
Building Portfolios for Parallel Constraint Solving by Varying the Local Consistency
Applied

Minas Dasygenis and Kostas Stergiou
Department of Informatics and Telecommunications Engineering

University of Western Macedonia, Kozani, Greece
{mdasygenis, kstergiou}@uowm.gr

Abstract—Portfolio based approaches to constraint solving
aim at exploiting the variability in performance displayed by
different solvers or different parameter settings of a single
solver. Such approaches have been quite successful in both
a sequential and a parallel processing mode. Given the in-
creasingly larger number of available processors for parallel
processing, an important challenge when designing portfolios
is to identify solver parameters that offer diversity in the
exploration of the search space and to generate different solver
configurations by automatically tuning these parameters. In
this paper we propose, for the first time, a way to build porfolios
for parallel solving by parameterizing the local consistency
property applied during search. To achieve this we exploit
heuristics for adaptive propagation proposed in [1]. We show
how this approach can result in the easy automatic genera-
tion of portfolios that display large performance variability.
We make an experimental comparison against a standard
sequential solver as well as portfolio based methods that use
randomization of the variable ordering heuristic as the source
of diversity. Results demonstrate that our method constantly
outperforms the sequential solver and in most cases it is more
efficient than the other portfolio approaches.

Keywords-constraint programming; search; constraint prop-
agation; algorithm portfolios; parallelization

I. INTRODUCTION

Portfolio based approaches to constraint solving aim at
exploiting the variability in performance displayed by dif-
ferent solvers or different parameter settings of a single
solver. Such approaches have been quite successful in both
a sequential and a parallel processing mode. In the former
case, machine learning methods are typically used to ef-
fectively schedule a rather small number of solvers, or a
single solver with different settings, on one machine. In
the latter case, which is the focus of this paper, the ever
growing availability of processors makes it possible to create
portfolios that include very large numbers of different solver
configurations.

There are two important challenges when building port-
folios for parallel processing. First, one needs to identify
solver parameters that offer diversity in the exploration of the
search space when they are tuned differently. Second, given
the constantly increasing number of available processors,
large portfolios with many different solver configurations
should be automatically generated. In addition, as argued in

[2], the chosen parameters should be scalable, favorable and
solver-independent. That is, they should offer increasingly
better performance as the number of available processors
grows, they should typically outperform the standard sequen-
tial approach, and they should be applicable on a variety of
solvers.

A growing body of work in the SAT community has
developed portfolio approaches for parallel processing [3],
[4], [2]. There are fewer works on portfolio approaches for
CSPs as the CP community has mainly focused on search
space splitting and methods for workload balancing when it
comes to parallelization [5].

Constraint propagation is at the core of CP and constitutes
one the main reasons for its success. Constraint propagation
algorithms typically enforce some local consistency property
such as (generalized) arc consistency (GAC) on the con-
straints of the problem, and in this way prune inconsistent
values from the domains of the variables. Local consistencies
stronger than GAC have also received attention since they
can offer even stronger pruning [6], [7]. Despite the recent
advances in algorithms for such consistencies [8], [9], [10],
it is widely accepted that there is no local consistency
method that is the best choice on all problems. And since
GAC achieves quite good performance on average, it is the
property that is predominantly applied by CP solvers.

Regarding constraint propagation and parallelization there
are works that study the parallelization of specific propa-
gation algorithms as well as the parallelization of solvers’
propagation engines. The first task is quite challenging
because propagation algorithms are sequential by nature.
Existing works have focused on arc consistency and are
either theoretical [11], [12] or have failed to show significant
speed-ups [13]. [14] considers the parallelization of a mod-
ern CP solvers’ constraint propagation engine and shows that
problems with a large number of (expensive to propagate)
global constraints can benefit from parallelization.

In this paper we explore a new way to integrate and
exploit different local consistencies within the context of
CP solver parallelization. Specifically, we propose the use
of the local consistency applied by a solver as a source of
diversification for the generation of large portfolios. The
solver configurations that appear in such a portfolio are



differentiated by the level of local consistency they apply.
To achieve this, we have to address two important chal-

lenges:
• Although many local consistencies of varying pruning

power have been proposed, we cannot reallistically
assume that any solver will have a large number of such
consistencies available. Therefore, to achieve solver-
independence we need to focus on as few as possible
local consistencies.

• Given that we aim at exploiting large numbers of
processors, we need to find a way to automatically
generate the solver configurations in a portfolio by
tuning the local consistency applied to many different
settings. This is easy if the source of diversification is
the variable ordering heuristic (e.g. by randomizing the
tie breaking), but there is no obvious way to do it in
the case of propagation.

To address these challenges we exploit existing work on
adaptive constraint propagation, and specifically the heuris-
tics proposed in [1]. These heuristics offer ways to auto-
matically switch between two different propagation methods
during search by monitoring events such as domain wipeouts
and value deletions. We demonstrate how large portfolios
that include different settings of a baseline solver can be
automatically generated by randomizing certain parameters
of the heuristics of [1]. Experiments show that the derived
portfolios offer high diversity in the exploration of the search
space and high variability in the performance.

We compare our method against a standard sequential
solver as well as against portfolio methods that use random-
ization of the variable ordering heuristic as the source of
diversification. Experimental results from benchmark binary
problems demonstrate the efficacy of our approach as it out-
performs the others methods on most problems, sometimes
by very large margins.

II. BACKGROUND

A Constraint Satisfaction Problem (CSP) is defined as
a tuple (X,D,C) where: X = {x1, . . . , xn} is a set
of n variables, D = {D(x1), . . . , D(xn)} is a set of
ordered finite domains, and C = {c1, . . . , ce} is a set of
e constraints. Each constraint ci is a pair (var(ci), rel(ci)),
where var(ci) = (xi1 , . . . , xik) is an ordered subset of X ,
and rel(ci) contains the allowed combinations of values for
the variables in var(ci).

The concept of local consistency is central to CP. Local
consistencies are used prior to and during search through
what is known as constraint propagation to filter domains
and discover inconsistencies early. The most widely studied
local consistency is arc consistency. A binary CSP is Arc
Consistent (AC) iff for any constraint cij ∈ C and any value
a ∈ D(xi) there exists at least one value b ∈ D(xj) s.t. the
assignments xi = a and xj = b satisfy cij . In this case b

is called a support for a. The generalization of AC to non-
binary constraints is known as GAC.

Apart from AC and GAC, numerous other local con-
sistencies have been proposed for binary and non-binary
constraints. Here we are particularly interested in local
consistencies that are stronger, i.e. can achieve stronger
pruning, than AC. Since the experiments included in this
paper concern binary problems, we will focus on binary
constraints hereafter. However, the technique for designing
portfolios presented below is generic and does not depend
on the arity of the constraints.

Local consistencies that only prune values from domains
and leave the structure of the constraint graph unchanged
are called domain filtering consistencies [6]. Two of the
most efficient and well studied such local consistencies are
maxRPC and SAC. A binary CSP is max Restricted Path
Consistent (maxRPC) iff each constraint cij is AC and for
each value a ∈ D(xi), there is a support b for a in D(xj)
s.t. this pair of values is path consistent. That is, this pair
of values can be consistently extended to any third variable
constrained with xi and xj . A binary CSP is Singleton Arc
Consistent (SAC) [6] iff it has non-empty domains and for
any assignment xi = a of a variable xi ∈ X , the resulting
subproblem can be made AC.

Backtracking tree search is the standard complete method
for solving CSPs. This method interleaves branching deci-
sions (e.g. variable assignments) with constraint propagation.
A backtracking algorithm searches for a solution in the space
of possible variable assignments by gradually extending a
partial assignment until it becomes a solution or proves
that no solution exists. After each branching decision a
constraint propagation phase follows. Typically this con-
sists of iteratively applying local consistency algorithms on
the constraints of the problem until a fixpoint is reached.
The process of calling and applying an local consistency
algorithm on a constraint to filter inconsistent values from
domains is known as constraint revision. E.g. the so called
MAC algorithm always applies AC. If constraint propaga-
tion removes all values from the domain of a variable (a
domain wipeout - DWO) then the algorithm rejects its latest
branching decision.

Modern variable ordering heuristics exploit information
gathered during search to better direct search [15], [16].
Among such heuristics, dom/wdeg is particularly effective.
This heuristic associates a weight, initially set to one, with
each constraint. Each time a constraint causes failure (i.e. a
DWO), its weight is increased. For each variable, the sum of
the weights of the constraints in which it participates (called
weighted degree) is computed and the heuristic selects the
variable having minimum ratio of domain size to weighted
degree.



III. PORTFOLIOS BASED ON PROPAGATION

In this section we describe our proposal for building a
portfolio of different solver settings by varying the local
consistency applied throughout search. First, we recall the
heuristics for adaptive propagator selection proposed in [1]
that are at the basis of our approach.

A. Heuristics for Adaptive Propagator Selection

Exploring ways to utilize the pruning power of strong lo-
cal consistencies without penalizing cpu times, [1] proposed
heuristics for dynamically switching between a weak (W )
and a strong (S) propagator for each individual constraint
during search. The motivation for these heuristics was based
on the observation that in structured problems propagation
events (DWOs and value deletions) caused by individual
constraints are often highly clustered. That is, they occur
during consecutive or very close revisions of the constraints.
The intuition behind the proposed heuristics is twofold.
First to target the application of the strong consistency on
areas in the search space where a constraint is highly active
so that domain pruning is maximized and dead-ends are
encountered faster. And second, to avoid using an expensive
propagation method when pruning is unlikely. We now recall
the main heuristics of [1].

H1(ldwo) : Heuristic H1 monitors and counts the re-
visions and DWOs of the constraints in the problem. A
constraint c is made S if the number of revisions of c since
the last time it caused a DWO is less or equal to a (user
defined) threshold ldwo. Otherwise, it is made W .

H2(ldel) : Heuristic H2 monitors revisions and value
deletions. A constraint c is made S if the number of revisions
of c since the last time it caused at least one value deletion
is less or equal to a (user defined) threshold ldel. Otherwise,
it is made W .

H4 : Heuristic H4 monitors value deletions. For any
constraint c, H4 applies W until at least one value is deleted
from the domain of a variable x ∈ var(c). Then S is applied
on the remaining available values in D(x).

These heuristics can be combined either disjunctively or
conjunctively in various ways. For example, heuristic H∨124
applies S on a constraint whenever the condition specified
by either H1, H2, or H4 holds. Heuristic H∧24 applies S
when both the conditions of H2 and H4 hold. We can
choose a disjunctive or conjunctive combination depending
on whether we want S applied more or less frequently
respectively.

As explained, heuristics H1 and H2, as well as any
composite heuristics that include them, require setting the
ldwo and ldel parameters manually. Low (resp. high) values
of these parameters result in few (resp. many) calls to S.
As shown in [17] even small changes in the values of
these parameters significantly influence the performance of a
solver that applies the adaptive propagation heuristics. This
makes it very hard, if not impossible, to find “optimal”

parameter values that give the best results across a wide
range of instances belonging to different problem classes.

At this point we must note that giving larger values to
ldwo in H1 (or ldel in H2) does not necessarily result in
the exploration of a smaller search tree, especially when a
modern variable ordering heuristic like dom/wdeg is used.
Although larger values will result in more invocations of S,
the interaction with the variable ordering heuristic may be
unpredictable. Recall that dom/wdeg bases its decisions on
the weights of the constraints which are influenced by the
decteced failures. Given two runs of H1 on a single instance
with different values for ldwo, say a1 and a2 with a1 < a2, it
is likely that different failures will be detected, since S will
applied more frequently in the second run. This in turn may
direct the heuristic to different areas of the search space.
Hence, the search trees explored by the two runs of H1 may
vary considerably.

B. Designing a portfolio by varying the local consistency

Since for any adaptive heuristic (except H4) varying the
values of the parameters ldwo and ldel results in varying
solver performance, the main idea is to build a portfolio of
different solver settings by randomly setting the parameters
ldwo and ldel to different values.

Specifically, the portfolio we used in our experiments was
built by first including a small number of manually selected
solver configurations. These are the following:

1) Setting ldwo=0 for heuristic H1 (or equivalently ldel=0
for H2). This results in a solver that always applies W
throughout search. That is, a solver that applies AC in
our case study with binary constraints.

2) Setting ldwo (or equivalently ldel) to a very large
value. This results in a solver that always applies S
throughout search. That is, a solver that maintains
maxRPC in our case study with binary constraints.

3) Using heuristic H1 with ldwo = 100.
4) Using heuristic H2 with ldel = 10.
5) Using heuristic H4 which requires no parameter set-

tings.
6) Using heuristic H∨12 with ldwo = 100 and ldel = 10.
7) Using heuristic H∨124 with ldwo = 100 and ldel = 10.

The values of the parameters for solver settings 3,4 and
6,7 result in good average performance [17]. Also, the
disjunctive heuristics H∨12 and H∨124 are quite competitive
as they outperform other composite heuristics and are better
than individual heuristics quite often [17]. As we will explain
in Section IV, the seven manually selected configurations are
not necessary to achieve good performance.

After selecting the above seven different parameter set-
tings, the rest of the available processors were utilized by
randomly giving values to parameters ldwo and ldel using
heuristics H1, H2, H∧12, H∧124. Each different value to one
of the parameters, or pair of values to both parameters,



results in a different solver configuration. For the experi-
ments presented below, if p is the total number of available
processors, we equally distribute the p-7 processors left to
the four heuristics. Then for each processor we derive a
solver configuration by randomly setting ldwo or ldel or both
to values in the intervals [1,maxdwo] and [1,maxdel], where
maxdwo and maxdel are predetermined maximum values for
ldwo and ldel respectively.

As discussed in the Introduction, any solver parameter
used to build porfolios should have some necessary qualities.
Namely, it should offer diversity in the exploration of
the search space, and it should be automatically tunable,
scalable, favorable, and solver-independent. We argue that
the method we propose has all these qualities.

Scalability and favorability are demonstrated by the exper-
imental results presented below. The randomization of the
parameters ldwo and ldel allows for automatically producing
any desired number of solver configurations. Solver indepen-
dence is achieved by requiring only two diverse local con-
sistency methods to build a portfolio. Even if most solvers
do not incorporate strong local consistency methods such
as maxRPC and SAC, they do offer propagators of varying
strength for many constraints. For example, many solvers
include both a bounds consistency and a generalized arc
consistency propagator for alldifferent constraints. Finally,
the important property of diversity is achieved through the
interaction between the varying propagation strength and the
variable ordering heuristic, as explained in Section III-A.

IV. EXPERIMENTS

We have experimented with benchmark binary CSPs taken
from C. Lecoutre’s repository and used in CSP solvers
competitions. Specifically, we experimented with instances
belonging to the following classes: radio links frequency as-
signment (rlfap), graph coloring (gc), driver (dr), quasigroup
completion (qcp), quasigroups with holes (qwh), using 150
instances in total.

All experiments were performed on our computing cluster
consisting of four rack mounted servers FUJITSU Server
PRIMERGY RX200 S7 R2, interconnected by a gigabit
Ethernet switch. Every server had 2 sockets of Intel(R)
Xeon(R) CPU E5-2667 clocked at 2.90GHz, each one hav-
ing 6 physical cores supporting 12 threads, with 48 GB of
ECC RAM and 16MB cache. Thus, we could utilize up to 96
threads. The cluster was managed by the Torque Resource
Manager 4.2.71, supporting the OpenMPI 1.4.5 program-
ming interface and was using the Debian GNU/Linux 7
(wheezy) 64bit operating system. The cluster was using a
shared storage area accessible via the Network Filesystem
(NFS) mechanism by any process.

1http://www.adaptivecomputing.com/products/open-source/torque/

A. Methods compared

We have compared the following methods:
• A baseline sequential solver that runs the MAC search

algorithm with dom/wdeg for variable ordering and
lexicographic tie breaking.

• A portfolio of algorithms generated using MAC as
basis and randomizing the tie breaking of the variable
ordering heuristic. That is, every member of the port-
folio is essentially MAC with a different seed for the
randomization of the tie breaking. This method is called
rand tie break hereafter.

• A portfolio of algorithms generated using MAC as basis
and randomizing the variable selection in the following
way. After ranking the variables according to the value
of dom/wdeg, one of the top three variables is selected
at random. Again each member of the portfolio uses a
different random seed. This method is called rand top
3 hereafter.

• A portfolio of algorithms generated by varying the local
consistency enforced in the way described in Section
III. The weak (resp. strong) local consistency used
was AC (resp. maxRPC). This method is called LC
hereafter.

To achieve an evaluation that is as fair as possible, all
algorithms in the portfolios employ lexicographic value
ordering.

B. Variability

In Figure 1 we show the variability in runtimes of the LC
portfolio method described above. We show the maximum
and minimum runtimes obtained when running a portfolio
of 96 solver settings, plus the runtime of MAC, on a sample
of 25 instances.

Figure 1. Variability of run times for a portfolio generated by varying the
local consistency applied.

Figure 1 demonstrates that the variability of our method is
quite high since we obtain run times that can be significantly
lower and (sometimes) quite higher than the runtimes of
MAC. Importantly, the methods also displays favorability



since its minimum run times are constantly lower than those
of MAC while in many cases the maximum run times are
very close to MAC.

C. Comparing different porfolio schemes

In Figure 2 we compare the three portfolio methods and
MAC by displaying the number of solved instances as the
time limit imposed is increased from 10 to 800 seconds.
These results were obtained using the maximum number of
processors (96).

Figure 2. Solved instances as the cpu time limit increases.

From Figure 2 it is evident that our method achieves
a considerably better performance than the other portfolio
methods as well as the sequential method. For example,
when the time limit was set to 70 our method solved 15%
more instances than MAC, and 9.3% more instances than
both rand tie break and rand top 3. The portfolio methods
that use the variable ordering heuristic as the source of
variability were closely matched, with rand top 3 being
slightly more efficient. As expected, all methods become
increasingly more efficient as the time limit is increased.

To give a better indication of the differences in run
times between the various methods, Table I compares the
performance of the tested methods on a selection of problem
instances. Apart from run times, we also include the numbers
of node visits. The results were obtained using 96 processors
and a time limit of 800 seconds.

The data given in Table I demonstrates that LC can be
significantly faster than the other methods. The differences
in favour of LC are particularly evident in RLFAPs where
LC is orders of magnitude faster than the other methods
on many instances. Importantly, this problem class includes
7 instances which all methods apart from LC failed to
complete within the maximum time limit. Two of these
instances (s11-f7 and s11-f16) are included in Table I. Four
of these 7 instances were completed by LC in less than
50 seconds (s11-f16 is one of them), with two of them

Table I
NODES (N) AND CPU TIMES (T) IN SECONDS. A TIME LIMIT OF 800

SECS WAS IMPOSED. AS SLASH (-) INDICATES THAT THE INSTANCE WAS
NOT COMPLETED WITHIN THE TIME LIMIT. THE BEST CPU TIME FOR

EACH INSTANCE IS HIGHLIGHTED WITH BOLD.

instance MAC tie break top 3 LC
(n) (t) (n) (t) (n) (t) (n) (t)

rlfap
s11-f9 101.525 259 97.688 245 77.091 221 6.974 19
s11-f8 179.025 450 169.043 418 151.166 423 12.992 35
s11-f7 - - - - - - 9.688 50
s11-f6 - - - - - - 3.381 28
s02-f25 12.688 9 12.463 9 769 0,5 1.036 1
s03-f11 9.486 12 9.625 12 3.211 5 1.593 2
g08-f10 19.590 28 9.057 14 9.496 18 4.620 7
g14-f27 13.833 9 3.304 2 2.988 3 926 1
gc
anna-8 69.321 15 69.321 15 69.312 17 29.772 5
david-8 69.280 11 69.280 11 69.280 11 29.944 4
homer-8 69.280 86 69.280 88 69.280 99 29.692 31
ga120-8 3.208K 267 2.746K 251 2.330K 246 1.383K 127
lei450-8 106.517 708 106.663 761 69.819 375 45.496 256
driver
driver-8 3.872 7 1.858 3 514 1 711 2
driver-9 14.129 61 10.401 56 6.493 37 8.426 54
qcp,qwh
qcp-15-0 102.136 65 472 0,2 355 0,2 21.187 18
qcp-15-2 125.130 82 19.047 13 1.063 0,5 6.750 4
qcp-15-5 536.056 418 60.141 52 11.591 11 28.038 35
qcp-15-9 851.950 625 206.840 173 203.683 160 74.681 84
qcp-15-10 1.058.477 732 255.166 169 179.549 131 51.645 43
qcp-15-13 269.980 198 164.253 136 159.234 138 37.318 40
qwh-20-0 94.013 177 31.054 66 12.656 23 4.075 8
qwh-20-2 - - 168.550 361 235.357 506 22.758 61
qwh-20-3 - - 37.228 75 38.356 85 5.925 14
qwh-20-4 231.087 429 11.679 23 7.373 13 8.640 20
qwh-20-5 89.151 173 24.202 51 13.063 26 8.052 19
qwh-20-6 - - 76.946 161 35.479 76 110.486 328

taking only 5 and 9 seconds respectively. Notably, these
are all insoluble problems. In qcp and qwh instances the
results are rather mixed. There are some instances where
rand tie break and rand top 3 were much faster (e.g. qcp-
15-0) while in other cases LC is significantly faster (e.g.
qwh-20-2). Importantly, most of these are soluble instances.
All portfolio methods exhibit high variability in their per-
formance on these instances since different searches may
discover different solutions.

In Figures 3, 4, 5 we make pairwise comparisons between
our method and the other three tested methods. Data points
that are situated below the diagonal in each of the figures
correspond to instances that were solver faster by LC, while
points above the diagonal correspond to instances that were
solver faster by one the competing methods (i.e. MAC in
Figure 3, rand tie break in Figure 4 and rand top 3 in Figure
5).

Importantly, LC is almost always much faster than MAC.
Comparing it to the alternative portfolio methods, we can
see that it is very rarely outperformed by rand tie break.
Rand top 3 is more competitive but in most of the instances



it is inferior to LC. Clearly, a portfolio that combines the
strengths of varying the local consistency enforced and
diversifying the variable ordering through randomization
will be even more competitive. We leave the exploration
of efficient ways to build such portfolios as future work.

Figure 3. LC vs. MAC

Figure 4. LC vs. random tie breaking

Finally, in Table II we give the percentage of instances
where each of the baseline methods in the portfolio reached
a solution or proved insolubility first. For example, in 42.1%
of the instances a solver setting that used heuristic H1,
with some value for parameter ldwo, was the winner. In
brackets we give the percentage of instances where the
winning method was one of the eight baseline ones. That
is, in 0.9% of the instances the winning method was H1

with the baseline setting ldwo = 100. Absense of brackets
for a heuristic indicates that the baseline setting was never
the winner.

We can observe that the baseline methods that apply a

Figure 5. LC vs. random top 3 selection

Table II
PERCENTAGE OF INSTANCES WHERE EACH BASELINE METHOD WAS THE

WINNER IN THE PORTFOLIO.

AC maxRPC H1 H2 H4 H12 H124

1.9% 2.9% 42.1% (0.9%) 1.9% 0% 21.5% 28.4% (0.9%)

fixed propagation method (AC or maxRPC) do not contribute
much to the success of the LC portfolio method. Actually,
the instances in which they were the winning configurations
are very easy. Hence, they can be omitted when building
a portfolio using our methodology, given that a reasonably
large number of processors is available. The same holds for
heuristics H2 and H4. Heuristic H1 with random settings
for its patameter ldwo was the configuration that was most
commonly the winner. This is due to the dominance of
this heuristic on RLFAPs and graph coloring. On the other
hand, the composite heuristics H12 and H124 with random
values for their parameters were dominant on the quasigroup
instances.

D. Scalability

Finally, regarding the scalability of the LC portfolio
method, Table III gives the run times of the method as the
number of used processors is increased for some instances.
The results were obtained with the maximum time limit of
800 seconds.

Results demonstrate the scalability of the method. In
most cases, as the number of processors rises, so does the
efficiency of the method. This is to be expected, especially
in the case of soluble problems. However, it seems that
with a reasonable number of processors LC can achieve
a reasonably good performance level. Thereafter, larger
numbers of processors do not always make a significant
difference.



Table III
SCALABILITY OF LC’S PERFORMANCE ON SELECTED INSTANCES. A

SLASH (-) INDICATES THAT THE INSTANCE WAS TIMED OUT.

instance processors
8 16 32 64 96

s11-f6 74 73 65 43 28
s11-f5 599 354 325 154 129
s11-f4 - - 403 414 607
s11-f3 - - 232 390 503
qcp-15-5 51 50 42 48 35
qcp-15-9 110 100 101 88 84
qcp-15-10 45 45 40 44 43
qcp-15-13 64 39 33 43 40
qwh-20-1 25 28 25 24 25
qwh-20-2 276 89 71 60 61
qwh-20-6 - 489 357 323 328

V. RELATED WORK

Parallel constraint solving is attracting increasing attention
as a result of the advances in parallel computing. [5]
presents a recent review of relevant research works. The
main approaches to parallel constraint solving can roughly
be divided into four categories as detailed in [2].

1) Search Space Splitting explores the parallelism pro-
vided by the search space and is the approach that has
been most commonly studied. In a few words, when
a branching decision is made, the different branches
of the search tree that are created can be explored in
parallel. A significant challenge that such approaches
need to tackle is load balancing: the branches of a
search tree are typically extremely imbalanced and
therefore there is a non-negligible overhead of com-
munication for work stealing among the different
processors. Some works based on this approach are
[18], [19], [20], [21], [2], [22]. As is the case with our
algorithms, these approaches explore a single search
tree and exploit parallelization to speed up this search.

2) A different approach, called multi-agent search in [5],
that has been studied extensively, especially by the
SAT community, is to explore different search trees in
parallel. For instance, a portfolio of different solvers,
heuristics, or parameter tunings of a single solver can
be run in parallel on the same problem. The parallel
searches may be completely independent [2], [23] or
they may communicate useful information, such as
learned clauses, to each other [3], [4], [24]. Diversity
in search tree exploration is achieved by communi-
cating learned clauses, by randomizing crucial solver
parameters, such as the variable ordering heuristic
and the restart schedule, or by other means (e.g. by
permuting the variable ordering).
There are fewer works on portfolio approaches for
CSPs as the CP community has mainly focused on
search space splitting and methods for workload bal-
ancing when it comes to parallelization [5]. Notable
exceptions are various works by Yun and Epstein who

proposed a hybrid approach that uses both a portfolio
of different solver settings and search space splitting
[25], [26]. The same authors explored the use of case-
based reasoning as a tool to build portfolios for parallel
constraint solving [27].

3) Problem Splitting is another relevant idea. In this
case a problem is split into subproblems and each
subproblem is assigned to a different processor. Hence
no processor has complete knowledge of the problem.
The distributed CSP framework is a typical represen-
tative of problem splitting.

4) Finally, one or more components of the solver, e.g.
the constraint propagation engine, can be parallelized.
Parallelizing constraint propagation algorithms is a
challenging task since most such algorithms are se-
quential by nature [11]. Existing works have focused
on AC and have either been purely theoretical [12], or
any experiments that were conducted failed to show
significant speed-ups [13] or were limited to very few
processors [28]. [14] considers the parallelization of
a modern CP solvers’ constraint propagation engine
and shows that problems with a large number of
(expensive to propagate) global constraints can benefit
from parallelization.

The method proposed in the paper obviously falls in multi-
agent search approach, and it specifically concerns portfolios
where the parallel searches are completely independent.

VI. CONCLUSION

Portfolio based approaches to constraint solving have
been quite successful in both a sequential and a parallel
processing mode. Given the increasingly larger number of
available processors for parallel processing, an important
challenge when designing portfolios is to identify solver
parameters that offer diversity in the exploration of the
search space and to generate different solver configurations
by automatically tuning these parameters.

In this paper we proposed a way to build porfolios for
parallel solving by parameterizing the local consistency
property applied during search. To our knowledge this is the
first time that the propagation method applied is considered
as the basis to generate large numbers of different solver
configurations. To achieve this we exploited heuristics for
adaptive propagation proposed in [1].

We showed how this approach can result in the easy auto-
matic generation of portfolios that display large performance
variability. We made an experimental comparison against a
standard sequential solver as well as portfolio based methods
that use randomization of the variable ordering heuristic as
the source of diversity. Results demonstrated that our method
constantly outperforms the sequential solver and in most
cases it more efficient than the other portfolio approaches.

In the future we first intend to evaluate the proposed
method using a wider variety of benchmarks, that include



problems with non-binary constraints, and to compare it
against alternative parallelization techniques for CSPs (e.g.
search space splitting methods). Also, we would like to
explore ways of building porfolios by combining random-
ization in the variable ordering and the local consistency
method.

REFERENCES

[1] K. Stergiou, “Heuristics for Dynamically Adapting Propaga-
tion,” in Proceedings of ECAI’08, 2008, pp. 485–489.

[2] L. Bordeaux, Y. Hamadi, and H. Samulowitz, “Experiments
with Massively Parallel Constraint Solving,” in IJCAI, 2009,
pp. 443–448.

[3] Y. Hamadi, S. Jabbour, and L. Sais, “Manysat: a Parallel SAT
Solver,” JSAT, vol. 6, no. 4, pp. 245–262, 2009.

[4] A. Johannes Hyvärinen, T. Junttila, and I. Niemelä, “Incor-
porating Clause Learning in Grid-Based Randomized SAT
Solving,” JSAT, vol. 6, no. 4, pp. 223–244, 2009.

[5] I. Gent, C. Jefferson, I. Miguel, N. Moore, P. Nightingale,
P. Prosser, and C. Unsworth, “A preliminary review of liter-
ature on parallel constraint solving,” in PMCS’11 Workshop
on Parallel Methods for Constraint Solving, 2011.

[6] R. Debruyne and C. Bessière, “Domain Filtering Consisten-
cies,” JAIR, vol. 14, pp. 205–230, 2001.

[7] C. Bessière, K. Stergiou, and T. Walsh, “Domain filtering con-
sistencies for non-binary constraints,” Artificial Intelligence,
vol. 172, no. 6-7, pp. 800–822, 2008.

[8] C. Bessiere, S. Cardon, R. Debruyne, and C. Lecoutre, “Effi-
cient Algorithms for Singleton Arc Consistency,” Constraints,
vol. 16, pp. 25–53, 2011.

[9] T. Balafoutis, A. Paparrizou, K. Stergiou, and T. Walsh, “New
algorithms for max restricted path consistency,” Constraints,
vol. 16, no. 4, pp. 372–406, 2011.

[10] R. Woodward, S. Karakashian, B. Choueiry, and C. Bessiere,
“Revisiting Neighborhood Inverse Consistency on Binary
CSPs,” in CP, 2012, pp. 688–703.

[11] S. Kasif, “On the Parallel Complexity of Discrete Relaxation
in Constraint Satisfaction Networks,” Artif. Intel., vol. 45,
no. 3, pp. 275–286, 1990.

[12] S. Kasif and A. Delcher, “Local Consistency in Parallel
Constraint Satisfaction Networks,” Artif. Intel., vol. 69, no.
1-2, pp. 307–327, 1994.

[13] A. Ruiz-Andino, L. Araujo, F. Saenz, and J. Ruz, “Parallel
Arc-Consistency for Functional Constraints,” in Workshop
on Implementation Technology for Programming Languages
based on Logic, ICLP, 1998, pp. 86–100.

[14] C. Rolf and K. Kuchcinski, “Combining parallel search and
parallel consistency in constraint programming,” in TRICS
workshop at CP, 2010, pp. 38–52.

[15] F. Boussemart, F. Heremy, C. Lecoutre, and L. Sais, “Boost-
ing systematic search by weighting constraints,” in Proceed-
ings of ECAI’04, 2004, pp. 482–486.

[16] P. Refalo, “Impact-based search strategies for constraint pro-
gramming,” in Proceedings of CP’04, 2004, pp. 556–571.

[17] K. Stergiou, “Heuristics for dynamically adapting propaga-
tion in constraint satisfaction problems,” AI Communications,
vol. 22, no. 3, pp. 125–141, 2009.

[18] L. Perron, “Search Procedures and Parallelism in Constraint
Programming,” in CP, 1999, pp. 346–360.

[19] J. Jaffar, A. Santosa, R. Yap, and K. Zhu, “Scalable Dis-
tributed Depth-First Search with Greedy Work Stealing,” in
ICTAI, 2004, pp. 98–103.

[20] L. Michel, A. See, and P. Van Hentenryck, “Transparent Par-
allelization of Constraint Programming,” INFORMS Journal
on Computing, vol. 21, no. 3, pp. 363–382, 2009.

[21] G. Chu, C. Schulte, and P. Stuckey, “Confidence-Based Work
Stealing in Parallel Constraint Programming,” in CP, 2009,
pp. 226–241.

[22] T. Menouer and B. Le Cun, “A parallelization mixing or-
tools/gecode solvers on top of the bobpp framework,” in
Eighth International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing, 3PGCIC 2013, 2013, pp.
242–246.

[23] M. Aigner, A. Biere, C. Kirsch, A. Niemetz, and M. Preiner,
“Analysis of portfolio-style parallel SAT solving on current
multi-core architectures,” in POS-13. Fourth Pragmatics of
SAT workshop, a workshop of the SAT 2013 conference, 2013,
pp. 28–40.

[24] G. Audemard and L. Simon, “Lazy clause exchange policy
for parallel SAT solvers,” in Theory and Applications of Sat-
isfiability Testing - SAT 2014 - 17th International Conference,
2014, pp. 197–205.

[25] X. Yun and S. Epstein, “A Hybrid Paradigm for Adaptive
Parallel Search,” in CP, 2012, pp. 720–734.

[26] ——, “Adaptive Parallelization for Constraint Satisfaction
Search,” in SOCS, 2012.

[27] ——, “Learning Algorithm Portfolios for Parallel Execution,”
in LION, 2012, pp. 323–338.

[28] T. Nguyen and Y. Deville, “A Distributed Arc-Consistency
Algorithm,” Sci. Comput. Program., vol. 30, no. 1-2, pp. 227–
250, 1998.


