al. [67].
Additionally, they introduced a new object recognition
technique that aligns visible and infrared images, allowing
data from the two sensors to be combined. A fully CNN
technique is then used to classify each pixel into different
categories, such as ground, shadow, symptom, and healthy.
The proposed method was able to detect over 92% of
infections at the grapevine level and 87% at the leaf level,
indicating that automatic disease detection in vineyards has a
promising future.

Khalili et al. [68] experimented with six different ML
algorithms, namely MLP, Gradient Tree Boosting (GBT),
L1 regularization (LR-L1), L2 regularization (LR-L2), SVM,
and RF in order to forecast charcoal rot disease in soybean on
a custom dataset [69] of 2,000 healthy and diseased plants.
The importance of the features considered by various ML
methods was also analyzed. They applied a 10-fold cross-
validation to the training set and all ML models achieved an
accuracy of more than 96.79%.

The use of an optimized deep neural network for identi-
fying and classifying paddy leaf infections in rice harvests
was proposed by Ramesh et al. [70]. The Jaya algorithm
was utilized for this study. Images of rice plant leaves from
farm fields with normal, sheath rot, blast diseases, brown
spots, and bacterial blight were collected. In preprocessing,
RGB images were converted to HSV images to eliminate
the background, and then binary images based on the hue
and saturation sections were retrieved to determine whether
or not a disease occurred in a region. Several metrics, such
as accuracy, precision, and F1-score, were used to evaluate
the results, and the outcomes were compared to those of
Denoising Auto-Encoder (DAE), DNN, and ANN classi-
fiers. In the preprocessing step, they downsized images to
300 × 450. The proposed method achieved high accuracy
rates of 98.9% for blast-affected images, 95.7% for bacterial

blight, 94% for brown spot, 92% for sheath rot, and 90.57%
for normal leaf images, outperforming the other classifiers.

Verma et al. [71] trained and compared the CNN models
SqueezeNet [72], InceptionV3, and AlexNet, for determining
the severity of late blight infection in tomatoes. For this
purpose, they utilized the PlantVillage dataset for transfer
learning and feature extraction. AlexNet outperformed the
other two networks with an accuracy of 93.4%.

Velásquez et al. [73] proposed a technique to detect coffee
leaf rust by utilizing data from various sources, including
sensor data in JSON format, as well as RGB, RGN, and
RE images from UAV multispectral cameras. The proposed
approach involved the integration of remote sensing and
DL algorithms, specifically MLP and CNN. The sub-models
were trained separately, and the resulting F1-scores for each
sub-model and the composite model were calculated. The
composite model achieved an F1-score of 77.5%.

Yan et al. [74] presented an enhanced version of the
VGG16 model to detect diseases in apple leaves. They
utilized a dataset that consisted of 10 plant types with
27 different disease categories obtained from the ‘‘2008 ‘AI
Challenger’ Global Challenge’’ [75], as well as additional
images. The authors employed transfer learning to shorten
the learning time. The results demonstrate that the proposed
model achieved an overall accuracy of 99.01%.

Zhang et al. [76] presented a structured technique for
wheat lodging detection in experimental plots that included
aerial imagery collected from UAVs. For classifying wheat
lodging,ML algorithms, and CNNswere utilized. For theML
algorithms, 320 extracted features were fed into RF, NN, and
SVM. For the CNNs, they used VGGNet and GoogLeNet.
GoogLeNet had significantly higher accuracy than VGGNet,
about 93%, while SVM had an accuracy of 92%.

Abbas et al. [77] proposed a DL approach for detecting
diseases on tomato plant leaves. They utilized the Conditional
Generative Adversarial Network (CGAN) [78] in order to
generate synthetic images. The classification of ten types
of diseases on tomato leaves was carried out using the
DenseNet121 model trained on both synthetic and real
images through transfer learning. In the preprocessing step,
they downsized images to 224×224. The study employed the
PlantVillage dataset, and the obtained accuracy was 97.11%.

An efficient automated diagnosis system for corn plants
was proposed by Akanksha et al. [79]. The proposed
method consists of four stages: (i) preprocessing, (ii) feature
extraction, (iii) classification, and (vi) segmentation. The
preprocessing techniques convert images to RGB and remove
noise. They utilized an Optimized Probabilistic Neural
Network (OPNN) that was improved by using the Artificial
Jelly Optimization (AJO) algorithm for classification. The
system achieved an accuracy of 95.5%.

The automatic detection of bacterial spot diseases in peach
plants was proposed by Bedi and Gole [80] using a hybrid
model that combines a Convolutional Autoencoder (CAE)
network with a CNN. They used the CAE for dimensionality
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reduction to reduce the number of training parameters, and
the CNN was used for classification. The model was trained
and evaluated on the PlantVillage dataset, achieving an
accuracy of 99.35% on the training set and 98.38% on the
test set with 9, 914 training parameters.
According to the study conducted by Chowdhury et al.

[81], tomato leaf images were classified for tomato dis-
eases using the EfficientNet CNN architecture [82]. The
PlantVillage dataset, containing 18,162 tomato images, was
used to fine-tune and train the model to detect healthy and
diseased tomato leaf images. In the preprocessing step, they
downsized images to 224 × 224. The results indicate that
the proposed model outperformed various contemporary DL
algorithms. Two segmentation models, the original U-net
[83] and modified U-net [84], were also trained, validated,
and tested for the segmentation of tomato leaf images. The
Modified U-net was found to be superior for segmenting
leaf images from the background, and EfficientNetB7 was
superior at extracting discriminative features from images.
The performance of the models generally improved with
the number of parameters used. The trained models have
potential applications in automatic detection of plant diseases
at an early stage, and the study achieved an accuracy of
98.6% for the U-net model, 99.9% for the EfficientNetB7,
and 99.8% for the EfficientNetB4.

Dwivedi et al. [85] presented a disease detection network
for grapes. This network was based on Faster RCNN [60].
During the evaluation stage, the proposed disease detection
mechanism was experimented on the PlantVillage dataset,
and it was found that the network was more efficient in
detecting infected/diseased regions than existing methods.
The results showed an overall accuracy of 99.93% for
identifying esca, black rot, and isariopsis diseases.

Mishra et al. [86] developed an automated plant disease
detection model using median filter preprocessing techniques
and a pixel-level feature extraction technique. In this
technique, the statistical features are extracted from an
image. Afterward, the researchers utilized the Sine Cosine
Algorithm-based Rider Neural Network (SCA-RideNN) as
the classifier for detecting plant diseases. They conducted
experiments with the PlantVillage dataset and reported an
accuracy of around 91.56%.

For guava disease detection, Mostafa et al. [87] utilized
five neural network models, namely AlexNet, SqueezeNet,
GoogLeNet, ResNet50, and ResNet101 [24]. They started
by preprocessing the images using the color histogram and
unsharp masking method, followed by augmentation using
the affine transformation method. In the preprocessing step,
they downsized images to be of the same size. The results
indicated that ResNet101 achieved the highest classification
accuracy of 97.74%.

The aim of Patil and Patil [88] was to develop a DL
method to detect a diseased cotton plant from its leaf
images. They used an IoT-based platform to collect various
sensor data to detect climatic changes. Their deep CNN

architecture comprised convolutional layers, ReLU layers,
fully connected layers, pooling layers, and activation layers.
They used a custom dataset and applied image preprocessing,
augmentation, and fine-tuning techniques. In the preprocess-
ing step, they downsized images to 256× 256. The proposed
method yielded an accuracy of about 98%.

The aim of Sambasivam and Opiyo [89] was to detect
cassava infections using a CNN model trained on a dataset
containing 10,000 annotated images from [90]. The dataset
included five fine-grained cassava leaf disease categories;
however, there was a significant class imbalance issue with
the data. The authors employed several techniques such as
class weight, focus loss, and SMOTE to counter the imbal-
ance and improve the model’s performance. After tuning
several parameters, including the learning rate, number of
epochs, batch size, input shape, optimizer, and number of
neurons in the hidden layer, they found that a vector input
shape of (448, 448, 3) yielded the best accuracy of 93%.

Sujatha et al. [91] assessed and compared the performance
of variousML andDL algorithms for the detection of diseases
in citrus leaf images as described in [92]. The algorithms
evaluated included SVM, RF, stochastic gradient descent,
InceptionV3, VGG16, and VGG19. The results showed
that the VGG16 model achieved the highest classification
accuracy of 89.5%, while the RF model had the lowest
accuracy of 76.8%.

A CNN-based approach proposed by Tiwari et al. [93]
was used for the detection and classification of plant diseases
from leaf images captured in different resolutions. The study
included six crops (apple, potato, tomato, bean, citrus, and
rice) and 27 different disease categories under laboratory
and on-field conditions. The authors also utilized five-fold
cross-validation and tested the model on unseen data to
enhance the accuracy of the results. Images were gathered
from several databases, such as PlantVillage, iBean leaf
image dataset [94], citrus leaf images, and rice leaf images
[95]. In the preprocessing step, they downsized images to
224 × 224. The cross-validation accuracy was found to be
99.58%, and the average test accuracywas 99.12% for images
with complex environmental situations.

The use of a double GAN for balancing datasets by
generating images of diseased plant leaves was proposed by
Zhao et al. [96]. Initially, they used healthy leaf images from
the PlantVillage dataset as inputs for the Wasserstein GAN
to obtain a pre-trained model. Subsequently, diseased leaves
were used to generate 64 × 64 pixel images of diseased
leaves using the pre-trained model. To expand the unbal-
anced dataset, a superresolution GAN was used to obtain
256 × 256 pixel images. The authors observed that the
generated images from the double GAN were clearer than
those from DCGAN. They achieved an accuracy of 99.80%
and 99.53% for the double GAN and DCGAN, respectively.

Kathole and Munot [97] evaluated and compared the
performance of various CNN models, including VGG
architecture from scratch, VGG architecture with pre-trained
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weights, GoogLeNet, and AlexNet, for detecting plant
diseases in tomato crops. The experiments were conducted
on six different disease classes and a healthy class, and the
data were obtained from PlantVillage. TheGoogLeNet model
achieved the highest accuracy of 97.94%.

Pan et al. [98] employed multiple CNN models including
AlexNet, GoogleNet, VGG16, andVGG19 to detect Northern
corn leaf blight in maize crops. The researchers utilized a
dataset consisting of 985 images of healthy and infected
maize leaves and applied various data augmentation tech-
niques to augment their dataset. Their results showed that
the GoogleNet model achieved the best performance, with an
accuracy of 99.94% in detecting Northern corn leaf blight.

The ResTS (Residual Teacher/Student) architecture, devel-
oped by Shah et al. [99], is a CNN structure that incorporates
two classifiers (ResTeacher and ResStudent) and a decoder
to aid in the diagnosis of plant diseases through visualization
and classification. They utilized residual connections and
performed batch normalization on all subsystems. The
PlantVillage dataset was used to train their model, and they
achieved an F1-score of 99.1%.

Two deep feature extraction-based classification models
were proposed by Turkoglu et al. [100] using transfer learning
on six pre-trained DL networks (AlexNet, DenseNet201,
GoogleNet, ResNet18 [24], ResNet50, and ResNet101) for
classifying plant disease images. They also proposed a hybrid
CNN-SVM model that combined the early fusion of features
extracted from deep networks. The images used for training
and testing were from the Turkey-PlantDataset [101], which
consists of unconstrained images of 15 types of diseases and
pests observed in Turkey. The highest accuracy achieved by
all the models was 97.56

The automatic plant disease detection technique proposed
by Vallabhajosyula et al. [102] utilizes Deep Ensemble
Neural Networks (DENN) and employs data augmentation
techniques, including image enhancement, rotation, scaling,
and translation. The researchers used the PlantVillage
dataset and concluded that DENN’s performance sur-
passes that of pre-trained state-of-the-art models, such as
ResNet50, ResNet101, InceptionV3, DenseNet 121 and 201,
MobileNetV3 [103], and NasNet [104]. The DENN model
achieved an accuracy of 99.99

B. OBJECT DETECTION
Fuentes et al. [105] combined three object detection
algorithms (Faster RCNN, R-FCN [106], and SSD [107])
with five feature extractors (VGG16, ResNet50, ResNet101,
ResNet152 [24], ResNeXt-50) for recognizing tomato plant
diseases and pests. They applied the CNN algorithms on a
custom dataset of about 5, 000 images using various methods
to augment the dataset size. The results show that R-FCNwith
ResNet50 achieved the best mAP of 86%.

Jiang et al. [108] used a DL approach based on the
GoogLeNet Inception structure and the rainbow concatena-
tion for apple leaf disease detection. They generated a custom

dataset of 2, 029 images of diseased apple leaves and trained
their algorithm to detect five common apple leaf diseases:
Alternaria leaf spot, brown spot, mosaic, grey spot, and rust.
Various augmentation techniques have been applied in order
to generate a more representative dataset. They achieved a
detection performance of 78.80% mAP.

Kim et al. [109] proposed a system for field monitoring
with a PTZ camera, a motor system, a wireless transceiver,
and an image-logging module. This system periodically
captures images from the field and sends them to a CNN
model designed to detect onion-downy mildew diseases. The
model was trained on a dataset of six classes of images
captured by the field monitoring system. In the preprocessing
step, they extracted 224 × 224 samples from images. The
proposed model achieved an accuracy ranging from 74.1%
to 87.2%.

Li et al. [110] presented a technique for disease detection
on rice crops using a CNN. They gathered images and
videos from mobile phones. They converted videos to a
still frame, then transmitted it to a still-image detector for
recognition, and then combined the frames into a video. They
utilized Faster RCNN as the framework for the still-image
detector. The results revealed that the proposed method with
the custom backbone was better than ResNet50, ResNet101,
YOLOv3 [111], and VGG16 for recognizing diseases and
pests for rice crops.

Saleem et al. [112] combined three object detection
algorithms (Faster RCNN, R-FCN, and SSD) with four
feature extractors (ResNet50, ResNet101, InceptionV2, and
Inception-ResNetV2 [113]) and three optimizers (stochastic
gradient descent with momentum, Adam, and RMSProp) for
plant disease identification. They used the training weights of
the Common Objects in Context (COCO) dataset [114]. They
compared the algorithms on the PlantVillage dataset. The
SSD model with the feature extractor InceptionV2 trained
with the Adam optimizer was the best performer with a mAP
of 73.07%.

The detection of Northern maize leaf blight disease on
maize crops under complex field environments was proposed
by Sun et al. [115] using multi-scale feature fusion and the
SSD algorithm. For this purpose, a custom dataset consisting
of 18,000 images captured by a camera mounted either on
a five-meter boom or on a UAV was used. The proposed
technique consists of three steps: preprocessing the dataset,
fine-tuning the model, and detecting the disease. The NLB
dataset was selected because it is calibrated by human
plant pathologists and has a high level of accuracy. Data
preparation was done mainly to reduce the effect of high-
intensity light on image identification and enhance detection
accuracy. The proposed model achieved a total accuracy
of 91.83%.

Xie et al. [116] presented a DL-based detector for
identifying leaf diseases in grape crops. In order to improve
the generalization of the model, they developed the grape
leaf disease dataset, which included 4,449 original images
captured both in the lab and in actual vineyards, and
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expanded the dataset with an additional 62,286 diseased
leaf images. The authors trained the model using data aug-
mentation techniques and utilized the InceptionV1 module
[117], Inception-ResNetV2 module, and SE-blocks [118] to
enhance the detection performance of multi-scale and smaller
diseased spots. The model achieved an overall accuracy
of 81.1%.

The detection of tomato diseases and healthy leaves
was the objective of the study by Zhang et al. [119].
For this purpose, they proposed an improved version of
Faster RCNN, a popular object detection algorithm, which
utilized a depth residual network instead of VGG16 for
image feature extraction. They also employed the K-means
clustering algorithm to cluster the bounding boxes obtained
from the network. Three feature extraction networks were
tested in the experiments, namely VGG16, Mobile, and
Res101. The proposed model achieved an mAP of 98.54%
when trained with the Res101 network and k-means
clustering.

Roy andBhaduri [120] proposed amulti-class plant disease
DLmodel using techniques from the field of object detection.
The model was designed to achieve a balance between
detection speed and accuracy, and it has been used to identify
many classes of apple plant diseases in a real-world setting.
The detection rate of 56.9 frames per second was achieved,
while improving the mAP and F1-score up to 91.2% and
95.9%, respectively.

Selvaraj et al. [121] proposed a pixel-based classification
method coupled with ML models for identifying banana
crops in complex African environments using multi-level
satellite images and UAVs. They used RF for pixel-based
classification, combining vegetation indices and PCA, and
developed a mixed-model approach using RetinaNet and a
customized classifier for simultaneous banana localization
and disease classification with UAV-RGB aerial images.
The proposed method achieved high accuracy of 99.4%,
92.8%, 93.3%, and 90.8% for banana bunchy top disease,
Xanthomonas wilt of banana, healthy banana cluster, and
individual banana plants, respectively, according to their
mixed-model results.

The PlantVillage dataset was used by Wang et al. [122]
to propose three novel plant disease detection techniques,
namely Squeeze-and-Excitation SSD (SE_SSD), Deep Block
SSD (DB_SSD), and Deep Block Attention (DBA_SSD).
The authors compared the performance of their proposed
algorithms with YOLOv3, YOLOv4 [123], YOLOv4 tiny,
and Faster RCNN. The mAP obtained for the proposed
techniques were 90.77% for SE_SSD, 89.93% for DB_SSD,
and 92.20% for DBA_SSD.

An enhanced model for plant disease recognition
based on the YOLOv5 network model was proposed by
Chen et al. [124]. They made changes to the neck module,
the SE module, and the loss function. They collected
2, 375 images of rubber tree diseases. Their dataset consists
of 1, 203 powdery mildew images and 1, 172 anthracnose
images. In the preprocessing step, they downsized images

to 640 × 640. The improved YOLOv5 network model
achieved an accuracy of 70%.

The YOLOv4 algorithm was enhanced for detecting
diseases in tomato plants by Roy et al. [125]. The researchers
utilized DenseNet as the backbone of the modified algorithm
and added two new residual blocks to the backbone. They
evaluated the proposed model using 1,200 images from
the PlantVillage dataset and compared its performance with
other object detection methods. The results showed that the
proposed model outperformed other state-of-the-art methods
with a mAP of 96.29%.

The proposed method by Wang et al. [126] utilizes a
lightweight version of the YOLOv5 model and includes an
improved attention sub-module to enhance both accuracy
and efficiency. Additionally, they employed the Ghostnet
structure to reduce computations and replaced the origi-
nal FPN/PANet structure with the BiFPN structure. The
algorithm was evaluated on a custom dataset for plant disease
detection, and its performancewas compared to othermodels.
The results indicate that the proposed model achieved an
accuracy of 92.57%.

III. CLASSIFICATION SCHEME
In this section, we propose a classification scheme and
categorize all relevant works in the associated classes.
In addition, we present statistics of the most common
crops/data types/methods/algorithms/datasets/metrics used
by the reviewed papers. The classes that we use in our
classification scheme are the following:

• Crop: the type of the crop that each study uses as a case
study

• Input data: the type of the input data used in the ML
algorithms

• Dataset: the name of the dataset that is used if this
information is available in the paper

• Models/Algorithms: the ML algorithm that was used
• Method: whether classification (C) or object detection is
targeted (C)

• Metrics: the evaluation metrics employed to measure the
performance of the ML algorithms

• Results: a brief description of the results obtained by the
ML algorithms

Table 7 in Appendix presents all the related work using the
above classification scheme. Figures 2–7 show the percentage
of papers in the different classes. Most papers have focused
on disease detection in tomato plants. There are also various
works that consider multiple crops. Corn, apple, grape, and
rice are crops that have also attracted much attention in
the literature. Regarding the input data type, it is obvious
that most researchers use RGB images as input to their
models/algorithms since most datasets include only such
images. Regarding the datasets used in the studies, the
majority of studies use a custom dataset, showing that there is
a need to have publicly available datasets that can be utilized
for benchmarking purposes. The PlantVillage dataset is also
widely used.
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FIGURE 2. Statistics of crops.

FIGURE 3. Statistics of input data types.

FIGURE 4. Statistics of datasets.

CNN is the most common neural network architecture
used throughout the studies. There are also some works
dealing with classifying diseases that use SVM, ANN, RF,
KNN, and MLP algorithms. Regarding the method that each
study targets, classification is the clear winner compared to
object detection. Different metrics have been employed in the
literature, with accuracy, F1-score, precision, and recall being
among the most commonly used ones.

FIGURE 5. Statistics of models/algorithms.

FIGURE 6. Statistics of methods.

FIGURE 7. Statistics of metrics.

IV. DATASETS
This section provides an overview of publicly available
datasets. These datasets serve different purposes; some of
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them are used for classification to determine if a plant
image is healthy or infected with a disease (discussed in
Subsection IV-A), while others are used for object detection
to identify diseases on plants (discussed in Subsection IV-B).

A. CLASSIFICATION
The PlantVillage dataset [10] comprises 54,303 leaf images,
both healthy and diseased, categorized into 38 classes based
on species and diseases. The dataset includes images of
14 crop species, such as apple, blueberry, cherry, corn,
grape, orange, peach, bell pepper, potato, raspberry, soybean,
squash, strawberry, and tomato. It covers 17 fungal-related
diseases, four bacterial diseases, two mold (oomycete)
diseases, two viral diseases, and one mite-related disease.
Additionally, it provides images of disease-free healthy
leaves from 12 crop species.

The iBean leaf image dataset [94] comprises images of
bean leaves captured from field conditions. The National
Crops Resources Research Institute (NaCRRI), the national
organization in charge of research in agriculture in Uganda,
and the Makerere AI lab collaborated to capture these images
in several areas of Uganda. Images were captured from
the field or garden using a simple smartphone, which were
then analyzed by NaCRRI experts who determined which
illness was present in each image. The dataset consists of
1, 296 images and three classes. 428 images are for the
healthy class, 432 images are for the angular leaf spot, and
the remaining 436 for the bean rust.

The PlantLeaves dataset [127] is comprised of
4, 503 images of plant leaves, both healthy and diseased,
categorized into 22 categories based on the species and
the state of health. The dataset includes 2, 278 healthy leaf
images and 2, 225 diseased ones. The images were captured
using a basic digital camera.

The PlantaeK dataset [128] is a leaf database of indige-
nous plants found in Jammu and Kashmir. It comprises
2, 153 images of healthy and diseased plant leaves, cate-
gorized into 16 groups by species and health status. The
images feature various crop species, including apple, apricot,
cherry, cranberry, grapes, peach, pear, andwalnut. The dataset
comprises 1, 223 healthy leaf images and 934 diseased leaf
images.

The Plant Pathology 2020 challenge dataset [129] is a clas-
sification dataset for the foliar disease of apples. The creators
of the dataset manually captured 3, 651 real-world symptoms
of several apple foliar diseases with varied lighting, angles,
surfaces, and noise. The dataset includes 865 healthy leaves,
187 cases of complex diseases, 1, 200 cases of apple scab,
and 1, 399 cases of cedar apple rot.

The citrus leaf images dataset [92] contains images of
healthy and infected citrus plants with diseases such as black
spot, canker, scab, greening, and melanosis. The dataset
includes 609 images from citrus leaves, of which 58 are
healthy images, and 150 images from citrus fruits, of which
22 are healthy images.

The Kaggle dataset [90] contains 9, 436 annotated images
and 12, 595 unlabeled images of cassava leaves. The dataset
contains five classes, one is the class for healthy plants
and the other four are for diseases (cmd, cgm, cbsd, and
cbb). NaCRRI in collaboration with the AI lab at Makerere
University captured and annotated these images.

The dataset of Rice leaf images [95] includes 120 images
collected from a village in India. The dataset contains
40 images of each disease, for a total of 120 images. The NLB
dataset [130] is comprised of 234 images of leaf spot disease
in maize crops.

B. OBJECT DETECTION
The PlantDoc dataset [131] includes 2, 345 images. These
images contain 13 plant species and 18 classes of diseases.
This dataset is publicly available for download and it can also
be used as an open dataset for benchmarks. The classes of
the PlantDoc dataset are the following: Cherry leaf, Peach
leaf, Cherry leaf, Peach leaf, Corn leaf blight, Apple rust leaf,
Potato leaf late blight, Strawberry leaf, Corn rust leaf, Tomato
leaf late blight, Tomato mold leaf, Potato leaf early blight,
Apple leaf, Tomato leaf yellow virus, Blueberry leaf, Tomato
leaf mosaic virus, Raspberry leaf, Tomato leaf bacterial spot,
Squash Powdery mildew leaf, Grape leaf, Corn Gray leaf
spot, Tomato Early blight leaf, Apple Scab Leaf, Tomato
Septoria leaf spot, Tomato leaf, Soyabean leaf, Bell pepper
leaf spot, Bell pepper leaf, grape leaf black rot, Potato leaf,
and Tomato two-spotted spider mites leaf. PlantDoc contains
8, 851 annotations with an average of 3.4 annotations per
image. The average image size is 0.53 mp and the distribution
of the image sizes starts from 0.01 mp to 24.00 mp. The
median image ratio is 800×675. The balance of the classes of
PlantDoc is presented in Figure 8. The classes Blueberry leaf,
Tomato leaf yellow virus, and Peach leaf are overrepresented
with more than 600 images for each class and the classes
Tomato leaf late blight, Tomato Early blight leaf, Apple rust
leaf, Apple Scab Leaf, grape leaf black rot, Corn rust leaf,
Corn Gray leaf spot, Soybean leaf, Potato leaf, and Tomato
two-spotted spider mites leaf are under-represented with less
than 220 images for each class. A sample of four images with
their annotations are shown in Figure 9.

TheCropDeep dataset [132] is composed of 31, 147 images
containing over 49, 000 annotated instances from 31 different
classes. The images were captured in greenhouses under
various conditions using different cameras. Additionally, the
IP102 dataset [133] is a comprehensive benchmark dataset for
recognizing insect pests. It comprises over 10, 000 images
divided into 102 categories, with insect pests that mainly
target one agricultural product grouped together in the same
top-level category. The IP102 dataset has a hierarchical
taxonomy.

Table 1 presents the statistics for each dataset including:
(i) the name of the dataset, (ii) the type of the crop, (iii) the
number of images, (iv) the number of classes, and (v) whether
classification (C) or object detection is targeted (C).
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FIGURE 8. Class balance of the PlantDoc dataset.

FIGURE 9. Visualization of the PlantDoc dataset with image annotations.

TABLE 1. Datasets statistics.

V. COMPUTATIONAL STUDY
In this computational study, we train five state-of-the-art
object detection algorithms and eighteen state-of-the-art
classification algorithms on the PlantDoc dataset. Before
starting the training process, we applied a prepossessing step.
At the PlantDoc dataset, there was a total of 28 annotations
that needed to be fixed. The bounding boxes were out of
frame in some images, thus they were trimmed to match
the image’s edges. Some images had bounding zero pixels

and were afterwards dropped. The training set contained
25 of these, whereas the test set contained three. After
that, we applied image resizing, auto-orientation, and image
denoising.

All computational experiments were performed on an Intel
Xeon Silver 4214 CPU processor with 128 GB of main
memory and 48 cores, a clock of 2.2 GHz, running under
Ubuntu 20.10 64-bit, and on a NVIDIA Tesla V100 GPU
with 32 GB GDDR5 and a core clock of 1683 MHz.

For the training process, we utilized Fastai’s learn.lr_find()
[134] method to find the optimal learning rate for each
algorithm. The idea of this method comes from the Train
Learner over a few iterations [135]. This method starts with
a very low start_lr and changes it at each mini-batch until it
reaches a very high end_lr.We record the loss at each iteration
and check how it relates to the learning rate to determine the
optimal value before the loss diverges.

For the object detection problem, we trained and eval-
uated the performance and the accuracy of the following
algorithms:

1) EfficientDet [136] includes a collection of eight highly
efficient and accurate algorithms developed by Google.
EfficientDet detectors are single-shot detectors like
SSD and RetinaNet. The EfficientNet, trained in
the ImageNet [137] dataset, serves as the network’s
backbone. The model utilizes a BiFPN as the feature
network, while a separate class and box network is
responsible for generating the class and bounding box
predictors. On the COCO dataset, the overall mAP of
EfficientDet-D7 is 52.2%.

2) Faster RCNN [60] belongs to the two-stage detector
family because its object detection work occurs in two
major stages. Faster RCNN is slower than single-stage
detectors, but it is more accurate. On the COCOdataset,
the overall mAP@.5 is 42.7%.

3) RetinaNet [138], a single-stage object detection model,
is considered one of the top performers in detecting
both dense and small objects. It has two main improve-
ments over other single-stage models: FPN [139] and
Focal Loss [138]. On the COCO dataset, RetinaNet’s
mAP@.5 is 59.1%.

4) SSD [107] is based on theVGG16 architecture but lacks
fully connected layers. For object detection, it employs
a single deep neural network. The VGG architecture
was employed as the foundation, and several layers
were utilized for prediction at various scales. On the
COCO dataset, the mAP@.5 is 46.5%.

5) YOLOv5 [140] is a notable upgrade fromYOLO [141],
an object detection algorithm that partitions images
into a grid system, with each grid cell responsible for
detecting objects within it. YOLOv5 is a significant
improvement over its predecessor. YOLOv5 uses the
PANet structure that includes various layers. On the
COCO dataset, the average accuracy is 43.5% AP.

Table 2 provides a summary of the hyperparameters used
for the trained object detection algorithms in our study.
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The hyperparameters include the learning rate (LR), batch
size (BS), optimizer, and backbone architecture. The choice
of hyperparameters for our trained object detection algo-
rithms played a pivotal role in configuring and effectively
training our models for leaf disease detection. Rather than
relying on default values, we meticulously considered each
hyperparameter based on its impact on model performance.
For the EfficientDet algorithm, a learning rate (LR) of
5e-2 was chosen with a batch size (BS) of 8. The Adam
optimizer was utilized, and the EfficientNet served as the
backbone architecture. This configuration likely leverages
the efficient architecture and large learning rate to achieve
rapid convergence. In the case of Faster RCNN, a lower
learning rate of 2e-4 was employed along with a batch size
of 16. Stochastic Gradient Descent (SGD) [142] was selected
as the optimizer, and ResNet-50 served as the backbone.
The lower learning rate and larger batch size indicate a
more stable and gradual training process. For RetinaNet,
a smaller learning rate of 7e-5 was used with a batch size
of 8. Similar to EfficientDet, the Adam [143] optimizer was
chosen, and ResNet-50 [24] was employed as the backbone
architecture. This configuration may favor a balance between
rapid convergence and fine-tuning. The SSD algorithm used
a learning rate of 7e-5 with a larger batch size of 32. The
Adam optimizer was also selected, but the VGG16 [21]
architecture was chosen as the backbone. This combination
of parameters aims at accommodating a larger batch size
while leveraging the SSD architecture. Lastly, YOLOv5 used
a relatively high learning rate of 3e-3 with a batch size of 32.
Similar to the other models, Adam was used as the optimizer,
and the new CSP-Darknet53 [144] architecture served as the
backbone, a modification of the Darknet architecture used
in previous versions [123]. This configuration may achieve
rapid convergence and adapt to the YOLO architecture.

TABLE 2. Hyperparameters of the algorithms.

Table 3 presents the mean average precision (mAP) results
of the leaf disease detection models after training.

To evaluate the overall accuracy of the object detector
models, we utilized several COCO challenge metrics, namely
(i) AP, (ii) APIoU=.50, (iii) APIoU=.75, (iv) AP small, (v) AP
medium, and (vi) AP large. The assessment results for the
COCO metrics are presented in Table 4.

Based on the results, it is evident that YOLOv5 exhibits
superior accuracy compared to the other algorithms, as it
outperforms them in terms of detecting objects of all sizes in
the images. This superiority is reflected not only in the strict
APmetric of the COCO challenge but also in other evaluation

TABLE 3. mAP of the trained leaf disease detection models.

TABLE 4. Average precision on COCO metrics.

FIGURE 10. YOLOv5 ground truth vs prediction visualization.

metrics such as small, medium, and large object detection.
EfficientDet, Faster RCNN, RetinaNet, and SSD have almost
the same accuracy for this dataset. From the visualization
of the results, it is shown that all algorithms were able to
identify and localize most of the leaf species and diseases.
However, there are images that show that the detection results
are suboptimal, as shown in Figure 10.
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TABLE 5. Hyperparameters for classification models.

We trained and evaluated eighteen CNN model archi-
tectures that are currently considered state-of-the-art for
the image classification problem. AlexNet, DenseNet (121,
161, 169, 201), MobileNetV2, ResNet (50, 101, 151),
ResNeXt (50, 101) [145], ShuffleNet [146], VGG, and
WideResNet (50, 101) [147]. Eighteen state-of-the-art CNN
model architectures pre-trained on the ImageNet dataset were
trained and evaluated for the image classification problem.
The models were trained using the same hyperparameters for
200 epochs and were assessed based on their accuracy and
training time. The Stochastic Gradient Descent optimizer and
the softmax cross entropy loss function were utilized by all
models.

The hyperparameters presented in Table 5 for the various
classificationmodels were selected after careful experimenta-
tion and tuning to achieve optimal model performance. These
hyperparameters, including the learning rate (LR), batch size
(BS), and optimizer, play a crucial role in determining the
effectiveness of the training process and ultimately impact the
model’s accuracy and training times. The choice of a learning
rate of 0.001 is a common starting point for many deep-
learning models. It is often used as a default value and then
fine-tuned during experimentation. The batch size of 32 or
64 is also a result of experimentation. Smaller batch sizesmay
provide more stable convergence, but larger batch sizes can
lead to faster training times. As for the optimizer, models like
AlexNet andMobileNetV2 benefit from the Adam optimizer,
which adapts learning rates individually for each parameter.
On the other hand, models like DenseNet and ResNet variants
perform well with the Stochastic Gradient Descent (SGD)
optimizer. The choice of optimizer depends on the model
architecture and its convergence characteristics.

TABLE 6. Comparison of classification models in terms of accuracy and
training time.

Table 6 presents the results. The primary evaluation metric
in this computational study is accuracy, which is the ratio
of the number of correct predictions to the total number of
predictions.

According to the study’s results, the DenseNet121 model
outperformed all other models by achieving the high-
est accuracy of 61.01%. DenseNet161, ResNet152, and
WideResNet50_2 also performedwell, achieving an accuracy
of 60.16%. On the other hand, ShuffleNet_v2_x2_0 had the
worst accuracy of 20.33% on the PlantDoc dataset.

The validation accuracy curve of all the models from epoch
0 to epoch 200 is depicted in Figure 11, whereas Figure 12
displays the training accuracy curve of all the models. All of
the networks achieved a training accuracy of more than
97%, except for AlexNet which was not able to reach more
than 85% of training accuracy. Finally, we compared all of
the training times in Figure 13. MobileNetv2, ResNet50,
and DenseNet121 had the shortest training times of 67m,
73m, and 77m, respectively, for an accuracy of more than
55%. The ideal balance between accuracy and training time
was achieved from DenseNet121 by achieving the highest
accuracy and one of the fastest training times. The reason
for DenseNet’s superior performance is that it requires fewer
parameters than traditional CNNs, eliminating the need to
learn redundant feature maps. Moreover, some variations
of ResNet models have revealed that several layers do
not contribute much and can be discarded. Finally, in the
surveyed papers presented in the literature review, there
are no algorithms that have been tested in the PlantDoc
dataset. However, many studies use the PlantVillage dataset.
The algorithms used in the PlantVillage dataset for the
classification category, specifically for RGB images, achieve
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FIGURE 11. Comparison of the validation accuracy of the classification
models.

FIGURE 12. Comparison of the training accuracy of the classification
models.

FIGURE 13. Total training time of each classification model.

a performance accuracy of up to 99% [7], [13], [15].
In contrast, the algorithms utilized in the PlantDoc dataset
reach a maximum accuracy of 60% for the same category.
Moving on to the object detection category, the algorithms
employed in the PlantVillage dataset demonstrate an accuracy
of up to 96% [112], [122], [125]. However, the algorithms
utilized in the PlantDoc dataset achieve a lower accuracy of
up to 56% for object detection. The size and diversity of
the dataset can significantly impact algorithm performance.
The PlantVillage dataset is larger and contains a more diverse
set of images, thus it provides the algorithms with a broader
range of examples to learn from. A larger dataset can help the
algorithms generalize better to new, unseen data. Both in the
classification method and in the object detection method we
use the algorithms that are state-of-the-art and which are also
used in other studies for different datasets.

VI. DISCUSSION
In the field of computer vision, the decision-making process
for selecting appropriate methodologies often takes into

account the trade-offs between classification and object
detection methods. The classification method serves as a
foundational concept in machine learning, providing sim-
plicity and interpretability. It allows for the straightforward
categorization of inputs into predefined classes. Additionally,
its computational efficiency makes it suitable for applications
with limited resources. However, the classification method
does have its limitations. It lacks fine-grained information,
such as spatial details or the ability to handle multiple objects
simultaneously. This makes it less suitable for tasks that
require precise localization or the identification of multiple
objects at once. On the other hand, object detection methods
not only provide class labels but also offer precise spatial
information, which addresses the challenge of localization.
Thesemethods excel in scenarioswheremultiple objects need
to be handled and are versatile for tasks like instance seg-
mentation and keypoint detection. Despite their advantages,
object detection methods are more complex to implement.
They require bounding box regression and labor-intensive
data annotation. Moreover, they often demand significant
computational resources, which restricts their deployment in
real-time and resource-constrained environments. The choice
between classification and object detection depends on the
available data and the specific requirements of the task.

High-performing disease detection algorithms are pivotal
in precision agriculture, aiding early disease identification,
reducing crop losses, and efficient resource allocation. They
precisely detect diseases like fungal infections and viral
outbreaks, minimizing the need for extensive treatments.
Their implementation may require specific hardware, e.g.,
GPUs, and robust computational resources, with infrastruc-
ture and cost considerations being crucial. Moreover, quality
labeled datasets, capturing diverse disease manifestations
and environmental conditions, are vital for accurate model
training. Finally, the integration with existing precision
agriculture systems, through standardized interfaces and
APIs, and user-friendliness, with intuitive interfaces and
interpretable outputs, empowers farmers and practitioners,
fostering trust. In practical terms, several projects exemplify
the application of these advanced algorithms in precision
agriculture:

• PlantVillage [10] utilizes machine learning and com-
puter vision for disease detection in crops. Its user-
friendly mobile application enables farmers to take
pictures of their crops and receive automated disease
diagnoses. This project showcases the practical appli-
cation of classification algorithms for real-time disease
identification, benefiting small-scale farmers.

• John Deere’s See & Spray technology [148] exemplifies
object detection in precision agriculture. It leverages
computer vision and AI to identify and precisely target
individual weeds, reducing the need for indiscriminate
herbicide application. This project illustrates how object
detection algorithms optimize resource usage.

• Blue River Technology [149] employs computer vision
and machine learning for their See & Spray system,
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autonomously identifying and selectively spraying her-
bicides only where needed. This project demonstrates
the practical implications of object detection algorithms
in enhancing the sustainability and cost-effectiveness of
crop management.

• IBM’s Smart Agriculture solution [150] leverages AI
and machine learning to offer insights into crop health
and disease detection. By integrating data from various
sources, including satellite imagery and IoT sensors,
it provides actionable recommendations to farmers.
This project showcases the integration of advanced
algorithms with a data-driven approach in precision
agriculture.

VII. CHALLENGES IN PLANT DISEASE DETECTION
After a detailed review of ML and DL algorithms for
plant disease detection and classification and the detailed
computational study on five state-of-the-art object detec-
tion algorithms for plant disease detection and eighteen
state-of-the-art classification algorithms for plant disease
classification on a widely-used dataset, we have identified
several challenges in practical applications of plant disease
detection:

1) There is a lack of models that handle non-image
data. Most existing classification and object detection
algorithms focus solely on image data, neglecting other
relevant information such as temperature and humidity.
Developing techniques to incorporate non-image data
is essential for more accurate predictions.

2) There are only a few completely annotated open
datasets. Many studies rely on the PlantVillage dataset,
which was obtained in a controlled laboratory setting.
Generating larger datasets under real-world conditions
is crucial. Collaborative efforts are needed to create
representative datasets.

3) Most works treat the disease detection problem as
a classification problem, either binary classification
or multi-class classification. While many works treat
disease detection as a classification problem, more
emphasis should be placed on object detection to
identify both the disease type and affected regions in
the image.

4) Most papers use a single dataset used to train and test
the model. Models trained on a single dataset often
perform poorly on different datasets. It is essential to
consider diverse datasets to improve model robustness.

5) Overreliance on CNN architectures: While CNNs yield
good results, exploring other neural network archi-
tectures like recurrent neural networks can enhance
disease detection methods.

6) Small leaf and early-stage disease recognition: Current
datasets mainly consist of images with large leaves.
Annotating datasets for early-stage disease detection
and small leaf recognition is necessary.

7) Challenges with illumination and occlusion: Existing
algorithms struggle with images under varying lighting

conditions and occlusion. More robust methods are
needed to address these issues.

8) Computational efficiency: Many models are compu-
tationally intensive, hindering real-time applications.
Researchers should focus on improving the computa-
tional efficiency of their models.

VIII. FUTURE DIRECTIONS IN PLANT DISEASE DETECTION
In addition to the challenges mentioned above, there are
several promising directions for future research in plant
disease detection:

1) Integration of non-image data: Develop models that
can effectively integrate non-image data, such as envi-
ronmental factors, into disease detection algorithms to
improve prediction accuracy.

2) Creation of diverse and real-world datasets: Collab-
orate with experts to generate large, representative
datasets under real-world agricultural conditions to
enhance the generalizability of models.

3) Emphasis on object detection: Explore the potential of
object detection methods for predicting plant diseases,
which can provide more detailed information about
disease localization.

4) Robustness across datasets: Develop models that per-
form consistently well across various datasets to ensure
their practical utility.

5) Exploration of alternative neural network architectures:
Experiment with different neural network architectures
beyond CNNs, such as recurrent neural networks,
to uncover their potential in disease detection.

6) Early-stage and small leaf recognition: Annotate
datasets specifically for early-stage disease recognition
and the identification of diseases on plants or leaves
with small sizes.

7) Addressing illumination and occlusion challenges:
Implement techniques to enhance the robustness of
algorithms in the presence of variable lighting condi-
tions and occluded images.

8) Improved computational efficiency: Focus on optimiz-
ing model architectures and algorithms to make them
suitable for real-time applications.

IX. CONCLUSION
The aim of this study is to examine existing research that
utilizes ML and DL techniques in precision agriculture,
with a particular focus on plant disease detection and
classification methods. Additionally, a new classification
scheme is introduced, which categorizes all relevant works
into their respective classes. We separate the studies into
two main categories depending on the methodology that they
use (i.e. classification and object detection). Furthermore,
we present the available datasets for plant disease detection
and classification, and provide details about their classes
and data, and whether the specific dataset is suitable for
classification or object detection.
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TABLE 7. Classification of the related works.
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TABLE 7. (Continued.) Classification of the related works.
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TABLE 7. (Continued.) Classification of the related works.
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TABLE 7. (Continued.) Classification of the related works.

In addition, we perform an extensive computational study
on five state-of-the-art object detection algorithms on the
PlantDoc dataset to detect the diseases on the leaves, and
eighteen state-of-the-art classification algorithms on the
PlantDoc dataset, to predict whether or not there is a disease
in a leaf and which one it is. For the object detection problem,
YOLOv5 is able to achieve a high accuracy not only at
the strict AP metric of the COCO challenge but also in the
detection of small, medium, and large objects in the images.
For the classification problem, the networks ResNet50 and
MobileNetv2 had the most optimal trade-off on accuracy and
training time. ResNet50 achieved a total accuracy of 61.01%
and was trained on about 18 minutes, while MobileNetv2
achieved a total accuracy of 59.74% and was trained for about
16 minutes.

In future work, we plan to study more algorithms for
classification and object detection on more datasets to see
whether the results are consistent across different datasets.
We also intend to study some image preprocessing and data
augmentation techniques to see whether the accuracy of the
algorithms can be improved with these techniques.

APPENDIX
CLASSIFICATION OF THE RELATED WORKS
See Table 7.
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