
Experimental Evaluation of Branching Schemes
for the CSP

Thanasis Balafoutis1, Anastasia Paparrizou2, and Kostas Stergiou2

1 Department of Information and Communication Systems Engineering,
University of the Aegean, Greece.

2 Department of Informatics and Telecommunications Engineering,
University of Western Macedonia, Greece.

Abstract. The search strategy of a CP solver is determined by the
variable and value ordering heuristics it employs and by the branching
scheme it follows. Although the effects of variable and value ordering
heuristics on search effort have been widely studied, the effects of dif-
ferent branching schemes have received less attention. In this paper we
study this effect through an experimental evaluation that includes stan-
dard branching schemes such as 2-way, d-way, and dichotomic domain
splitting, as well as variations of set branching where branching is per-
formed on sets of values. We also propose and evaluate a generic approach
to set branching where the partition of a domain into sets is created using
the scores assigned to values by a value ordering heuristic, and a cluster-
ing algorithm from machine learning. Experimental results demonstrate
that although exponential differences between branching schemes, as pre-
dicted in theory between 2-way d-way branching, are not very common,
still the choice of branching scheme can make quite a difference on cer-
tain classes of problems. Set branching methods are very competitive
with 2-way branching and outperform it on some problem classes. A sta-
tistical analysis of the results reveals that our generic clustering-based
set branching method is the best among the methods compared.

1 Introduction

Complete algorithms for CSPs are based on exhaustive backtracking search in-
terleaved with constraint propagation. Search is typically guided by variable and
value ordering heuristics and makes use of a specific branching scheme like 2-
way or d-way branching. Although the impact of variable and value ordering
heuristics on search performance are topics that have received very wide atten-
tion from the early days of CP, the impact of different branching schemes has
not been as widely studied. As a result, the majority of modern finite domain
CP solvers offer a wide range of variable and value ordering heuristics for the
user/modeller to choose from, but at the same time they typically always em-
ploy 2-way branching. Some solvers allow for the user to implement different
branching schemes, but it is not clear in which cases this may be desirable, and
which particular scheme should be prefered.

In 2-way branching, after a variable x with domain {a1, . . . , ad} is chosen, its
values are assigned through a sequence of binary choices [14]. The first choice
point creates two branches, corresponding to the assignment of a1 to x (left
branch) and the removal of a1 from the domain of x (right branch). An alterna-
tive branching scheme which was extensively used in the past, and is still used
by some solvers, is d-way branching. In this case, after variable x is selected,
d branches are built, each one corresponding to one of the d possible value as-
signments of x. 2-way branching was described by Freuder and Sabin within the
MAC algorithm [14] and in theory it can achieve exponential savings in search
effort compared to d-way branching [8]. However, the few experimental studies
comparing 2-way and d-way branching have not displayed significant differences
between the two [11, 16]. Very recently Balafoutis and Stergiou showed that de-
pending on the variable ordering heuristic used there can be from marginal to
exponential differences between the two schemes [1].

Another technique that is sometimes used is dichotomic domain splitting
[4]. This method originates from numerical CSPs and proceeds by splitting the
current domain of the selected variable into two sets, usually based on the lex-
icographical ordering of the values. In this way branching is performed on the
two created sets and the branching factor is reduced to two. Although domain
splitting drastically reduces the branching factor, it can result in a much deeper
search tree since the effects of propagation after a branching decision may be
diminished.

In addition to these standard schemes, techniques that group together the
values of the selected variable, and branch on these created groups instead of
individual values, have been proposed [7, 10, 15, 2, 17, 9]. The criteria used for
the grouping of values and the methods used to perform the grouping can be
different, but all these techniques aim at reducing the size of the search tree. In
this paper, following [9], we call any such method a set branching method.

Our first goal in this paper is to experimentally study the effect of differ-
ent branching schemes for finite domain CSPs on search performance. Although
some existing branching methods have been compared to one another (e.g. [16]),
to our knowledge this is the first systematic evaluation of several existing al-
ternatives. In addition, we propose and study a generic set branching method
where the partition of a domain into sets is created using the scores assigned
to values by a value ordering heuristic, and a clustering algorithm. Before em-
ploying such a method, two fundamental questions need to be adressed: What
is the measure of similarity between values, and how do we partition domains
using such a measure? Most of the approaches to set branching that have been
proposed in the past have either used very strict measures of similarity or are
problem specific. Our method offers a generic solution to both the problem of
similarity evaluation and the partitioning of domains. For the former we exploit
the information acquired from the value ordering heuristic, while for the latter
we use a clustering algorithm from machine learning.

Experimental results from a wide range of benchmarks demonstrate that ex-
ponential differences between branching schemes, as predicted in theory between

2-way d-way, are not very common. But although the choice of branching scheme
does not have as a profound effect as the choice of variable ordering heuristic, it
can still make a difference. The generic set branching methods we evaluate out-
perform the standard 2-way branching scheme in many problem classes resulting
in better average performance. It is notable that our clustering-based set branch-
ing method displays very promising results without any tuning of the clustering
algorithm applied. Importantly, a statistical analysis of the experimental results
reveals that this method is the best among the methods compared.

The rest of the paper is organized as follows. Section 2 gives necessary back-
ground. In Section 3 we discuss past work on set branching for CSPs and propose
a new generic method for set branching. In Section 4 we report results from an
experimental evaluation of the various branching schemes including a statistical
analysis. Finally, in Section 5 we conclude.

2 Background

A Constraint Satisfaction Problem (CSP) is a tuple (X, D, C), where X is a set
containing n variables {x1, x2, ..., xn}; D is a set of domains {D(x1), D(x2),...,
D(xn)} for those variables, with each D(xi) consisting of the possible values
which xi may take; and C is a set of constraints {c1, c2, ..., ce} between variables
in subsets of X. Each constraint c ∈ C expresses a relation rel(c) defining the
variable assignment combinations that are allowed for the variables in the scope
of the constraint vars(c).

Complete search algorithms for CSPs are typically based on backtracking
depth-first search where branching decisions (e.g. variable assignments) are in-
terleaved with constraint propagation. Search is guided by variable ordering
heuristics and value ordering heuristics.

One of the most efficient general purpose variable ordering heuristics that
have been proposed is dom/wdeg [3]. This heuristic assigns a weight to each
constraint, initially set to one. Each time a constraint causes a conflict, i.e. a
domain wipeout, its weight is incremented by one. Each variable is associated
with a weighted degree, which is the sum of the weights over all constraints
involving the variable and at least another unassigned variable. The dom/wdeg
heuristic chooses the variable with minimum ratio of current domain size to
weighted degree.

A well-known generic value ordering heuristic for binary CSPs is Geelen’s
promise [6]. For each value a ∈ D(x) this heuristic counts the number of values
that are compatible with a in each future unassigned variable that x is con-
strained with. The product of these counts is the promise of a. The value with
the maximum promise is selected.

3 Branching Schemes

From the early days of CSP research, search algorithms were usually imple-
mented using either a d-way or a 2-way branching scheme. The former works

as follows. After a variable x with domain D(x) = {a1, a2, ..., ad} is selected, d
branches are created, each one corresponding to a value assignment of x. In the
first branch, value a1 is assigned to x and constraint propagation is triggered.
If this branch fails, a1 is removed from D(x). Then the assignment of a2 to x
is made (second branch), and so on. If all d branches fail then the algorithm
backtracks. An example of a search tree explored with d-way branching is shown
in Figure 1a.

In 2-way branching, after a variable x and a value ai ∈ D(x) are selected,
two branches are created. In the left branch ai is assigned to x, or in other
words the constraint x=ai is added to the problem and is propagated. In the
right branch the constraint x ̸= ai is added to the problem and is propagated. If
there is no failure then any variable can be selected next (not necessarily x). If
both branches fail then the algorithm backtracks. Figure 1b shows a search tree
explored with 2-way branching.

There are two differences between these branching schemes. In 2-way branch-
ing, if the branch assigning a value ai to a variable x fails then the removal of ai
from D(x) is propagated. Instead, d-way branching tries the next available value
aj of D(x). Note that the propagation of aj subsumes the propagation of ai’s re-
moval. In 2-way branching, after a failed branch corresponding to an assignment
x=ai, and assuming the removal of ai from D(x) is then propagated success-
fully, the algorithm can choose to branch on any variable (not necessarily x),
according to the variable ordering heuristic. In d-way branching the algorithm
has to again branch on x after x=ai fails.

x=a1 x=a2 x=a3

y=a1 y=a2 y=a3 y=a1 y=a2 y=a3 y=a1 y=a2 y=a3

x<>{ a3,a4} x<>{ a1,a2}

y<>{a3,a4} y<>{a1,a2} y<>{a3,a4} y<>{a1,a2}

x=a1 x<>a1

y=a1 y<>a1 x=a2 x<>a2

a) d-way branching

c) domain splittingb) 2-way branching

Fig. 1. Examples of search trees for the three branching schemes.

Another option, that originates from numerical CSPs, is dichotomic domain
splitting [4]. This method proceeds by splitting the current domain of the selected
variable into two sets, usually based on the lexicographical ordering of the values.
Once the domain has been split, the second set of values is removed from the
domain and this removal is propagated. In this way branching is performed on the
two created sets and the branching factor is reduced to two. However, domain

splitting tends to achieve weaker propagation compared to d-way and 2-way
branching. So, although it drastically reduces the branching factor, it can result
in a much deeper search tree. Domain splitting is mostly used on optimization
problems and especially when the domains of the variables are very large. An
example of a search tree explored with domain splitting is shown in Figure 1c.

3.1 Set Branching

Very recently, Kitching and Bacchus explored the applicability of set branching
for constraint optimization problems [9]. The basic idea is to group together
values that offer similar improvement to the currently computed bounds. In this
way entire groups of values that offer no improvement to the bounds can be
refuted, resulting in smaller tree sizes.

In this paper we use the term set branching to refer to any branching tech-
nique that, using some similarity criterion, identifies values that can be grouped
together and branched on as a set. Dichotomic domain splitting and 2-way
branching can be seen as manifestations of this generic method that use simple
grouping criteria. Domain splitting creates two sets of values based on their lexi-
cographical ordering. 2-way branching splits the domain into two sets where the
first includes a single value and the second the rest of the values. In general, in
order to define a set branching technique, two questions need to be addressed:
What is the measure of similarity between values, and how are domains parti-
tioned using such a measure?

The idea of set branching for CSPs has been explored in the past. Freuder
introduced the notion of interchangeability, substitutability, and their weaker,
but tractable, neighborhood versions as means to identify values with similar
behavior [5]. Two values of a variable are neighborhhood interchangeable iff they
have exactly the same supports in all constraints. One value a is neighborhood
substitutable for another value b if the set of values inconsistent wth a is a subset
of the values inconsistent with b. These notions were exploited, for example in
[7, 2, 13], to group together values when branching and in this way perform set
branching. The drawback of these techniques is that their conditions are too
strong, as in many problems neighborhood interchangeable and substitutable
values are very rare.

Larrosa investigated the merging of similar subproblems during search using
forward checking [10]. According to this approach, values whose assignment leads
to similar subproblems are grouped together and branched on as a set. Experi-
ments performed on crossword puzzle generation problems displayed promising
results. However, the measure of subproblem similarity and the algorithm used
to partition the domains according to this measure are both problem specific.

Silaghi et al. proposed a method for partitioning the domains of variables
based on the Cartesian product representation of the search space [15]. This
method is particularly suitable for finding all solutions but it requires an explicit
extensional representation of the constraints in the problem.

A generic and simple approach to set branching that can be applied on a
wide range of problems was proposed by van Hoeve and Milano [17]. In this

approach, values that are “tied” according to their value ordering heuristic score
are grouped together and branching is performed on the sets of values created.
Assignment of specific values to variables is postponed until lower levels of the
search tree (which is also done in Larossa’s method). Experiments using both
depth-first search and limited discrepancy search displayed promising results.
However, this method relies heavily on the particular value ordering heuristic
used and the number of ties produced by the value ordering heuristic, which can
be quite low in many cases. Also, this method distinguishes between values that
have very close but not equal scores and as a result such values will be placed
into different sets. As noted in [17], the concept of a tie can be extended to refer
to values having close scores. In this paper we explore this idea further.

3.2 Clustering for Set Branching

As we intend to apply set branching dynamically throughout search, after select-
ing a variable x with current domain D(x) = {a1, . . . , ad}, we are faced with the
following problem. We have to create a partition SD(x) = {s1, . . . , sm} of D(x)
into m sets s.t. each value ai ∈ D(x) belongs to only one set sj ∈ S. Ideally,
we want all the values that have been assigned to a specific set to be similar
according to some measure of similarity.

Following van Hoeve and Milano, we use a generic measure of similarity that
is based on the score of the values according to a value ordering heuristic. In order
to perform the dynamic partitioning of domains into sets, we propose the use of
clustering algorithms from machine learning. Our approach can be summarized
as follows. A value ordering heuristic is used to assign a score vi to each value
ai ∈ D(x). The collection of d items (values) and the matrix of their scores are
given as input to a clustering algorithm. The output of the algorithm will be the
partition SD(x) = {s1, . . . , sm}.

Compared to [17] our approach has the following potential benefits. First,
not only will tied values be placed in the same set, but with high probability so
will values that have very close scores. Hence, there will be fewer sets, resulting
in lower branching factor. Second, in cases where there are no ties, the method
of [17] uses d-way branching. In contrast, our approach will still partition the
domain if there are groups of values with similar score.

The algorithm we currently use to create the clustering of values is x-means
[12]. This is an extension of the well known k-means algorithm that is consider-
ably faster and does not require to predetermine the desired number of clusters.
The algorithm starts with randomly selected points (values in our case) as clus-
ter centroids and iteratively improves the computed clustering until a fixpoint is
reached. Several parameters of the algorithm can be tuned to give more accurate
results on a specific application, including the starting centroids, the number of
iterations, the measure of distance between points, etc. Although we intend to
investigate this in the future, in the experiments reported below we use the Weka
implementation of the x-means algorithm as is, without any tuning.

4 Experimental Evaluation

We have experimented with 350 instances from ten classes of real world, aca-
demic, patterned, and random CSPs taken from C.Lecoutre’s XCSP repository.
We included both satisfiable and unsatisfiable instances. Each selected instance
involves constraints defined either in intension or in extension. The CSP solver
used in our experiments is a generic solver and has been implemented in the Java
programming language. This solver essentially implements the M(G)AC search
algorithm, where (G)AC-3 is used for applying (G)AC. Since our solver does
not yet support global constraints (apart from the table constraint) , we have
left experiments with problems that include such constraints as future work. All
experiments were run on an Intel dual core PC T4200 2GHz with 3GB RAM.

For a fair evaluation of the different branching schemes we use the same
propagation method during search (arc consistency), the same variable ordering
heuristic (dom/wdeg [3]) and value ordering heuristic (Geelen’s promise [6]). The
promise metric is calculated over all the visited nodes of the search tree. This
penalizes run times and as a result may be inefficient in some problems, but
for the purposes of this initial investigation we only wanted to use a reasonably
sophisticated value ordering heuristic throughout all the tried instances. In the
future we intend to experiment with different value ordering heuristics and study
their effect on the performance of the clustering set branching method.

We compare the following branching schemes:

2-way Values are chosen in descending order of their promise.
d-way Values are chosen in descending order of their promise.
domain splitting The values are ordered according to their promise and then

the domain is split in half. The part with the top ranked values is tried first.
ties set branching This is the method of [17] where values with the same

promise form a set. The sets are tried in descending order of promise.
clustering set branching This is our method where x-means is used to par-

tition the domain into sets based on the promise of the values. The sets
are tried in descending order of promise. Note that the clusters are linearly
ordered since clustering is done over only one dimension.

The two set branching methods have been implemented using a 2-way and a
d-way branching style, giving four alternatives. More specifically, past works on
set branching for CSPs perform set branching using a d-way style. That is, once
the partition of the domain SD(x) = {s1, . . . , sm} is created, search proceeds
by removing from D(x) any value a, s.t. a /∈ s1, and propagating. If there is a
failure, the same process is repeated for s2 and so on. We have also implemented
and evaluated 2-way style set branching. In this case the generated sets are tried
in a series of binary choices. That is, after the reduction of D(x) to s1 fails, we
propagate the removal from D(x) of all the values in s1. If this succeeds then we
reduce D(x) to s2 and so on.

We must clarify here that in all the “2-way style” branching variants (domain
splitting, ties, clustering) the set branching method allows to jump from one
variable to another as standard 2-way branching does.

In addition, for domain splitting and the set branching methods we have tried
two options: 1) Domain splitting (resp. set branching) is performed throughout
search on all variables. 2) Domain splitting (resp. set branching) is performed
on a variable only if its domain size is greater than a certain percentage of its
original domain size. We have tried several values for this percentage, with 25%
giving the best results. This can improve the performance of domain splitting
by 30% on average, and it can offer (minor) improvement to set branching.
Therefore, in the reported experiments with these methods Option 2 is followed.

Table 1. Cpu times (t), and nodes (n) from specific instances. Cpu times are in seconds.
The best result for each instance is given in bold.

d-way 2-way d-way 2-way

Problem d-way 2-way dom ties ties clust. clust.

Class split. set branch. set branch. set branch. set branch.

frb35-17-2 t 43.3 98.4 954 60.1 98.3 134 154

(sat) n 16241 45098 515909 27160 50713 58633 75743

scen3-f11 t 73.7 6.9 33.8 40.1 11.3 43.5 14.5

(unsat) n 11056 1739 5318 11019 4021 13631 5705

pigeons-30-ord t 2435 572 762 1259 773 1322 639

(unsat) n 376384 135031 128286 338049 247792 364343 228190

geo50-20-d4-75-7 t 472 1338 2815 190 1309 365 543

(sat) n 108027 404918 686333 58411 443724 111505 174716

langford-2-10 t 300 129 605 108 120 116 127

(unsat) n 199104 247286 372733 199609 235912 203580 238314

driverw-09 t 177 145 243 103 164 180 143

(sat) n 75625 93236 97180 46823 76510 77509 64798

qcp-15-120-6 t 23.8 12.4 26 28.8 9.6 133 94.6

(sat) n 19074 20179 19353 33003 12019 136599 99847

qcp-15-120-8 t 50 35.4 53.2 44.4 130 1.01 1.01

(sat) n 38227 49680 38551 46188 146342 845 845

geo50-20-d4-75-11 t 41.6 38.9 94.2 32.5 37.9 12.2 15.1

(sat) n 9027 10044 21926 8990 12620 3486 5111

queensKnights-15-5-add t 1506 1001 2245 1502 737 999 594

(unsat) n 42154 15393 86199 42309 38836 28312 30890

Table 1 compares the various branching methods on specific instances from
the tested problem classes. We display CPU times as well as nodes. A node in
2-way branching can correspond to a value assignment or to a value removal,
while in d-way branching it can only correspond to a value assignment. Hence,
they cannot be compared directly. The instances in this table are chosen to
highlight the gaps in performance that can occur when using different branching
schemes. As can be seen any method can be the best on a given instance, and
there can be very considerable variance in the performance of the methods. For
instance, clustering set branching can be very effective on certain problems (e.g.
qcp-15-120-8) but it can also be quite ineffective on others (e.g. qcp-15-120-6).

However, these are some of the most ‘extreme’ instances. Exponential differences,
as predicted between 2-way and d-way in theory, occured rarely3.

Table 2. Average speed-up (positive values) or slow-down (negative values) achieved
by 2-way branching compared to the other branching methods. Cpu time (t) in seconds
and visited nodes (n) have been measured.

% d-way 2-way d-way 2-way

Problem graph d-way dom ties ties clust. clust.

Class density split. set branch. set branch. set branch. set branch.

langford 1.045 t 2.88 5.08 -1.21 -1.11 -1.20 -1.04

(unsat) n -1.27 1.52 -1.26 -1.06 -1.23 -1.03

pigeons 1 t 1.13 1.24 -1.53 -1.89 -1.07 -1.32

(unsat) n -1.21 1.33 -1.7 -1.66 -1.25 -1.12

queensKnights 0.70 t 1.49 1.99 1.75 -1.21 -1.02 -1.48

(unsat) n 2.85 4.96 3.47 3.04 1.87 2.39

forced random 0.65 t -1.22 1.88 -1.30 -1.03 -1.14 1.14

(sat) n -1.41 1.52 -1.11 -1.1 -1.24 1.07

geometric 0.35 t -2.48 2.07 -4.55 -1.03 -3.83 -2.58

(sat) n -3.02 1.79 -3.77 1.18 -3.53 -2.25

qcp − qwh 0.125 t 1.78 2.34 1.28 1.99 6.08 5.63

(sat) n -1.09 1.12 -1.06 1.5 4.08 3.84

driver 0.082 t 1.18 1.53 -1.33 1.10 1.21 1.00

(sat) n -1.23 -1.06 -1.71 -1.24 -1.23 -1.43

rlfap (ScensMod) 0.052 t 5.39 3.07 3.52 1.07 3.70 1.26

(mixed) n 4.63 2.73 4.28 1.77 4.94 2.1

graphColoring 0.05 t -1.50 1.01 -1.58 1.00 -1.49 -1.03

(mixed) n -1.28 1.15 -1.18 1.14 -1.17 -0.92

In Tables 2 and 3 we summarize the results of our experimental evaluation.
We use 2-way branching as the standard all other branching methods are com-
pared against. In Table 2 we give the average slow-down (or speed-up) of the
methods compared to 2-way for each problem class (the two quasigroup classes
qcp and qwh are grouped together). We have mostly selected problem classes
that contain either only satisfiable or only unsatisfiable instances. However, we
have also experimented with “mixed” problem classes. That is classes that con-
tain both satisfiable and unsatisfiable instances. For example, on langford prob-
lems all instances are unsatisfiable and 2-way is 2.88 times better than d-way
on average, while it is 1.2 times worse than d-way clustering set branching. As
mentioned above, it is difficult to accurately compare the numbers of visited
nodes under different branching schemes. However, in most problem classes the
differences in Cpu times roughly reflect the differences in visited nodes.

In Table 3 we give the percentage of instances, over all the tried instances,
where each method was faster (> 1), at least 2 times faster (> 2), and at least

3 But this observation concerns the variable ordering heuristic and propagation
method used here and may not generalize as shown in [1].

3 times faster (> 3) than 2-way branching. Similarly for instances where each
method was slower by < 1, < 2, and < 3 times compared to 2-way.

Table 2 shows that although differences between methods can be quite large
on single instances, the average differences between the most competitive meth-
ods are smaller. Dichotomic domain splitting is apparently the worst among the
branching methods. However, it may fare better in problems with very large do-
main sizes4. Excluding domain splitting, the other methods are usually no more
that 2 times better or worse than 2-way branching on average. But there are
cases where even the average differences are quite large.

The set branching methods, and especially the d-way style ones, have slightly
better or very close performance compared to 2-way branching on most classes.
Also, these methods clearly outperform d-way branching. Interestingly, the set
clustering methods are typically very competitive on the denser classes.

Table 3. % categorization of all tried instances according to the performance of the
branching methods compared to 2-way branching.

d-way 2-way d-way 2-way

Problem speedup d-way dom ties ties clust. clust.

Class split set branch. set branch. set branch. set branch.

all instances

>1 29% 11% 47% 68% 50% 45%
>2 8% 0% 8% 2% 15% 16%
>3 2% 0% 3% 0% 10% 6%
<1 71% 89% 53% 32% 50% 55%
<2 24% 56% 21% 2% 21% 15%
<3 11% 34% 6% 3% 11% 6%

Table 3 shows that 2-way ties set branching is better than 2-way on most
instances. However, the margins are usually small. This is because the number
of ties that occur during search is usually low, meaning that 2-way ties set
branching often emulates the standard 2-way scheme. The other set branching
methods are better than 2-way on roughly half of the instances. However, they
can be significantly better, and worse, on quite a few.

Table 4. Paired t-test measurements for evaluation of the significance of the experi-
mental results. 2-way branching is compared with the other branching schemes.

Mean SD t-value 95% C.I.

d-way -29.8 341.7 -0.68 (-116, 57)

domain splitting -241 456 -4.1 (-357, -125)

d-way ties set branching 9.48 326.3 0.23 (-73.3, 92.3)

2-way ties set branching 31.7 234 1.06 (-27.7, 91.1)

d-way clustering set branching 13.75 217.9 0.49 (-41.6, 69)

2-way clustering set branching 32.4 182.5 1.4 (-13.9, 78.7)

4 Most domains included between 2 and 50 values, with maximum 225.

In order to obtain a global view and to evaluate the statistical significance
of our experimental results, a set of paired t-tests were performed. In these tests
we compared the CPU performance of the 2-way branching scheme against all
the other branching schemes, over all the instances used in the experiments. We
measured the mean difference, standard deviation, t-value and the 95% confi-
dence interval. The risk level (called alpha level) was set to 0.05. Results are
collected in Table 4.

As the results show, d-way branching and domain splitting are clearly in-
efficient compared to 2-way branching. The mean CPU reduction in the all
set branching techniques is always greater than zero with 2-way clustering set
branching being slightly better. However, the negative values at the confidence
interval indicate that this reduction was not observed in all the tried instances.
Although 2-way ties and clustering set branching achieve equivalent mean CPU
reduction, the t-values score show that the spread (or variability) of the scores
for 2-way clustering set branching is significantly higher compared to 2-way ties
set branching. The t-value scores lead us to conclude that 2-way clustering set
branching is a promising branching technique, since in our experiments it has
displayed the best overall performance.

Finally, we have to mention that the number of clusters produced by x-
means during search was usually quite low (2-3). In some cases, typically for
small domain sizes, there was only one cluster generated because all values had
similar score. In such a case our method switched to either d-way or 2-way
branching depending on the style of set branching employed.

5 Conclusions

We performed an experimental evaluation of branching methods for CSPs includ-
ing the commonly used 2-way and d-way schemes as well as other less widely
used ones. We also proposed and evaluated a generic set branching method that
partitions domains into sets of values by using information provided by the
value ordering heuristic as input to a clustering algorithm. Results showed that
set branching methods, including our approach, are competitive and often bet-
ter compared to standard 2-way branching. We now plan to investigate ways to
achieve more efficient domain partitions by automatically tuning the parameters
of the clustering algorithm. Also, it would be interesting to study clustering of
domains using information from multiple value ordering heuristics.

References

1. T. Balafoutis and K. Stergiou. Adaptive Branching for Constraint Satisfaction
Problems. In Proceedings of ECAI-2010, 2010.

2. A. Beckwith and B. Choueiry. On the dynamic detection of interchangeability in
finite constraint satisfaction problems. In Proceedings of CP-01, page 760, 2001.

3. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search
by weighting constraints. In Proceedings of ECAI-04, pages 146–150, 2004.

4. M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier.
The Constraint Logic Programming Language CHIP. In Proceedings of FGCS-88,
pages 693–702, 1988.

5. E. Freuder. Eliminating Interchangeable Values in Constraint Satisfaction Prob-
lems. In Proceedings of AAAI-91, pages 227–233, 1991.

6. P. A. Geelen. Dual viewpoint heuristics for binary constraint satisfaction problems.
In Proceedings of ECAI-92, pages 31–35, 1992.

7. A. Haselbock. Exploiting interchangeabilities in constraint satisfaction problems.
In Proceedings of IJCAI-93, pages 282–287, 1993.

8. J. Hwang and D. Mitchell. 2-Way vs. d-Way Branching for CSP. In Proceedings
of CP-2005, pages 343–357, 2005.

9. M. Kitching and F. Bacchus. Set Branching in Constraint Optimization. In Pro-
ceedings of IJCAI-09, pages 532–537, 2009.

10. J. Larrosa. Merging constraint satisfaction problems to avoid redundant search.
In Proceedings of IJCAI-97, pages 424–433, 1997.

11. V. Park. An empirical study of different branching strategies for constraint satis-
faction problems, Master’s thesis, University of London, 2004.

12. D. Pelleg and A. Moore. X-means: Extending K-means with Efficient Estimation
of the Number of Clusters. In Proceedings of ICML-2000, pages 727–734, 2000.

13. S. Prestwich. Full Dynamic Interchangeability with Forward Checking and Arc
Consistency. In Proceedings of the ECAI Workshop on Modeling and Solving Prob-
lems With Constraints, 2004.

14. D. Sabin and E.C. Freuder. Understanding and Improving the MAC Algorithm.
In Proceedings of CP-1997, pages 167–181, 1997.

15. M. Silaghi, D. Sam-Haroud, and B. Faltings. Intelligent Domain Splitting for CSPs
with Ordered Domains. In Proceedings of CP-99, pages 488–489, 1999.

16. B. Smith and P. Sturdy. Value Ordering for Finding All Solutions. In Proceedings
of IJCAI-05, pages 311–316, 2005.

17. J. van Hoeve and M. Milano. Postponing Branching Decisions. In Proceedings of
ECAI-04, pages 1105–1106, 2004.

