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ABSTRACT 

In this work we design and implement a Neural Network that can 

identify recurrent patterns in various metrics which can be then 

used for cellular network traffic forecasting. Based on a custom 

architecture and memory, this Neural Network can handle 

prediction tasks faster and more accurately in real life scenarios. 

This approach offers a solution for service providers to enhance 

cellular network performance, by utilizing effectively the available 

resources. In order to provide a robust conclusion about the 

performance and precision of the proposed Neural Network, 

multiple predictions were made using the same data-set and the 

results were compared against other similar algorithms from the 

literature. 
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1 Introduction 

Traffic forecasting is very important for cellular networking 

service providers, in order to strategically manage their resources 
in an efficient and future proof way. Resources like available 

energy and link bandwidth are becoming more and more valuable, 

due to the exponential increase in cellular data usage. Due to the 

explosively growing demand for radio access, there is an urgent 

need to design a traffic-aware energy-efficient networking 

architecture [1].  

There have been several works in the past that study the 
subscriber generated traffic forecasting in cellular networks. To 

understand the network usage pattern and subscriber behavior, a 

large scale comprehensive prediction algorithm comparison and 

analysis of a variety of metrics must be performed. Such a 

detailed performance and accuracy study of data traffic 

forecasting in cellular networking environments is still not 

available. 

Owing to the flexibility of resource allocation and its considerable 

agility to meet explosively increasing traffic demands [2], traffic-

aware networks could be the most suitable future cellular 

architecture [1], in which traffic prediction acts as one of the 

dominant factors for on-demand network management [3]. Due 

to the rich multi-fractal behavior of cellular Internet traffic [4], 

non-linear forecasting techniques like Artificial Neural Networks 

(ANNs), can easily outperform model based techniques. Instead 
of modelling the given data, ANNs are used as an alternative 

mathematical tool for classification, pattern recognition, 

predictions and other tasks performed in auto-correlated data. In 

particular, the Long Short-Term Memory (LSTM) Recurrent 

Neural Network (RNN) architecture remembers values over 

arbitrary intervals. LSTM is well-suited to classify and predict 

time series given time lags of unknown size and duration between 

important events. Relative insensitivity to gap length gives an 

advantage to LSTM over alternative RNNs, hidden Markov 

models and other sequence learning methods.  

A big advantage of applying LSTM RNN in modern cellular 

networking architectures is that part of their computation can be 

offloaded to a centralized system. Since a server can perform the 
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training phase, all base stations can perform predictions in simple 

embedded hardware, allowing service providers the option to 
completely automate strategic resource planning in base stations 

themselves. Obviously, this is energy, resource and cost efficient 

way for service providers to address the problem of resource 

planning and allocation. In this work, we analyze and forecast 

subscriber generated Internet traffic data, collected by a 4G 

network. Experimental results will be presented and discussed.  

The rest of this paper is organized as follows. Section 2, presents 

related research in traffic modeling and forecasting as well as on 

the basics of Long-Short Term Memory Recurrent Neural 

Networks and their advantages for being used in cases like the one 

presented in this work. Section 3, presents the design and 

implementation choices for the realization of the traffic 

forecasting platform. Section 4, gives the performance results of 

the proposed forecasting scheme over real data and a comparison 

with similar approaches from the literature. Finally, Section 5 

concludes our work. 

2 Related Work 

Traffic forecasting in cellular networks is becoming increasingly 

important, as the rapid demand for radio resources requires an 

energy-efficient, network-driven architecture. Indeed, traffic 

forecasting allows for a more efficient configuration and 

management of cellular networks [3]. 

2.1  Traffic Modelling and Forecasting 

The authors in [5] study the behavior of subscribers regarding 

their generated traffic using data collected over three weeks at 

hundreds of base stations. In particular a call arrival model and a 

random walk model are derived that directly model the aggregate 

load. In [6] the authors study the predictability of user mobility 

and find a 93% potential of predicting a user’s mobility pattern 

due to its inherent regularity. In [7] the authors provide an 

extensive analysis of network resource usage and subscriber 

behavior. It is shown that there exists significant traffic imbalance 

among both users and base stations. Also a big portion of the 

subscribers have limited mobility which also exhibits periodicity 

regarding the places they visit on certain time of the day. In [8] 

the authors deal with the spatial distribution of the traffic density 

and a model is proposed that generates large-scale spatial traffic 

variations that encompasses the characteristics of log-normally 
distributed and spatially correlated cellular traffic.  

The aforementioned results can be employed as training data for 

forecast models and similar mechanisms. Furthermore energy 

efficiency can be enhanced if some Base Stations or elements of 

Base Stations are tuned into sleeping mode when the predicted 

traffic is negligible, while other Base Stations may expand their 

coverage in a coordinated manner [9]. In [10] some legacy time-

series forecasting models are presented that due to the lack of a 

dynamic learning mechanism, cannot fit data sequences very well 

in particular for irregular or non-periodic time-series. In direct 

comparison, our proposed scheme is capable to adapt accordingly 

to the given data and it can outperform competing forecasting 

models, by range and accuracy as it will be shown subsequently. 
Finally in [11], traffic-aware energy-efficient radio access 

networking is proposed that can adapt to traffic fluctuations. 

However, this proposal does not utilize any forecasting model and 

is studied entirely on theoretical modeling and simulation.  

Time series forecasting methodologies used for traffic prediction, 

fall into two main categories and the combination of them: 

Linear, Non-Linear or Hybrid models. In the linear models family 

we have AutoRegressive Moving Average (ARMA) [12] and its 

variants i.e. AutoRegressive Integrated Moving Average 

(ARIMA), Fractional AutoRegressive Integrated Moving Av- 

erage (FARIMA) [4] and Seasonal AutoRegressive Integrated 

Moving Average (SARIMA). The Non-Linear models family 

includes the Generalized AutoRegressive Conditional 

Heteroskedasticity (GARCH) Model, the Artificial Neural 

Networks (ANNs) [13] and the Support Vector Machines (SVM) 

[14].  In particular the authors in [14] employ the Support Vector 

Machine (SVM) method to predict small-scale network traffic. 

However, SVM is very expensive in terms of time and memory. 

They mainly use data during a short range of time near a predicted 

time point Finally we have hybrid models like the 

ARIMA/GARCH which aim in combining advantages from both 

families of models [15]. 

In summary traffic forecasting is based on the periodic similarity 
of traffic itself and requires a certain amount of previous 

information to reduce uncertainty. 

2.2  Long Short-Term Memory Recurrent 
Neural Networks 

Studies show that non-linear prediction based on Neural Networks, 

is more appropriate for network traffic forecasting, than linear 

prediction models [13]. In general, Neural Networks are widely 

used for modeling and forecasting based on previously observed 

data and not on a detailed mathematical model. The architecture 

and parameters of the neural network are determined solely by 

the data-set. Neural networks consist of interconnected nodes, 

called neurons. Each connection is characterized by a weight. The 

neural network comprises several layers of neurons i.e. a) an input 

layer, b) one or more hidden layers and c) an output layer. 

The most popular neural network architecture is the feed- forward 

flow, in which the information moves through the network only 

forward, in direction from the input to the output layer. The use of 

a neural network as a forecasting tool involves two phases: i) the 

training phase and ii) the forecasting phase.  

Through the training phase, the training data-set is presented in the 

input layer and the neural network parameters are dynamically 

adjusted in order to achieve the desired output value for the input 

set. The most commonly used learning algorithm is the back 

propagation algorithm, where weights are continuously adjusted 

until the output error falls below the predetermined value [16]. 

The forecasting phase represents the testing of the neural network. 

A new input, not included in the training set, is presented to the 
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neural network and the output is calculated, thus predicting the 

outcome of the new input data. 

A Recurrent Neural Network (RNN) is a class of Neural Networks 

(NN) where connections between units form a directed graph 

along a sequence. RNNs can use their internal state to process 

sequences of inputs. RNNs are able to learn temporal 

dependencies in the input data, without the need to specify a fixed 

set of lagged observations. A Long Short-Term Memory (LSTM) 

Network is a type of RNNs that addresses the long-term 

dependency problem by remembering information for long time 

periods. LSTM Networks are composed of LSTM units and each 

LSTM unit is composed of: 1) a  Cell, 2) an Input Gate, 3) an 

Output Gate and 4) a Forget Gate. 

The Cell is responsible for remembering values over arbitrary 

time intervals. Input, Output and Forget Gates compute an 

activation function of a weighted sum. They act as regulators of 

the flow of values that goes through the connections of the Neural 

Network. The addition of sequence is a new dimension to the 

function being approximated. Instead of mapping inputs to 

outputs alone, the network is capable of learning a mapping 

function for the inputs over time to an output. The structure of the 

typical LSTM unit is shown in figure 2. 

 

Figure 1: Long Short-Term Memory Unit Structure 

Due to the nature of cellular networks, an enormous data-set of 

measurements can be extracted. That data-set can be used by a 

single or layers of multiple Neural Networks in order to harvest 

more detailed and complex conclusions about subscribers’ activity 

and usage trends. The most significant factor to enable this 

advanced prediction functionality, is an appropriate training set 

[13]. A small training set can result into a prediction model that 

cannot extend over new unseen data [17]. On the other hand, a 

large training set can result into a more accurate prediction model 

at the expense of a prohibitively high computational cost [13]. 

Hence, there is a trade-off concerning the selection of the training 

set for the prediction model. 

Linear time-series prediction algorithms like ARIMA and its 

extensions, seem to be affected by unwanted artifacts in the series 

[18]. These algorithms use a technique called moving average to 

calculate the trend in the series and this is directly projected to the 

forecasted results. Due to their ability to memorize and forget 

weights [17] according to their activation function, LSTMs can 

forget and re-evaluate their weights according to the correlation 
with the rest of the series. This ability makes LSTM RNNs more 

versatile and resistant to errors, noise and sample gaps. Since 

unwanted artifacts in the series can cause forecasting algorithms 

to lose accuracy, data filtering is required before forecasting. 

Consequently such a provision should be carefully incorporated in 

the respective forecasting scheme. 

3  Neural Network Traffic Forecasting Platform 

The main concept behind using Artificial Neural Networks 

(ANNs) for traffic forecasting, is a centralized overlying system 

over the current cellular network infrastructure. Consider an 

Intelligent Agent module located inside every Base Station, that is 

responsible for monitoring the Base Station’s operations and store 

all necessary data, which will be subsequently used for the 

training process of the Neural Network. 

Then, based on the prediction model, the Intelligent Agent 

exchange sections of it’s extracted measurements to a centralized 

system, a server, for the training phase and gets back the trained 
model. The Intelligent Agent data exchange should take place 

only when the network is underutilized, most likely at dawn. 

Some times, due to congestion or malfunction, the Intelligent 

Agent could perform the training phase itself, but with the trade-

off lower accuracy. This approach allows for fast training and 

faster prediction, by offloading the resource demanding task of the 

training phase to proper centralized hardware and leaves 

forecasting phase to the energy efficient Intelligent Agent of the 

base station. Base stations can become completely autonomous as 

the Intelligent Agent estimates the forthcoming needs for 

resources and proactively requests their commitment from the 

back-haul network. 

Since this proposed architecture is built as an overlying 

technology, there is no need to change the structure of the existing 

network in order to implement such a system. The hardware 
needed for the proposed traffic forecasting system, consists of the 

following: 

A. Intelligent Agents are small network devices, that 

collect measurements and execute the training phase of 

neural network. They use the back-haul network to send 

collected values to the Service Provider for the training 

phase and get back the trained model for instantaneous 
and energy efficient forecasting. 

B. Centralized Intelligent System is a server, spatially 

located near the Service Provider and is used solely for 

the training phase of the Neural Network. Powerful and 

efficient, GPU or CPU, hardware can be used to fit the 

Neural Network of every Intelligent Agent quickly and 

transfer the trained model back to them for the next 

phase. 

In the event of failure, Intelligent Agents can resolve the problem 

via certain actions taken autonomously. On the other hand 
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transition to that model is fast, efficient and safe with respect to 

the current network. 

An initial statistical processing of the collected data and the 

subsequent selection of the training set can efficiently improve the 

performance of the prediction model. In similar literature [19], the 

authors use the notion of the Relative Standard Deviation
 
(RSD) 

so as to depict and exploit the statistical properties of the collected 

data. The RSD is a measure of precision regarding the collected 

data and is defined as: 

   100% 



RSD    (1) 

Where σ is the standard deviation and µ is the average value of the 
data set. Practically, small RSD for a set of collected data implies 

that the measurements are averaged around their mean value, 

while a high RSD refers to collected data with great variations. 

The former may correspond, for example, to busy times in a 

crowded cell where the bandwidth is shared among all the 

subscribers, while the latter may refer to quiet times where a small 

amount of subscribers exploits a large portion of the available 

bandwidth [19]. We split our data-set in even blocks and select the 

one with the lowest Relative Standard Deviation. This method 

produces, in most cases, higher forecasting accuracy than the 

standard way of training the Neural Network with the whole data-

set. Multiple libraries were used to reduce the complexity of 

building the proposed Neural Network. The most important are 

listed below: 

1) TensorFlow: An open-source software library for Machine 
Intelligence made by Google. 
2) Keras: A high-level neural networks API, capable of running 
on top of TensorFlow, CNTK or Theano. 
3) Pandas: An open source library providing high- performance, 
easy-to-use data structures and data analysis tools. 
4) scikit-learn: Simple and efficient tools for data mining and data 
analysis. 
5) NumPy: Fundamental package for scientific computing with 
Python. 
In particular, Google’s TensorFlow enabled us to achieve very 

good performance, even on embedded low-power devices. 

According to Keras library documentation, supervised learning 

data should be divided into input and output components. In a 

time- series problem, we achieve this division by using the 

samples from the last time-step as the input and the sample at the 

current time-step as the output. We require a shift of one step, 

which will become the input variables. The time-series as it stands 

will be the output variables. Then we concatenate those two series 

together to create a Data-Frame, ready for supervised learning. 

The series will now have a new position at the top without any 

value. This is called a Not a Number (NaN) which is a numeric 

data type value representing an undefined or unrepresentable 

value and will be used in this position. Later, we replace NaN 

values with zeros, which the LSTM model will have to learn. 

In order to proceed, the trend must be removed from the samples, 

later added back to forecasts to return the prediction of the 
original scale and calculate an error score in order to evaluate our 

forecast. A quick and reliable way to remove the trend from our 

data-set is by differencing the data. Simply, we subtract the 

previous time-step from the current sample. This provides us with 

a difference series which corresponds to the changes to the 

samples from one time-step to the next. Pandas library includes a 

completely automatic way to implement differencing, but in our 

proposed application a custom differencing function is 

implemented. This is preferred for achieving flexibility and 

further control over data. 

Similar to other Neural Networks, LSTM Neural Networks expect 

data to be within the scale of the activation function used by the 

network. The default activation function for LSTM Neural 

Networks is the hyperbolic tangent, which outputs values between 

1 and 1. By using scikit-learn transform classes, we transform our 

data-set to the range [1, 1] using the MinMaxScaler class. This 
class requires data provided in a matrix format with rows and 

columns, so we reshape our arrays before transforming. The data 

transformation flow is depicted in figure 2. 

 

Figure 2: Data transformation flow 

The main reason we prefer LSTM over other types of Neural 

Networks, is because it has the ability to learn and remember over 
long sequences and does not rely on a pre-specified window of 

samples as input. Another important parameter used for defining 

the LSTM layer is the number of neurons. This is a relatively 

simple problem so any number between 1 and 5 should be 

sufficient. The number of Neurons is a parameter that is chosen 

mostly empirically. Keep in mind, that there is a trade-off between 

optimal training time and forecast accuracy involved in the 

selection of this parameter. The network requires a single neuron 

in the output layer with a linear activation to predict the given 

metric at the next time-step.  

Once the network is specified, it must be compiled into an 

efficient symbolic representation using a backend mathematical 

library. In this proposal, we use TensorFlow as backend, due its 

state-of-the-art algorithms employed and flexibility and 

performance it offers. In order to compile the network, we must 

specify a loss function and optimization algorithm. In this work 

we use mean squared error as the loss function and adagrad 

as an optimization algorithm due to the efficiency it offers in time-
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series forecasting. According to Keras documentation adagrad 

optimization algorithm is ideal for RNNs as the LSTM we use. In 

figure 3 we present the logic diagram of the LSTM RNN training 

procedure that we employ.  

 

Figure 3: LSTM training procedure 

4  Results 

In this section we present the results obtained from fitting an 

available data-set via the implemented LSTM NN and 

demonstrate its performance. 

Subscribers’ traffic data were kindly provided by Vodafone, which 
is a major mobile operator. User personal information were 

removed from the data-set, in respect to user privacy. The data-set 

corresponds to traffic logs from 573, 4th Generation, Network 

Base Stations spatially distributed in the Island of Crete. All data 

were extracted from March 2016 till June of the same year i.e. 

for a period of four months. 

First we select a random Base Station from our data-set and 

forecast it’s future throughput values. In the beginning we split a 
set of samples corresponding to 122 days in half. The first 61 days 

are used for training and the last 61 are the forecasted results used 

for comparison. We also divide the first 61 days in 5 data blocks 

and select the one with the lowest Relative Standard Deviation 

(RSD), as stated in the previous section. That procedure ensures 

us that we train our model with the most condensed data, which 

are averaged around their mean value. A part of the obtained 

results is shown in figure 4. 

 

Figure 4: Long-term traffic forecasting at a single BS 

From the results, we conclude that the proposed forecasting 

mechanism continues to forecast the expected traffic with high 

accuracy for almost 60 days without knowledge any of new 

samples. 

As a next experiment we made a week long forecast of an other 

Base Station, by splitting 114 days in 4 data blocks and training 

the Neural Network with the one that has the lowest again RSD. 

The obtained fitting is shown in figure 5. Obviously, this forecast 

attempt looks almost identical to the real data and the MSE is 

minimal. This is because training data-set that we used is longer 

and thus it returns even more accurate results compared to the one 

presented in figure 4. 

 

Figure 5: Short-term traffic forecasting at a single BS with 
longer data-blocks. 

The forecasts presented in figure 6 are from two entirely different 

Base Stations, but share some similarities in their behavior. They 

are again a week long like the previous forecasts but the data-

blocks employed are shorter. Despite the fact that the top forecast 
belongs to a Base Station located in a more popular location than 

the bottom one, both present accurate forecasts except from the 

fact that they fail to predict a sudden transition. This means that a 

longer data-set with a higher sample rate can train the neural 

network better so that it can make predictions with higher 

accuracy. 

Since we used the Mean Squared Error (MSE) to calculate the 

deviation between forecasted and real values, we can compare the 

accuracy of other techniques against the proposed one. In 

particular, in table 1, we provide the MSE achieved and the time 

required to accomplish the forecasting procedure among the 

Radial Basis Function (RBF) of the Support Vector Machine 

(SVM), the Linear ARIMA, the Seasonal ARIMA (SARIMA) and 

LSTM.  

SARIMA provides less accurate results in less time than ARIMA 

and RBF gives more accurate results in less time than Seasonal 

and Linear ARIMA. The proposed technique outperforms all the 

relative forecasting models in both accuracy and execution time. 

Since it can produce more accurate guesses for longer time periods 

of time and the training of the data-set can be performed in a fast 

and more hardware efficient way, the proposed mechanism 

appears to be the best option. 
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Figure 6: Short-term traffic forecasting at a single BS with 
shorter data-blocks 

 

Table 1: Comparative results among different forecasting 

techniques 

 

5  Conclusions 

In this paper we studied, implemented and evaluated a Long 

Short-Term Memory (LSTM) Recurrent Neural Network (RNN) 

for forecasting traffic in cellular networks. The main advantage 

that our proposed solution has, is that once the Neural Network 

(NN) is trained, forecasting is instant, even on low power 

hardware. Furthermore it outperforms similar forecasting 

techniques. Another benefit of our scheme, is that the demanding 

part of the forecasting procedure can be offloaded to a server. 

Since training is performed at a centralized system, all Base 

Stations can perform forecasts in simple embedded hardware, thus 

allowing service providers the option to completely automate 

strategic resource planning in Base Stations themselves. That 

offers, an energy, resource and cost efficient way for service 

providers to address the problem of resource planning and 

allocation. Forecasting cellular network traffic data, can have a 

crucial impact on the operation and Quality of Service (QoS) 

provided to the users. In a future work, we intend to take into 

account seasonality and spatial distribution in order to achieve an 

even more accurate insight in future traffic predictions. 
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