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Abstract—Weather prediction methods have evolved 

significantly over the past fifty years, including advances in 

numerical weather prediction, high-performance computing, 

mesoscale modeling, assimilation of observations from new 

sources, and ensemble prediction systems. In recent years, 

machine learning techniques, including Long Short-Term 

Memory (LSTM) models, have shown promise in improving the 

accuracy of weather predictions. In this paper, we aim at 

investigating the use of LSTM models to improve the accuracy 

of open weather datasets. Our work was conducted as part of 

the AUGEIAS research project, which aims at capitalizing on 

research results in the field of Internet of Things (IoT) and Low 

Power Wide Area Networks (LPWAN). More specifically, the 

project target is to create a smart ecosystem, utilizing machine 

learning techniques that will enable and optimize the use of 

treated wastewater reuse in agriculture. Our research indicates 

that, within the context of the AUGEIAS project, single-step 

LSTM models outperform multistep models in enhancing 

weather prediction accuracy. 
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I. INTRODUCTION 

Weather forecasting is the process of estimating 
atmospheric conditions, such as temperature, humidity, 
precipitation, wind speed, and direction based on the 
collection and analysis of meteorological observations, for a 
specific location and time in the future [1].  

Accurate weather prediction is of utmost importance in 
various applications, including transportation, energy 
management, and disaster preparedness, to everyday planning 
for individuals and agriculture. Weather predictions are used 
in transportation planning [2], such as aviation, maritime, and 
road transportation, to optimize routes, schedule operations, 
and mitigate potential weather-related hazards. In energy 
management, accurate weather forecasting is essential for 
renewable energy sources [3], such as solar and wind power, 
as it helps in optimizing their generation and distribution. 
Precise weather forecasting has a pivotal role in disaster 
preparedness for severe weather events such as hurricanes, 
tornadoes, floods, and wildfires. Accurate weather forecasts 
enable the timely implementation of evacuation plans and 
preparedness measures, helping minimize these events’ 
impact [4]. Furthermore, weather predictions are used by 
individuals in their daily planning, such as choosing 
appropriate clothing, scheduling outdoor activities, and 
making travel plans [5]. Finally, it plays a crucial role in 

agriculture as farmers need accurate weather information to 
make informed decisions about planting, harvesting, and 
irrigation of crops [6]. 

The AUGEIAS ecosystem utilizes treated wastewater 
from wastewater treatment plants (WWTP) for crop irrigation 
in a safe and cost-efficient way. By using weather forecasting 
to predict crop water needs, the system can optimize irrigation 
and save water resources while still ensuring that crops receive 
the necessary amount of water for healthy growth. Therefore, 
accurate weather forecasting is crucial to the AUGEIAS 
ecosystem to ensure that it can make informed decisions about 
irrigation and meet its goals of optimizing water usage and 
minimizing environmental impact.  

Traditional methods for weather prediction often struggle 
to capture the complex and dynamic nature of weather 
patterns, leading to limited accuracy [7]. In recent years, 
machine learning techniques [8], including Long Short-Term 
Memory (LSTM) models, have shown promise in improving 
the accuracy of weather predictions. AUGEIAS ecosystem, to 
improve the accuracy of localized weather forecasting as 
regional forecasts could be inaccurate for local use, proposes 
a refinement procedure based on LSTM modeling. 

The rest of this paper is organized as follows: the related 
work is presented in Section II. In Section III, the system 
architecture of AUGEIAS ecosystem is described. The open 
weather sources and the data preprocessing are analyzed in 
Section IV as well as the techniques and system 
implementation are described. Then, in Section V we present 
the evaluation of the proposed procedure. Finally, in section 
VI, we make some concluding remarks. 

II. RELATED WORK 

Most weather forecasting operations rely on the Numerical 
Weather Prediction (NWP) method, which utilizes a complex 
set of non-linear equations. However, this forecasting 
approach encounters numerous challenges, such as errors in 
estimation caused by the inherent complexities of the 
atmosphere and the significant sensitivity of model results to 
even slight differences in initial weather conditions [8]. 

European Centre for Medium-Range Weather Forecasts 
(ECMWF) [9] and National Oceanic and Atmospheric 
Administration (NOAA) [10] which are deeply engaged in 
cutting-edge weather forecasting research, are planning the 
utilization of contemporary machine-learning techniques. 



Their comprehensive plans for the near future serve as a 
reliable indicator of the anticipated developments in the field. 

Detailed evaluations of machine learning algorithms, 
specifically those used in atmospheric science which is a 
crucial subset of artificial intelligence techniques can be found 
in specialized articles [11]–[13]. Supervised and unsupervised 
techniques can be applied in machine learning. 

Supervised machine learning techniques considered 
highly relevant in the field of atmospheric science, leverage 
labeled data, when accessible, to train a mapping function that 
establishes a relationship between input data and output 
predictions. This trained model can be tested on a separate 
dataset, referred to as the testing dataset, to evaluate its 
performance. Upon satisfactory results, the trained model can 
be utilized for tasks such as classification or regression in 
various applications.  

Decision Trees [14], [15], Support Vector Machines [16], 
Artificial Neural Networks [17], including Long Short-Term 
Memory networks[18], [19], and Deep Learning [20] are 
popular methods used in this field. These techniques can 
handle complex data relationships, capture intricate patterns, 
and process large and complex datasets. By using these 
techniques, atmospheric scientists can improve their 
understanding and prediction of atmospheric processes and 
phenomena. 

Unsupervised learning, as the second group of machine 
learning techniques, is a domain where algorithms do not have 
the luxury of labeled data for training. Instead, they must rely 
on alternative approaches to segment a given dataset or reduce 
its dimensions. In this context, atmospheric scientists have 
found certain methods to be particularly popular and relevant.  

In atmospheric science, two commonly used unsupervised 
learning methods are K-means Clustering [21] and Principal 
Component Analysis (PCA) [22]. K-means is used to partition 
a dataset into clusters based on similarity or distance 
measures, while PCA is a dimensionality reduction technique 
that identifies important features or principal components in 
high-dimensional data. 

Open weather datasets refer to publicly available datasets 
that provide information on weather conditions, such as 
temperature, humidity, wind speed, and precipitation. These 
datasets are often used by researchers, businesses, and 
individuals for a wide range of applications, including 
agriculture, transportation, energy management, and disaster 
preparedness. Examples of open weather datasets include 
OpenWeatherMap [23] and AccuWeather [24].  

These datasets have limitations that can affect the accuracy 
of their predictions [25]. These limitations include the use of 
different data sources and collection methods, the inability to 
capture small-scale weather phenomena, and the reliance on 
historical data-based models that may not reflect current 
weather patterns or sudden changes in weather conditions. 
Additionally, open weather datasets may not provide complete 
and up-to-date information on weather conditions, limiting 
their accuracy and usefulness. 

Weather stations can provide more accurate and localized 
weather data than open weather services. Incorporating data 
from weather stations into machine learning models can help 
address the limitations of open weather datasets and improve 
prediction accuracy by capturing the local variability and 
adapting to changing weather patterns. 

Our approach builds upon existing research and 
knowledge and utilizes machine learning models in 
combination with weather station data to refine and adjust 
forecasts obtained from open weather services like 
OpenWeatherMap and AccuWeather. Our focus is not on 
weather forecasting, but rather on improving the accuracy and 
reliability of the forecasts obtained from these external 
services through fine-tuning, refinement and local adjustment 
using machine learning techniques. 

III. SYSTEM ARCHITECTURE 

The AUGEIAS ecosystem is designed to tackle the 
challenge of sustainable water management through the 
reduction of water wastage and the utilization of treated 
wastewater in agriculture. This smart ecosystem incorporates 
IoT and Low Power Wide Area Network (LPWAN) for real-
time data collection from end devices installed in the 
Wastewater Treatment Plant (WWTP) and the field. 
Specifically, the field is equipped with a meteorological 
station, systems for measuring soil parameters, and the 
Normalized Difference Vegetation Index (NDVI). 
Additionally, a system for measuring the quality 
characteristics of treated wastewater has been installed at the 
output of the WWTP. 

The IoT ecosystem [26] utilizes the Long Range Wide 
Area Network (LoRaWAN) and has the potential to support 
NB-IoT networks for transmitting IoT device data. In the 
context of the ecosystem, it has been developed an energy-
efficient network protocol and a data management platform to 
gather, analyze, and process information from sensors 
deployed in the field and the WWTP. Additionally, the 
platform integrates data from external systems and open data, 
such as meteorological data, in the cloud and correlates it with 
IoT data. 

The AUGEIAS IoT Data Platform constitutes a data 
management system that enables the real-time processing and 
analysis of collected data. The platform supports both push 
and pull mechanisms for data collection, and the collected data 
can be filtered and processed based on user-defined data 
models. The push mechanism is an HTTP endpoint that allows 
sources such as sensors to push their data to the platform, 
while the pull mechanism retrieves data from sources that 
expose their data through an API, such as open data. Finally, 
the IoT data platform provides several functionalities, 
including the ability to match and compare data to verify 
specific conditions or requirements, send notifications or 
perform actions, and forward data to other applications. 

The primary goal of the AUGEIAS is to optimize the 
utilization of treated wastewater in agriculture for irrigation by 
fulfilling the crop's water needs, conserving the available 
water resources, and minimizing the environmental impact. 
This is accomplished through advanced machine learning 
techniques and data analytics that enable predictions for 
assessing crop water needs as well as the risk of using treated 
wastewater for irrigation based on its quality characteristics. It 
also determines the appropriate mixing ratio of freshwater and 
treated wastewater, as well as dynamic pricing of treated 
wastewater. 

AUGEIAS calculates the crop water needs and utilizes 
them along with weather forecasts, obtained from open 
sources and their reliability, to implement predictive irrigation 
mechanisms that optimize the management of both 
conventional and treated wastewater for irrigation purposes. 



Open meteorological data is being leveraged to enhance the 
accuracy of crop irrigation requirement predictions. 
Specifically, by utilizing open meteorological data, the 
irrigation plan and crop water needs prediction are optimized. 
This enables farmers to have better knowledge about the water 
requirements of their crops, allowing them to make informed 
decisions about the optimal use of water resources. 

A. Open Weather Data 

In the context of weather forecasting, there are several 
sources of open data that can be used for various purposes, 
including: 

1) Global Forecast System (GFS) [27]: A numerical 

weather prediction model operated by NOAA, that offers 

open data in the form of weather model outputs, including 

forecasts of temperature, precipitation, wind, and other 

weather variables.  

2) ECMWF [28]: An organization that offers access to a 

wide range of weather and climate data, including 

observations, forecasts, reanalysis data, and more. 

3) OpenWeatherMap: A commercial weather service 

provider that also gives free access to a limited set of weather 

data, including current weather conditions, forecasts, and 

historical data through its OpenWeatherMap API. 

4) AccuWeather: A commercial weather service provider 

that offers weather forecasts, radar maps, satellite imagery, 

and other weather-related content for global locations. They 

provide weather information through their website, mobile 

app, and other platforms.  

Both OpenWeatherMap and AccuWeather use multiple 
data sources, including weather stations, satellites, and 
numerical weather prediction models, to gather weather data. 
OpenWeatherMap uses a combination of multiple data 
sources and numerical weather prediction (NWP) models to 
provide weather forecasts and publishes some limited 
information about accuracy and quality of the predictions. 
Accuweather uses real-time data, a combination of more than 
190 forecast models and proprietary AI algorithms to provide 
forecasts. 

AUGEIAS utilizes datasets from OpenWeatherMap and 
AccuWeather for weather forecasting purposes. These 
services were used because they provide data that are within 

the scope of the AUGEIAS requirements since the use of GFS 
or ECMWF would require regional models as MM5 [29] and 
WRF [30] to generate forecasts specific to a particular 
location.  

Fig. 1 displays the varying values of temperature, 
humidity, and wind speed between the two open datasets. 
AUGEIAS assess their reliability by comparing them against 
the factual data obtained from the agrometeorological station 
situated in the field [31].  In order to address this issue, an 
algorithm was created to locally adjust the open weather data 
by incorporating data obtained from an agrometeorological 
station situated in the field of the pilot application. 

 

Fig. 1. OpenWeatherMap vs AccuWeather value differences. 

Thus, a machine learning model based on LSTM networks 
is proposed, as shown in Fig. 2. The LSTM is executed to 
locally adjust forecasts of temperature, humidity, wind speed, 
precipitation, solar irradiance, and evapotranspiration. The 
differences for each target variable between the actual value 
from the agrometeorological station that is installed in the 
field and the value that the open weather source provides is 
used as input to train the model. The LSTM network, after the 
necessary training, outputs a set of difference forecasts for the 
next few hours. These differences are applied numerically to 
the open data forecasts, thereby allowing the Accuweather and 
OpenWeatherMap forecasts to be adapted to local conditions. 
The improved weather forecasts could be used by the 
irrigation optimization algorithm and by the farmers 
themselves.

 

Fig. 2. LSTM Neural Network Architecture.

 

 



IV. METHODOLOGY 

A. Data Preprocessing 

In our approach we collected data from OpenWeatherMap 
and AccuWeather services, with a starting date of 22-09-2022 
and 18-01-2022 respectively, provided at an hourly resolution. 
These datasets were used in conjunction with weather station 
data, as shown in Fig. 3 in our study, to adjust and refine 
forecasts using machine learning networks. 

During the initial step of data preprocessing, the datasets 
from each source were carefully examined for any anomalies 
or inconsistencies. Any significant parts of data that were 
found to be anomalous were excluded to ensure the integrity 
and quality of the data used for training and evaluation. This 
step is crucial to ensure that the model is trained with reliable 
and accurate data, which is essential for generating accurate 
results. 

Next, missing values and incomplete hourly data in the 
datasets were checked. Missing values can occur due to 
various reasons such as sensor failures, data transmission 
errors, or gaps in the data collection process. To address the 
missing hours, we employed resampling techniques in 
conjunction to forward and back filling methods, which are 
available in the popular data manipulation library, Python 
Pandas. Forward filling involves propagating the last known 
value forward to fill the missing values, while back filling 
involves propagating the next known value backward to fill 
the missing values. These techniques help to interpolate or fill 
in the gaps in the datasets, ensuring that the data is complete 
and suitable for training the machine learning model. 

Fig. 4 showcases the cleaned and processed dataset from 
OpenWeatherMap, and Fig. 5 displays the cleaned and 
processed dataset from AccuWeather. These figures include 
plots or visualizations of various meteorological parameters 
such as temperature, humidity, precipitation, and wind speed 
depending on the specific data used in the study. 

The resulting data created a smaller number of data points 
compared to the original datasets or the meteorological station 
data. This is acknowledged as a limitation of the modeling 
since the model may face challenges in capturing complex 
temporal patterns and making accurate predictions. Limited 
data points may result in reduced model performance, 
increased vulnerability to overfitting, or reduced 
generalization ability of the model. 

 

 
Fig. 3. Available Meteo Station Data 

 
Fig. 4. Available OpenWeatherMap Data 

 
Fig. 5. Available AccuWeather Data 

In the subsequent step, the mathematical difference 
between the open data and the corresponding meteorological 
station data was calculated for each variable. New datasets 
were then generated to incorporate the values from the open 
dataset, meteorological station data, and the calculated 
differences for each variable. An example of such a dataset is 
depicted in Fig. 6. 

 
Fig. 6. Example of generated dataset (Humidity) 

Table I presents the datasets created for each variable, 
which incorporate data obtained from both open data sources 
and available meteorological station data. 

 

 

 

 



TABLE I. GENERATED DATASETS 

Generated 

Datasets 
OpenWeatherMap Accuweather 

Temperature X X 

Humidity X X 

Wind Speed X X 

Precipitation  Χ 

Solar Irradiance  X 

Evapotranspiration  X 

B. Techniques and System Implementation 

The development of the LSTM model involved several 
steps. Firstly, the dataset containing the open data variable and 
meteorological station measurements, along with their 
differences, was prepared for training. The data was split into 
training and testing sets, with 80% of the data allocated for 
training and the remaining 20% for testing. 

The purpose of splitting the data into training and testing 
sets is to ensure a reliable and unbiased evaluation of the 
LSTM model's performance. By allocating a significant 
portion of the data for training, the model can learn from the 
underlying patterns and relationships in the data, enabling it to 
make accurate predictions during the testing phase. This setup 
allows for robust evaluation of the model's performance and 
generalization of unseen data. 

As part of the data preparation for LSTM modeling, the 
time series were transformed into sequential format to capture 
temporal dependencies and patterns and allowing the model to 
leverage its recurrent architecture and capture long-term 
dependencies in the data. This involved creating input-output 
pairs where the input represents the independent variables or 
features, and the output represents the dependent variable or 
target that the model aims to predict. 

Before feeding the data into the LSTM model, they were 
scaled using the MinMax scaler from the popular scikit-learn 
library. The MinMax scaler transformed the data by scaling it 
to a specific range, typically between 0 and 1, ensuring 
consistency in the scale of the data. Importantly, the scaling 
parameters were calculated exclusively from the training data 
to prevent data leakage, as using information from the testing 
data could introduce bias into the model's performance 
evaluation. 

The LSTM models were constructed using the 
TensorFlow library, a widely used deep learning framework. 
The architecture of the models, including the number of 
LSTM layers, number of hidden units, and activation 
functions, were carefully defined as critical hyperparameters. 
Experimentation and model evaluation were conducted to 
determine the optimal values for these hyperparameters. The 
number of LSTM layers and hidden units were chosen to 
strike a balance between capturing complex patterns in the 
data and mitigating the risk of overfitting, which occurs when 
the model becomes too complex and performs poorly on 
unseen data. 

Activation functions, including sigmoid, tanh, and ReLU, 
were tested to capture complex patterns in the data, with the 
final choice depending on the nature of the data and problem. 
Other hyperparameters, including learning rate, batch size, 
and dropout rate, were fine-tuned through experimentation to 

optimize model performance for the specific dataset and 
problem. 

Based on the analysis and comparison of different models, 
it was concluded that a model with a small number of layers, 
an input sequence length of 72 hours, and 50 hidden units 
resulted in superior accuracy and reliability in forecasting the 
target variable. A graphical representation of an example 
prediction for the temperature difference between the 
OpenWeatherMap data and meteorological station data can be 
observed in Fig. 7. 

 
Fig. 7. Example prediction of Temperature Difference utilizing 
OpenWeatherMap and Meteorological Station Data. 

 Finally, the model was utilized to predict each target 
variable for the next hour. This forecasted value was then 
applied to the new incoming data from OpenWeatherMap or 
AccuWeather services to generate a corrected value. An 
example of the corrected values is presented in Fig. 8. This 
corrected value considers the model's prediction and the real-
time data, providing an updated and refined estimate of the 
weather variable for the next hour. 

 
Fig. 8. Temperature. (OpenWeatherMap raw, corrected and 

Meteorological Station values) 

The extension of the previous procedure involved training 
an LSTM model for multi-step forecasting [32], where the 
model was modified to predict the differences for multiple 
hours ahead, instead of just the next hour. 

The data preprocessing steps, such as handling missing 
values, normalizing the data, and splitting into training and 
testing sets, remained similar to the single step forecast. 

 

 



However, the target variable for training the model was 
adjusted to represent the differences for multiple hours ahead. 

V. EVALUATION 

The initial phase of the model evaluation involved the 
development of a baseline model utilizing the ARIMA 
methodology [33]. This was accomplished with the aid of the 
pmdarima package, which incorporates the auto-ARIMA 
function. The function efficiently determines the best 
parameters for an ARIMA model. It uses differencing tests to 
establish 'd' and fits models within specified ranges, aiming to 
minimize a chosen information criterion for optimal model 
efficiency [34].  

The predicted variables, which as noted before is the 
calculated difference of the open dataset to the meteorological 
station value, were applied to each dataset and variable. The 
Root Mean Squared Error (RMSE) was calculated for each 
dataset to quantify the model's prediction accuracy. These 
values, shown in Table II, provide a numerical measure of the 
model's forecasting precision. 

In the second step of LSTM model evaluation, we 
employed the available testing datasets for preliminary 
analysis. We used these datasets to evaluate the trained LSTM 
model's ability to accurately predict the target variable based 
on the input data. The evaluation process involved feeding the 
testing datasets into the LSTM model and comparing the 
model's predictions with the actual values from the testing 
datasets. Finally, we analyzed the results of this evaluation to 
determine the performance and effectiveness of the LSTM 
model in generating accurate predictions for the target 
variable. The RMSE for each predicted variable is presented 
in Fig. 9. 

 

Fig. 9. RMSE for LSTM model predictions for each variable. 

It was observed that while the RMSE value for 
precipitation prediction was low, indicating relatively 
accurate predictions in terms of magnitude, the model still 
failed to capture the actual trend correctly. This is indicated by 
the negative predictions Fig. 10, which suggest that the model 
was underestimating the precipitation values. This 
discrepancy between the RMSE value and the actual trend 
may indicate a limitation of the LSTM model in capturing the 
complex dynamics of precipitation, such as sudden changes or 
non-linearity in the data. 

 

Fig. 10. Predicted Precipitation Difference. (AccuWeather) 

After applying the predicted value differences to the 
corresponding datasets, the RMSE was calculated for both the 
original data, as well as the corrected data. The results of this 
evaluation are presented in Table II for the AccuWeather 
dataset and in Table III for the OpenWeatherMap dataset. This 
evaluation suggests that the single-step LSTM model 
improves upon the baseline model's performance. The last 
column of these tables presents the RMSE for the ARIMA 
baseline model after the application of corrections. 

TABLE II. ACCUWEATHER VARIABLE RMSE BEFORE AND AFTER APPLIED 

CORRECTIONS 

Accu 

Weather 

RMSE 

Before 

corrections 

After 

corrections 
Difference ARIMA 

Temperature 2.496 1.090 1.406 1.151 

Humidity 10.679 4.927 5.752 5.379 

Wind Speed 9.387 1.327 8.060 1.863 

Precipitation 0.625 0.641 -0.016 0.978 

Solar 
Irradiance 

116.505 84.247 32.258 100.589 

Evapo-
transpiration 

0.065 0.055 0.010 0.061 

TABLE III. OPENWEATHERMAP VARIABLE RMSE BEFORE AND AFTER 

APPLIED CORRECTIONS 

Open 

Weather 

Map 

RMSE 

Before 

corrections 

After 

corrections 
Difference ARIMA 

Temperature 2.903 1.303 1.600 1.456 

Humidity 12.162 5.462 6.700 6.014 

Wind Speed 1.433 0.488 0.945 0.592 

 
The implementation of multistep one-shot LSTM in 

forecasting future time series data has been observed to exhibit 
reduced accuracy compared to single step forecasting as 
shown in Table IV and Table V. As previously mentioned, the 
final column in these tables displays the RMSE values for the 
ARIMA model, computed post-correction. Furthermore, the 
multistep model was found to be unsuccessful in enhancing 
the performance of the baseline model. Despite the potential 
advantages of predicting multiple time steps in a single 
prediction, such as increased efficiency, there were notable 
challenges associated with this approach.  

 

 



One of the primary challenges was the potential 
compromise in prediction accuracy due to the absence of 
model updates between the predicted time steps. This 
limitation resulted in the model's inability to adapt to changing 
patterns in the data, leading to diminished accuracy in long-
term predictions. Additionally, the complexity of capturing 
and modeling dependencies between multiple future time 
steps in a single prediction was heightened, further impacting 
the accuracy of the results. Further research and 
experimentation may be necessary to optimize the 
performance of this approach in diverse forecasting. 

In our research, we evaluated the computational efficiency 
of the ARIMA, single-step LSTM, and multistep LSTM 
models, considering their training times and memory usage 
for each target variable. The ARIMA model, factoring in the 
time for identifying the optimal parameters, averaged 
524377ms and 250 MB of memory. The single-step LSTM 
model, despite consuming more memory (400 MB), was 
faster, requiring only 73859ms on average. The multistep 
LSTM model was the most resource-intensive on average, 
requiring 721736ms and 550 MB of memory. Despite its 
higher memory usage, the single-step LSTM model exhibited 
superior computational efficiency. These computations were 
conducted without the use of a Graphics Processing Unit 
(GPU), which could potentially improve efficiency. 

TABLE IV. ACCUWEATHER VARIABLE RMSE BEFORE AND AFTER APPLIED 

CORRECTIONS 

Accu 

Weather 

RMSE 

Before 

corrections 

After 

corrections 
Difference ARIMA 

Temperature 2.861 2.625 0.236 1.151 

Humidity 12.270 10.242 2.028 5.379 

Wind Speed 8.847 5.107 3.740 1.863 

Precipitation 0.419 1.117 -0.698 0.978 

Solar 
Irradiance 

100.400 100.400 0.000 100.589 

Evapo-
transpiration 

2.861 2.625 0.236 0.061 

TABLE V. OPENWEATHERMAP VARIABLE RMSE BEFORE AND AFTER 

APPLIED CORRECTIONS 

Open 

WeatherMap 

RMSE 

Before 

corrections 

After 

corrections 
Difference ARIMA 

Temperature 2.963 2.933 0.030 1.456 

Humidity 11.928 10.582 1.346 6.014 

Wind Speed 1.325 0.869 0.456 0.592 

VI. CONCLUSION AND DISCUSSION 

Weather forecasting plays a critical role in various 
domains such as transportation, energy management, disaster 
preparedness, agriculture, and everyday planning. The 
AUGEIAS ecosystem leverages open weather data from 
trustworthy sources like OpenWeatherMap and AccuWeather 
to improve irrigation algorithms. However, disparities in data 
sources, data collection methods, data processing techniques, 
and forecast algorithms may result in divergent values for 
common weather variables as compared to meteorological 
station data. 

Our approach builds upon existing research and 
knowledge, utilizing machine learning networks that 
incorporate weather station data to refine and adjust forecasts 
obtained from external weather services, aiming for enhanced 
accuracy and reliability. The data from OpenWeatherMap and 
AccuWeather services, along with meteorological station 
data, were curated and preprocessed to train and evaluate 
machine learning models.  

The model exhibited satisfactory accuracy in predicting 
the next hour for most variables. However, it was observed 
that the model faced challenges in making accurate 
predictions for certain variables, such as precipitation 
difference. This suggests that the model may not be as reliable 
in forecasting certain variables compared to others, and further 
refinement and improvement may be necessary to enhance its 
accuracy for precipitation predictions. 

The multi-step forecasts and subsequent corrections were 
found to be less accurate compared to single-step forecasts. 
This implies that the model's performance in predicting 
multiple time steps ahead may not be as reliable as its 
performance in predicting just one time step ahead. The 
accuracy could have been influenced by various factors, 
including changes in weather patterns, spatial and temporal 
variability of weather variables, and the influence of local 
topography or microscale weather phenomena. Additionally, 
limitations in data quality or availability, model architecture, 
and training techniques may have impacted the accuracy of 
the multi-step forecast. It's crucial to consider these factors 
when interpreting the results of the multi-step forecast. 

It's worth noting that weather forecasting, particularly for 
variables like precipitation, is inherently complex and 
challenging due to the dynamic and unpredictable nature of 
weather systems. It's common for models to have limitations 
and encounter difficulties in accurately forecasting certain 
weather variables, especially over longer time horizons.  

To enhance the accuracy of the model, future work could 
involve exploring alternative algorithms, further adjusting 
hyperparameters, and incorporating additional features or data 
sources. Variable-specific forecasting approaches or ensemble 
methods, along with considering external factors such as 
climate change, could also be explored. Thorough evaluations, 
sensitivity analyses, and cross-validation can aid in 
identifying model strengths and weaknesses for further 
refinement. 

Finally, the use of GPUs could be explored for potential 
computational efficiency gains and larger datasets could offer 
deeper insights into computational costs, thereby enhancing 
model robustness and generalizability. 
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