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Abstract. A key factor that can dramatically reduce the search space during constraint solving is
the criterion under which the variable to be instantiated next is selected. For this purpose numerous
heuristics have been proposed. Some of the best of such heuristics exploit information about failures
gathered throughout search and recorded in the form of constraint weights, while others measure the
importance of variable assignments in reducing the search space. In this work we experimentally
evaluate the most recent and powerful variable ordering heuristics, and new variants of them, over a
wide range of benchmarks. Results demonstrate that heuristics based on failures are in general more
efficient. Based on this, we then derive new revision ordering heuristics that exploit recorded failures
to efficiently order the propagation list when arc consistency is maintained during search. Interest-
ingly, in addition to reducing the number of constraint checks and list operations, these heuristics
are also able to cut down the size of the explored search tree.
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1. Introduction

Constraint programming is a powerful technique for solving combinatorial search problems that draws
on a wide range of methods from artificial intelligence and computer science. The basic idea in constraint
programming is that the user states the constraints and a general purpose constraint solver is used to solve
∗Address for correspondence: Department of Information & Communication Systems Engineering, University of the Aegean,
Karlovassi, Samos, 83200, Greece



2 T. Balafoutis and K. Stergiou / Evaluating and Improving Modern Variable and Revision Ordering Strategies in CSPs

the resulting constraint satisfaction problem. Since constraints are relations, a Constraint Satisfaction
Problem (CSP) states which relations hold among the given decision variables. CSPs can be solved
either systematically, as with backtracking, or using forms of local search which may be incomplete.
When solving a CSP using backtracking search, a sequence of decisions must be made as to which
variable to instantiate next. These decisions are referred to as the variable ordering decisions. It has
been shown that for many problems the choice of variable ordering can have a dramatic effect on the
performance of the backtracking algorithm with huge variances even on a single instance [20, 37].

A variable ordering can be either static, where the ordering is fixed and determined prior to search, or
dynamic, where the ordering is determined as the search proceeds. Dynamic variable orderings are con-
siderably more efficient and have thus received much attention in the literature. One common dynamic
variable ordering strategy, known as “fail-first”, is to select as the next variable the one likely to fail as
quickly as possible.

Recent years have seen the emergence of numerous modern heuristics for choosing variables during
CSP search. The so called conflict-driven heuristics exploit information about failures gathered through-
out search and recorded in the form of constraint weights, while other heuristics measure the importance
of variable assignments in reducing the search space. Most of them are quite successful and choosing
the best general purpose heuristic is not easy. All these new heuristics have been tested over a narrow set
of problems in their original papers and they have been compared mainly with older heuristics. Hence,
there is no comprehensive view of the relative strengths and weaknesses of these heuristics.

This paper is an improvement to that published previously in [1]. A first aim of the present work is to
experimentally evaluate the performance of the most recent and powerful heuristics over a wide range of
benchmarks, in order to reveal their strengths and weaknesses. Results demonstrate that conflict-driven
heuristics such as the well known dom/wdeg heuristic [8] are in general faster and more robust than other
heuristics. Based on these results, as a second contribution, we have tried to improve the behavior of the
dom/wdeg heuristic resulting in interesting additions to the family of conflict-driven heuristics.

We also investigate new ways to exploit failures in order to speed up constraint solving. To be
precise, we investigate the interaction between conflict-driven variable ordering heuristics and revision
list ordering heuristics and propose new efficient revision ordering heuristics. Constraint solvers that
maintain a local consistency (e.g. Maintaining Arc Consistency, MAC-based solvers) employ a revision
list of variables, constraints, or (hyper)arcs (depending on the implementation), to propagate the effects
of variable assignments. It has been shown that the order in which the elements of the list are selected
for revision affects the overall cost of the search. Hence, a number of revision ordering heuristics have
been proposed and evaluated [38, 7, 34]. In general, variable ordering and revision ordering heuristics
have different tasks to perform when used by a search algorithm such as MAC. Prior to the emergence of
conflict-driven variable ordering heuristics it was not possible to achieve an interaction with each other,
i.e. the order in which the revision list was organized during propagation could not affect the decision
of which variable to select next (and vice versa). The contribution of revision ordering heuristics to the
solver’s efficiency was limited to the reduction of list operations and constraint checks.

We demonstrate that when a conflict-driven variable ordering heuristic like dom/wdeg is used, then
there are cases where the order in the elements of the list are revised can affect the variable selection. In-
spired by this, a third contribution of this paper is to propose new, conflict-driven, heuristics for ordering
the revision list. We show that these heuristics can not only reduce the numbers of constraints checks and
list operations, but also cut down the size of the explored search tree. Results from various benchmarks
demonstrate that some of the proposed heuristics can boost the performance of the dom/wdeg heuristic
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up to 5 times. Interestingly, we also show that some of the new variants of dom/wdeg that we propose
are much less amenable to the revision ordering than dom/wdeg.

The main contributions of this paper can be summarized as follows:

• We give experimental results from a detailed comparison of modern variable ordering heuristics in
a wide range of academic, random and real world problems. These experiments demonstrate that
dom/wdeg and its variants can be considered the most efficient and robust among the heuristics
compared.

• Based on our observation concerning the interaction between conflict-driven variable ordering
heuristics and revision ordering heuristics, we extend the use of failures discovered during search
to devise new and efficient revision ordering heuristics. These heuristics can increase the efficiency
of the solver by not only reducing list operation but also by cutting down the size of the explored
search tree.

• We show that certain variants of dom/wdeg are less amenable to changes in the revision ordering
than dom/wdeg and therefore can be more robust.

The rest of the paper is organized as follows. Section 2 gives the necessary background material.
In Section 3 we give an overview of existing variable ordering heuristics. In Section 4 we present and
discuss the experimental results from a wide variety of real world, academic and random problems. In
Section 5 after a short summary on the existing revision ordering heuristics for constraint propagation, we
propose a set of new revision ordering heuristics based on constraint weights. We then give experimental
results comparing these heuristics with existing ones. Section 5 concludes with a discussion and some
experimental results on the dependency between conflict-driven variable ordering heuristics and revision
orderings. Finally, conclusions are presented in Section 6.

2. Background

A Constraint Satisfaction Problem (CSP) is a tuple (X, D, C), where X is a set containing n variables
{x1, x2, ..., xn}; D is a set of domains {D(x1), D(x2),..., D(xn)} for those variables, with each D(xi)
consisting of the possible values which xi may take; and C is a set of e constraints {c1, c2, ..., ce} be-
tween variables in subsets of X. Each ci ∈ C expresses a relation defining which variable assignment
combinations are allowed for the variables in the scope of the constraint, vars(ci). Two variables are said
to be neighbors if they share a constraint. The arity of a constraint is the number of variables in the scope
of the constraint. The degree of a variable xi, denoted by Γ(xi), is the number of constraints in which xi
participates. A binary constraint between variables xi and xj will be denoted by cij .

A partial assignment is a set of tuple pairs, each tuple consisting of an instantiated variable and the
value that is assigned to it in the current search node. A full assignment is one containing all n variables.
A solution to a CSP is a full assignment such that no constraint is violated.

In binary CSPs any constraint cij defines two directed arcs (xi,xj) and (xj ,xi). A directed constraint
(xi,xj) is arc consistent (AC) iff for every value a ∈ D(xi) there exists at least one value b ∈ D(xj)
such that the pair (a,b) satisfies cij . In this case we say that b is a support of a on the directed constraint
(xi,xj). Accordingly, a is a support of b on the directed constraint (xj ,xi). A problem is AC iff there



4 T. Balafoutis and K. Stergiou / Evaluating and Improving Modern Variable and Revision Ordering Strategies in CSPs

are no empty domains and all arcs are AC. Enforcing AC on a problem results in the removal of all
non-supported values from the domains of the variables. The definition of arc consistency for non-binary
constraints, usually called generalized arc consistency (GAC), is a direct extension of the definition of
AC. A non-binary constraint c, with vars(c)={x1, x2, ..., xk}, is GAC iff for every variable xi ∈ vars(c)
and every value a ∈ D(xi) there exists a tuple τ that satisfies c and includes the assignment of a to xi
[28, 26]. In this case τ is a support of a on constraint c. A problem is GAC iff all constraints are GAC.
In the rest of the paper we will assume that (G)AC is the propagation method applied to all constraints.

Many consistency properties and corresponding propagation algorithms stron-ger than AC and GAC
have been proposed in the literature. One of the most studied is singleton (G)AC which, as we will
explain in the following section, has also been used to guide the selection process for a certain variable
ordering heuristic. A variable xi is singleton generalized arc consistent (SGAC) iff for each value ai ∈
D(xi), after assigning ai to xi and applying GAC in the problem, there is no empty domain [14].

A support check (consistency check) is a test to find out if a tuple supports a given value. In the case
of binary CSPs a support check simply verifies if two values support each other or not. The revision of
a variable-constraint pair (c, xi), with xi ∈ vars(c), verifies if all values in D(xi) have support on c. In
the binary case the revision of an arc (xi,xj) verifies if all values in D(xi) have supports in D(xj). We
say that a revision is fruitful if it deletes at least one value, while it is redundant if it achieves no pruning.
A DWO-revision is one that causes a domain wipeout (DWO). That is, it removes the last remaining
value(s) from a domain.

Complete search algorithms for CSPs are typically based on backtracking depth-first search where
branching decisions (i.e. variable assignments) are interleaved with constraint propagation. The search
algorithm used in the experiments presented is known as MGAC (maintaining generalized arc consis-
tency) or MAC in the case of binary problems [33, 5]. This algorithm can be implemented using either a
d-way or a 2-way branching scheme. The former works as follows. Initially, the whole problem should
be made GAC before starting search. After the first variable x with domain D(x) = {a1, a2, ..., ad} is
selected, d recursive calls are made. In the first call value a1 is assigned to x and the problem is made
GAC, i.e. all values which are not GAC given the assignment of a1 to x are removed. If this call fails
(i.e. no solution is found), the value a1 is removed from the domain of x and the problem is made again
GAC. Then a second recursive call under the assignment of a2 to x is made, and so on. The problem has
no solution if all d calls fail. In 2-way branching, after a variable x and a value ai ∈ D(x) are selected,
two recursive calls are made. In the first call ai is assigned to x, or in other words the constraint x=ai
is added to the problem, and GAC is applied. In the second call the constraint x 6= ai is added to the
problem and GAC is applied. The problem has no solution if neither recursive call finds a solution. The
main difference of these branching schemes is that in 2-way branching, after a failed choice of a variable
assignment (x,ai) the algorithm can choose a new assignment for any variable (not only x). In d-way
branching the algorithm has to choose the next available value for variable x.

3. Overview of variable ordering heuristics

The order in which variables are assigned by a backtracking search algorithm has been understood for a
long time to be of primary importance. The first category of heuristics used for ordering variables was
based on the initial structure of the network. These are called static or fixed variable ordering heuristics
(SVOs) as they simply replace the lexicographic ordering by something more appropriate to the structure
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of the network before starting search. Examples of such heuristics are min width which chooses an
ordering that minimizes the width of the constraint network [17], min bandwidth which minimizes the
bandwidth of the constraint graph [41], and max degree (deg), where variables are ordered according to
the initial size of their neighborhood [15].

A second category of heuristics includes dynamic variable ordering heuristics (DVOs) which take
into account information about the current state of the problem at each point in the search. The first
well known dynamic heuristic, introduced by Haralick and Elliott, was dom [22]. This heuristic chooses
the variable with the smallest remaining domain. The dynamic variation of deg, called ddeg selects the
variable with largest dynamic degree. That is, for binary CSPs, the variable that is constrained with
the largest number of unassigned variables. By combining dom and deg (or ddeg), the heuristics called
dom/deg and dom/ddeg [5, 36] were derived. These heuristics select the variable that minimizes the
ratio of current domain size to static degree (dynamic degree) and can significantly improve the search
performance.

When using variable ordering heuristics, it is a common phenomenon that ties can occur. A tie
is a situation where a number of variables are considered equivalent by a heuristic. Especially at the
beginning of search, where it is more likely that the domains of the variables are of equal size, ties
are frequently noticed. A common tie breaker for the dom heuristic is lexico, (dom+lexico composed
heuristic) which selects among the variables with smallest domain size the lexicographically first. Other
known composed heuristics are dom+deg [18], dom+ddeg [9, 35] and BZ3 [35].

Bessière et al. [3], have proposed a general formulation of DVOs which integrates in the selection
function a measure of the constrainedness of the given variable. These heuristics (denoted as mDVO) take
into account the variable’s neighborhood and they can be considered as neighborhood generalizations of
the dom and dom/ddeg heuristics. For instance, the selection function for variable Xi is described as
follows:

H}
a (xi) =

∑
xj∈Γ(xi)

(α(xi) } α(xj))

|Γ(xi)|2
(1)

where Γ(xi) is the set of variables that share a constraint with xi and α(xi) can be any simple syntactical
property of the variable such as |D(xi)| or |D(xi)|

|Γ(xi)| and } ∈ {+,×}. Neighborhood based heuristics have
shown to be quite promising.

Boussemart et al. [8], inspired from SAT (satisfiability testing) solvers like Chaff [29], proposed
conflict-driven variable ordering heuristics. In these heuristics, every time a constraint causes a failure
(i.e. a domain wipeout) during search, its weight is incremented by one. Each variable has a weighted de-
gree, which is the sum of the weights over all constraints in which this variable participates. The weighted
degree heuristic (wdeg) selects the variable with the largest weighted degree. The current domain of the
variable can also be incorporated to give the domain-over-weighted-degree heuristic (dom/wdeg) which
selects the variable with minimum ratio between current domain size and weighted degree. Both of these
heuristics (especially dom/wdeg) have been shown to be very effective on a wide range of problems.

Grimes and Wallace [21, 39] proposed alternative conflict-driven heuristics that consider value dele-
tions as the basic propagation events associated with constraint weights. That is, the weight of a con-
straint is incremented each time the constraint causes one or more value deletions. They also used a
sampling technique called random probing where several short runs of the search algorithm are made to
initialize the constraint weights prior to the final run. Using this method global contention, i.e. contention
that holds across the entire search space, can be uncovered.
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Inspired by integer programming, Refalo introduced an impact measure with the aim of detecting
choices which result in the strongest search space reduction [31]. An impact is an estimation of the
importance of a value assignment for reducing the search space. Refalo proposes to characterize the
impact of a decision by computing the Cartesian product of the domains before and after the considered
decision. The impacts of assignments for every value can be approximated by the use of averaged values
at the current level of observation. IfK is the index set of impacts observed so far for assignment xi = α,
I is the averaged impact:

I(xi = α) =

∑
k∈K

Ik(xi = α)

|K|
(2)

where Ik is the observed value impact for any k ∈ K.
The impact of a variable xi can be computed by the following equation:

I(xi) =
∑

α∈D(xi)

1− I(xi = α) (3)

An interesting extension of the above heuristic is the use of “node impacts” to break ties in a subset
of variables that have equivalent impacts. Node impacts are the accurate impact values which can be
computed for any variable by trying all possible assignments.

Correia and Barahona [13] proposed variable orderings, by integrating Singleton Consistency prop-
agation procedures with look-ahead heuristics. This heuristic is similar to “node impacts”, but instead
of computing the accurate impacts, it computes the reduction in the search space after the application
of Restricted Singleton Consistency (RSC) [30], for every value of the current variable. Although this
heuristic was firstly introduced to break ties in variables with current domain size equal to 2, it can also
be used as a tie breaker for any other variable ordering heuristic.

Cambazard and Jussien [11] went a step further by analyzing where the reduction of the search space
occurs and how past choices are involved in this reduction. This is implemented through the use of
explanations. An explanation consists of a set of constraints C ′ (a subset of the set C of the original
constraints of the problem) and a set of decisions dc1, ..., dcn taken during search.

Zanarini and Pesant [42] proposed constraint-centered heuristics which guide the exploration of the
search space toward areas that are likely to contain a high number of solutions. These heuristics are based
on solution counting information at the level of individual constraints. Although the cost of computing
the solution counting information is in general large, it has been shown that for certain widely-used
global constraints, such information can be computed efficiently.

Finally, we proposed [2] new variants of conflict-driven heuristics. These variants differ from wdeg
in the way they assign weights. They propose heuristics that record the constraint that is responsible for
any value deletion during search, heuristics that give greater importance to recent conflicts, and finally
heuristics that try to identify contentious constraints by detecting all possible conflicts after a failure. The
last heuristic, called “fully assigned”, increases the weights of constraints that are responsible for a DWO
by one (as wdeg heuristic does) and also, only for revision lists that lead to a DWO, increases by one
the weights of constraints that participate in fruitful revisions (revisions that delete at least one value).
Hence, this heuristic records all variables that delete at least one value during constraint propagation and
if a DWO is detected, it increases the weight of all these variables by one.
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Table 1. Problem categories that have been included in the experiments and the corresponding number of tested
instances

CSP category number of instances
Real world 80
Patterned 36
Academic 48

Quasi random 28
Pure random 36

Boolean 92

4. Experiments and results

We now report results from the experimental evaluation of the selected DVOs described above on sev-
eral classes of problems. All benchmarks are taken from C. Lecoutre’s web page (http://www.cril.univ-
artois.fr/∼lecoutre/research /benchmarks/), where the reader can find additional details on how the bench-
marks are constructed. In our experiments we included both satisfiable and unsatisfiable instances. Each
selected instance involves constraints defined either in intension or in extension. Our solver can accept
any kind of intentional constraints that are supported by the XCSP 2.1 format [32] (The XML format
that were used to represent constraint networks in the last international competition of CSP solvers).

We have tried to include a wide range of of CSP instances from different backgrounds. Hence, we
have experimented with instances from real world applications, instances following a regular pattern and
involving a random generation, academic instances which do not involve any random generation, random
instances containing a small structure, pure random instances and, finally, instances which involve only
Boolean variables. The selected instances include both binary and non-binary constraints. In Table 1
we give the total number of tested instances on each problem category. In this section we only present
results from a subset of the tried instances. In some cases different instances within the same problem
class displayed very similar behavior with respect to their difficulty (measured in cpu times and node
visits). In such cases we only include results from one of these instances. Also, we do not present results
from some very easy and some extremely hard instances.

The CSP solver1 used in our experiments is a generic solver (in the sense that it can handle constraints
of any arity) and has been implemented in the Java programming language. This solver essentially imple-
ments the M(G)AC search algorithm, where (G)AC-3 is used for applying (G)AC. Although numerous
other generic (G)AC algorithms exist in the literature, especially for binary constraints, (G)AC-3 is quite
competitive despite being one of the simplest. The solver uses d-way branching and can apply any given
restart policy. All experiments were run on an Intel dual core PC T4200 2GHz with 3GB RAM.

Concerning the performance of our solver compared to two state-of-the-art solvers, Abscon 109
[24] and Choco [23], some preliminary results showed that all three solvers visited roughly the same
amount of nodes, our solver was consistently slower than Abscon, but sometimes faster than Choco.
Note that the aim of our study is to fairly compare the various variable ordering heuristics within the same
solver’s environment and not to build a state-of-the-art constraint solver. Although our implementation
is reasonably optimized for its purposes, it lacks important aspects of state-of-the-art constraint solvers

1The solver is available on request from the first author.
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such as specialized propagators for global constraints and intricate data structures. On the other hand, we
are not aware of any solver, commercial or not, that offers all of the variable ordering heuristics tested
here (see Subsection 4.1).

Concerning the experiments, most results were obtained using a lexicographic value ordering, but
we also evaluated the impact of random value ordering on the relative performance of the heuristics.
We employed a geometric restart policy where the initial number of allowed backtracks for the first run
was set to 10 and at each new run the number of allowed backtracks increased by a factor of 1.5. In
addition, we evaluated the heuristics under a different restart policy and in the absence of restarts. Since
our solver does not yet support global constraints, we have left experiments with problems that include
such constraints as future work.

In our experiments the random probing technique is run to a fixed failure-count cutoff C = 40, and
for a fixed number of restarts R = 50 (these are the optimal values from [21]). After the random probing
phase has finished, search starts with the failure-count cutoff being removed and the dom/wdeg heuristic
used based on the accumulated weights for each variable. According to [21], there are two strategies one
can pursue during search. The first is to use the weights accumulated through probing as the final weights
for the constraints. The second is to continue to increment them during search in the usual way. In our
experiments we have used the latter approach. Cpu time and nodes for random probing are averaged
values for 50 runs. For heuristics that use probing we have measured the total cpu time and the total
number of visited nodes (from both random probing initialization and final search). In the next tables
(except Table 2) we also show in parenthesis results from the final search only (with the random probing
initialization overhead excluded).

Concerning impacts, we have approximated their values at the initialization phase by dividing the
domains of the variables into (at maximum) four sub-domains.

As a primary parameter for the measurement of performance of the evaluated strategies, we have used
the cpu time in seconds (t). We have also recorded the number of visited nodes (n) as this gives a measure
that is not affected by the particular implementation or by the hardware used. In all the experiments, a
time out limit has been set to 1 hour.

In Section 4.1 we give some additional details on the heuristics which we have selected for the
evaluation. In Section 4.2 we present results from the radio link frequency assignment problem (RLFAP).
In Section 4.3 we present results from structured and patterned problems. These instances are taken from
some academic (langford), real world (driver) and patterned (graph coloring) problems. In Section 4.4 we
consider instances from quasi-random and random problems. Experiments with non-binary constraints
are presented in Section 4.5. The last experiments presented in Section 4.6 include Boolean instances.
In Section 4.7, we study the impact of the selected restart policy on the evaluated heuristics, while in
Section 4.8 we present experiments with random value ordering. Finally in Section 4.9 we make a
general discussion where we summarize our results.

4.1. Details on the evaluated heuristics

For the evaluation we have selected heuristics from 5 recent papers mentioned above. These are: i)
dom/wdeg from Boussemart et al. [8], ii) the random probing technique and the “alldel by #del” heuristic
where constraint weights are increased by the size of the domain reduction (Grimes and Wallace [21]),
iii) Impacts and Node Impacts from Refalo [31], iv) the “RSC” heuristic from Correia and Barahona [13]
and, finally, v) our “fully assigned” heuristic [2].
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We have also included in our experiments some combinations of the above heuristics. For example,
dom/wdeg can be combined with RSC (in this case RSC is used only to break ties). Random probing can
be applied to any conflict-driven heuristic, hence it can be used with the dom/wdeg and “fully assigned”
heuristics. Moreover, the impact heuristic can be combined with RSC for breaking ties.

The full list of the heuristics that we have tried in our experiments includes 15 variations. These are
the following: 1) dom/wdeg, 2) dom/wdeg + RSC (the second heuristic is used only for breaking ties),
3) dom/wdeg with random probing, 4) dom/wdeg with random probing + RSC, 5) Impacts, 6) Node
Impacts, 7) Impacts + RSC, 8) alldel by #del, 9) alldel by #del + RSC, 10) alldel by #del with random
probing, 11) alldel by #del with random probing + RSC, 12) fully assigned, 13) fully assigned + RSC,
14) fully assigned with random probing, and 15) fully assigned with random probing + RSC. In all these
variations the RSC heuristic is used only for breaking ties.

4.2. RLFAP instances

The Radio Link Frequency Assignment Problem (RLFAP) is the task of assigning frequencies to a num-
ber of radio links so that a large number of constraints are simultaneously satisfied and as few distinct
frequencies as possible are used. A number of modified RLFAP instances have been produced from
the original set of problems. These instances have been translated into pure satisfaction problems after
removing some frequencies (denoted by f followed by a value)[10]. For example, scen11-f8 corresponds
to the instance scen11 for which the 8 highest frequencies have been removed.

Results from Table 2 show that conflict-driven heuristics (dom/wdeg, alldel and fully assigned) have
the best performance. In the final line of Table 2 we give the averaged values for all the instances.

Although the Impact heuristic seems to make a better exploration of the search tree on some easy
instances (like s2-f25, g14-f27, s11, s11-f12), it is clearly slower compared to conflict-driven heuristics.
This is mainly because the process of impact initialization is time consuming. On hard instances, the
Impact heuristic has worse performance and in some cases it cannot solve the problem within the time
limit on all instances. In general we observed that impact based heuristics cannot handle efficiently
problems which include variables with relatively large domains. Some RLFA problems, for example,
have 680 variables with up to 44 values in their domains.

Node Impact and its variation, “Impact RSC”, are strongly related, and this similarity is depicted
in the results. As mentioned in Section 3, Node Impact computes the accurate impacts and the “RSC”
heuristic computes the reduction in the search space, after the application of Restricted Singleton Con-
sistency. Since node impact computation also uses Restricted Singleton Consistency (it subsumes it),
these heuristics differ only in the measurement function that assigns impacts to variables. Hence, when
they are used to break ties on the Impact heuristic, they usually make similar decisions.

When “RSC” is used as a tie breaker for conflict-driven heuristics, results show that it does not offer
significant changes in the performance. So we have excluded it from the experiments that follow in the
next sections, except for the dom/wdeg + RSC combination.

Concerning “random probing”, although experiments in [21] show that it has often better perfor-
mance when compared to simple dom/wdeg, our results show that this is not the case when dom/wdeg
is combined with a geometric restart strategy. Even on hard instances, where the computation cost of
random probes is small compared to the total search cost, results show that dom/wdeg and its variations
are dominant. Moreover, the combination of “random probing” with any other conflict-driven variation
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22,7
11,1

29,8
9,1

29,4
(unsat)

n
1195

16317
2651

14548
2088

2091
2091

1689
16231

1579
14321

1744
16672

1388
16211

s3-f10
t

2,2
36,5

10,2
33,7

>
1h

>
1h

>
1h

2,3
38,7

5,5
30

1,2
37,2

10,4
37,2

(sat)
n

724
18119

728
17781

–
–

–
900

18312
941

17147
472

927
631

18891
s3-f11

t
9,6

41,4
9,9

36,2
>

1h
>

1h
>

1h
5,3

47,5
10,4

39,9
9,6

47,7
11,7

48,7
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n
1078

18728
861

17211
–

–
–

641
18862

889
17865

1078
18993

1546
19944

g8-f10
t

15
72,5

45,2
62,4

>
1h

>
1h

>
1h

21,3
76,5

14,4
60,7

10,9
77,4

15,8
66,4

(sat)
n

4193
26535

6018
22739

–
–

–
6877

27781
3887

23005
3428

27193
4127

24162
g8-f11

t
7

62,7
10,5

54,2
>

1h
>

1h
>

1h
1,6

60,3
1,7

55,3
0,8

61
1,1

58,3
(unsat)

n
1450

24244
940

23348
–

–
–

224
23878

455
23668

107
23979

105
24138

g14-f27
t

18,8
48,4

82,5
49,1

53,9
216,7

217,1
28,8

48,3
70,1

60,2
39,8

52,5
89,3

52,7
(sat)

n
12251

28337
13106

27785
6284

6284
6284

18143
28019

40211
38901

20820
29211

47655
31925

g14-f28
t

75,3
43,3

18,2
37,2

>
1h

>
1h

>
1h

0,4
60,5

57,3
55,7

46,4
51,5

57,1
53,1

(unsat)
n

33556
22303

1459
19544

–
–

–
99

29928
30239

29327
16397

20389
24356

28874
s11

t
5,5

118,1
141,2

157,5
29,3

210,6
224,8

4
120,5

56,2
97,4

4,3
127,8

120,3
181,3

(sat)
n

1024
35097

959
29391

834
833

833
947

35788
1540

29080
853

36611
780

35610
s11-f12

t
6,6

56,2
4,8

51,5
22,4

25,7
25,8

3,7
54,1

3,9
48,3

3,1
54,3

3,5
52,6

(unsat)
n

1102
24158

981
22893

421
421

421
566

23661
989

21775
386

23865
977

22798
s11-f11

t
6,8

55,6
4,7

51,1
22,1

25,7
25,8

3,7
53,4

3,8
48,5

3,1
53,7

3,6
51,8

(unsat)
n

1102
23555

981
22751

421
421

421
522

23101
989

21557
386

23566
977

22564
s11-f10

t
3,5

56,7
4,8

52,4
>

1h
>

1h
>

1h
4,5

58,2
3,3

55,8
4,5

59,7
4,6

59,4
(unsat)

n
490

23131
498

22891
–

–
–

556
23664

376
24077

528
23512

631
24972

s11-f9
t

14,3
71,7

18,1
65,6

>
1h

>
1h

>
1h

16,4
72,4

18,9
65,2

12,1
72,8

17,1
71,1

(unsat)
n

1412
24261

1384
23441

–
–

–
1906

24547
1753

23287
1156

24781
1150

24763
s11-f8

t
21,2

87,1
44,7

79,6
>

1h
>

1h
>

1h
26,3

89,1
40,1

76,8
26,1

89,5
45

83,5
(unsat)

n
2112

28083
2897

24892
–

–
–

2526
27867

3192
24682

2181
27944

2784
27443

s11-f7
t

133,7
189,9

211,2
201,6

>
1h

>
1h

>
1h

130,6
191,4

166,8
221,8

137,7
198,5

160,2
203,5

(unsat)
n

12777
39469

20154
42345

–
–

–
13205

39557
14886

45388
12777

24689
15017

42167
s11-f6

t
391,4

402,9
412,7

416,8
>

1h
>

1h
>

1h
307,6

488,4
465,2

479,8
330,4

330,4
301,4

320,6
(unsat)

n
34714

61523
40892

62557
–

–
–

27949
63447

37954
69432

28947
29930

19236
29084

A
veraged

tim
e

t
47,9

91,5
68,8

91,5
–

–
–

37,7
99,1

61,8
94,5

42,7
89,5

56,8
91,3
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heuristic (“alldel” or “fully assigned”) does not result in significant changes in the performance. Thus,
for the next experiments we have kept only the “random probing” and dom/wdeg combination.

Finally, among the three conflict-driven variations, “alldel” seems to display slightly better perfor-
mance on this set of instances.

4.3. Structured and patterned instances

This set of experiments contains instances from academic problems (langford), some real world instances
from the “driver” problem and 6 patterned instances from the graph coloring problem. The constraint
graphs of the latter are randomly generated but the structure of the constraints follows a specific pattern
as they are all binary inequalities. Since some of the variations presented in the previous paragraph
(Table 2) were shown to be less interesting, we have omitted their results from the next tables.

Results in Table 3 show that the behavior of the selected heuristics is close to the behavior that
we observed in RLFA problems. Conflict-driven variations are again dominant here. The dom/wdeg
heuristic has in most cases the best performance, followed by “alldel” and “fully assigned”. Impact
based heuristics have by far the worst performance. Random probing again seems to be an overhead as
it increases both run times and nodes visits.

4.4. Random instances

In this set of experiments we have selected some quasi-random instances which contain some structure
(“ehi” and “geo” problems) and also some purely random instances, generated following Model RB and
Model D.

Model RB instances (frb30-15-1 and frb30-15-2) are random instances forced to be satisfiable.
Model D instances are described by four numbers <n,d,e,t>. The first number n corresponds to the
number of variables. The second number d is the domain size and e is the number of constraints. t is the
tightness, which denotes the probability that a pair of values is allowed by a relation.

Results are presented in Table 4. All the conflict-driven heuristics (dom /wdeg, “alldel” and “fully
assigned”) have much better cpu times compared to impact based heuristics. In pure random problems
the “alldel” heuristic has the best cpu times, while in quasi-random instances the three conflict-driven
heuristics share a win. Random probing can slightly improve the performance of dom/wdeg on Model D
problems but it is an overhead on the rest of the instances.

4.5. Non-binary instances

In this set of experiments we have included problems with non-binary constraints. The first three in-
stances are from the chessboard coloration problem. This problem is the task of coloring all squares of a
chessboard composed by r rows and c columns. There are exactly n available colors and the four corners
of any rectangle extracted from the chessboard must not be assigned the same color. Each instance is
denoted by cc-r-c-n. These instances have maximum arity of 4.

The next two instances are from the academic problem “All Interval Series” (See prob007 at http://
www.csplib.org) which have maximum arity of 3, while the last three instances are from a Renault
Megane configuration problem where symbolic domains have been converted to numeric ones. The
renault instances have maximum arity of 10.
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Table 3. Cpu times (t), and nodes (n) from structured and patterned problems. Best cpu time is in bold.

Instance d/wdeg d/wdeg d/wdeg Impact Node Impact alldel fully

r.probe RSC Impact RSC by #del assigned
langford- t 42,8 48,5 (44,1) 52,2 65,5 70 73,8 46,9 48,2
2-9(unsat) n 65098 64571 (59038) 68901 73477 52174 53201 62171 60780
langford- t 364,5 380 (374,2) 431,2 406,9 660,6 530,7 402,2 395,2

2-10(unsat) n 453103 422742 (417227) 481909 458285 494407 479092 435599 428681
langford- t 584,8 673,2 (621) 632,8 1094 1917 1531 726,6 676,8

3-11(unsat) n 140168 134133 (126991) 140391 174418 200558 187091 141734 138919
langford- t 65,9 238,2 (65,3) 101,3 183,4 289,3 301,1 106,7 70,3

4-10(unsat) n 5438 14024 (4582) 5099 9257 9910 9910 7362 5031
driver- t 13,6 43,1 (0,7) 31,2 27,8 31,2 31,1 1,3 1,4
8c (sat) n 4500 9460 (420) 3110 431 429 429 660 632
driver-9 t 262,3 305,2 (219,7) 201,1 > 1h 1409 2121 123,5 167,9

(sat) n 58759 58060 (46413) 18581 – 19668 60291 13657 20554
will199-5 t 1,4 17 (1,7) 5,2 > 1h > 1h > 1h 1,7 2,1

(unsat) n 577 13060 (726) 650 – – – 538 582
will199-6 t 15,8 42,9 (21,9) 30,1 > 1h > 1h > 1h 12,7 13,4

(unsat) n 4288 22792 (5763) 4582 – – – 2852 2846
ash608-4 t 3,3 20,1 (1,8) 81,3 35,1 136,2 123,3 2,6 1,2

(sat) n 3146 21346 (1823) 2291 3860 2452 2293 2586 1266
ash958-4 t 12,8 36,8 (3) 299,2 111,4 > 1h > 1h 11,6 1,2

(sat) n 8369 27322 (1992) 3870 5105 – – 7399 1266
ash313-5 t 18,2 134,7 (18,4) 43,2 172,2 442,1 489,7 19,4 19
(unsat) n 512 10204 (512) 512 512 512 512 512 512

ash313-7 t 828,4 1011 (809,6) 1271 1015 > 1h > 1h 995,7 1056
(unsat) n 20587 35135 (19990) 20139 20539 – – 20411 20406

Averaged time t 184,4 245,8 264,9 – – – 204,2 204,3

Results are presented in Table 5. Here again the conflict-driven heuristics have the best performance
in most cases. The Impact based heuristics have the best cpu performance in two instances (cc-15-15-2
and series-16), but on the other hand they cannot solve 4 instances within the time limit.

We must also note here that although the “node impact” and “impact RSC” heuristics are slow on
chessboard coloration instances, they visit less nodes. In general, with impact based heuristics there
are cases where we can have a consistent reduction in number of visited nodes, albeit at the price of
increasing the running time.

Random probing is very expensive for non-binary problems, especially when the arity of the con-
straints is large and the cost of constraint propagation is high. As a result, adding random probing forced
the solver to time out on many instances.
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Table 4. Cpu times (t), and nodes (n) from random problems. Best cpu time is in bold.

Instance d/wdeg d/wdeg d/wdeg Impact Node Impact alldel fully

r.probe RSC Impact RSC by #del assigned

ehi-85-0 t 2,1 94,2 (0,15) 2,7 11,7 12,1 12 0,15 1,2
(unsat) n 722 8005 (4) 61 3 3 3 4 149

ehi-85-2 t 1 101,6 (0,15) 2,4 11,8 12,4 12,4 5,6 1,1
(unsat) n 248 7944 (5) 12 4 4 4 650 145

geo50-d4- t 334,9 526 (490,6) 311,3 > 1h > 1h > 1h 280 129,2
75-2(sat) n 50483 88615 (76247) 46772 – – – 42946 18545

frb30-15-1 t 10,5 42 (15,4) 13,2 66,4 295,6 375,6 20,5 15,6
(sat) n 3557 15833 (4426) 3275 17866 71052 85017 6044 4493

frb30-15-2 t 63,7 123,6 (97,8) 55,4 273,4 5,4 391,3 86,8 91,2
(sat) n 21330 38765 (27458) 20019 79936 1306 81911 26596 26296

40-8-753- t 76,5 70,9 (45,9) 60,4 2117 404,5 931,3 50,5 486,3
0,1 (sat) n 21164 21369 (13422) 15239 523831 67979 180281 13823 127686

40-11-414- t 1192 1261 (1234) 1219 > 1h > 1h > 1h 1178 1162
0,2 (unsat) n 336691 354778 (345212) 345886 – – – 346368 332844

40-16-250- t 2919 2928 (2895) 3172 > 1h > 1h > 1h 2893 3038
0,35 (unsat) n 741883 755386 (743183) 750910 – – – 747757 764989

40-25-180- t 2481 2689 (2632) 2878 > 1h > 1h > 1h 2340 2606
0,5 (unsat) n 373742 402266 (385072) 390292 – – – 349685 389603

Averaged time t 786,7 870,7 857,1 – – – 761,6 836,7

Table 5. Cpu times (t), and nodes (n) from problems with non-binary constraints. Best cpu time is in bold.

Instance d/wdeg d/wdeg d/wdeg Impact Node Impact alldel fully

r.probe RSC Impact RSC by #del assigned

cc-10-10-2 t 31 40,6 (30,3) 47,7 31,3 193,1 219,2 29,9 33,1
(unsat) n 16790 20626 (15800) 16544 16161 10370 10233 15639 15930

cc-12-12-2 t 50,7 67,6 (14,3) 79,3 65 523,6 555,6 49,1 54,3
(unsat) n 16897 19429 (49780) 16596 21532 13935 13564 16292 16135

cc-15-15-2 t 98,6 125 (94,5) 159,7 91,3 1037 1134 103,6 102,1
(unsat) n 16948 20166 (14881) 16674 16437 10374 10012 15741 15945

series-16 t 147,3 543,9 (516,5) 177,6 > 1h > 1h > 1h > 1h > 1h

(sat) n 49857 155102 (146942) 51767 – – – – –

series-18 t > 1h > 1h > 1h > 1h > 1h > 1h > 1h > 1h

(sat) n – – – – – – – –

renault-mod-0 t 1285 > 1h 2675 > 1h > 1h > 1h 1008 776,2
(sat) n 288 – 251 – – – 166 179

renault-mod-1 t 2126 > 1h 2283 > 1h > 1h > 1h 431,4 785,4
(unsat) n 474 – 469 – – – 161 234

renault-mod-3 t 2598 > 1h 2977 > 1h > 1h > 1h 993,5 435,7
(unsat) n 546 - 475 – – – 203 176
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Table 6. Cpu times (t), and nodes (n) from boolean problems. Best cpu time is in bold.

Instance d/wdeg d/wdeg d/wdeg Impact Node Impact alldel fully

r.probe RSC Impact RSC by #del assigned

jnh01 t 10,2 95,2 (3,5) 14,2 2,2 13,2 13 4,2 6,2
(sat) n 970 5215 (362) 515 100 100 100 481 692

jnh17 t 3,1 57,3 (0,5) 18,8 1,9 10,1 9,9 1,4 1,5
(sat) n 477 4914 (189) 1233 132 131 131 216 204

jnh201 t 3 79,6 (2,1) 3,3 2,6 11 10,7 1,13 1,14
(sat) n 336 5222 (121) 168 177 180 180 179 178

jnh301 t 33,4 121 (14,5) 38,2 2,2 5,7 5,5 7 8
(sat) n 2671 6144 (1488) 1541 110 108 108 608 787

aim-50-1- t 0,15 0,43 (0,13) 0,21 0,82 0,49 0,5 0,07 0,08
6-unsat-2 n 1577 6314 (1404) 1412 6774 474 474 691 474

aim-100-1- t 0,34 1,47 (1,05) 1,42 91 4,3 6,3 0,16 0,2
6-unsat-1 n 3592 17238 (10681) 7932 697503 2338 3890 1609 1229

aim-200-1- t 0,76 1,28 (0,47) 2,1 1,66 1,9 1,8 0,24 0,26
6-sat-1 n 4665 11714 (3236) 1371 4747 213 213 1756 1442

aim-200-1- t 1,9 3,2 (2,4) 5,3 105,9 4,8 8,5 0,19 0,23
6-unsat-1 n 12748 26454 (16159) 28548 436746 1615 3654 1255 1093

pret-60- t 1255 1385 (1385) > 1h 3589 > 1h > 1h 1027 1108
25 (unsat) n 44,6M 44,777M (43,773M) – 95,4M – – 42,5M 43,8M

dubois-20 t 1196 1196 (1196) > 1h > 1h > 1h > 1h 1004 1245
(unsat) n 44,9M 44,461M (44,457M) – – – – 40,5M 43,8M

Averaged time t 250,3 294 857,1 – – – 204,5 237

4.6. Boolean instances

This set of experiments contains instances involving only Boolean variables and non-binary constraints.
We have selected a representative subset from Dimacs problems. To be precise, we have included a subset
of the “jnhSat” collection which includes the hardest instances from this collection, 4 randomly selected
instances from the “aim” set, where all problems are relatively easy to solve, and the first instance from
the “pret” and “dubois” sets, which include very hard instances. All the selected instances have constraint
arity of 3, except for the “jnhSat” instances which have maximum arity of 14.

Results from these experiments can be found in Table 6. The behavior of the evaluated heuristics
in this data set is slightly different from the behavior that we observed in previous problems. Although
conflict-driven heuristics again display the best overall performance, impact based heuristics are in some
cases faster.

The main bottleneck that impact based heuristics have, is the time consuming initialization process.
On Boolean instances, where the variables have binary domains, the cost for the initialization of impacts
is small. And this can significantly increase the performance of these heuristics.

Among the conflict-driven heuristics, the “alldel” heuristic is always better than its competitors. We
recall here that in this heuristic constraint weights are increased by the size of the domain reduction.
Hence, on binary instances constraint weights can be increased at minimum by one and at maximum by
two (in each DWO).
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The same good performance of the “alldel” heuristic was also observed in 30 additional instances
from the Dimacs problem class (“aim” instances) not shown here. These extended experiments showed
that this way of incrementing weights seems to work better on Boolean problems where the deletion of
a single value is of greater importance compared to problems with large domains, i.e. it is more likely to
lead to a DWO.

4.7. The effect of restarts on the results

In all the experiments reported in the previous sections we followed a geometric restart policy. This
policy were introduced in [40] and it has been shown to be very effective. However, different restart
policies can be applied within the search algorithm, or we can even discard restarts in favor of a single
search run. In order to check how the selected restart policy affects the performance of the evaluated
variable ordering heuristics, we ran some additional experiments.

Apart from the geometric restart policy which we used on the previous experiments, we also tried an
arithmetic restart policy. In this policy the initial number of allowed backtracks for the first run has been
set to 10 and at each new run the number of allowed backtracks increases also by 10. We have also tested
the behavior of the heuristics without the use of any restarts.

Selected results are depicted in Table 7. Unsurprisingly, results show that the arithmetic restart policy
is clearly inefficient. On instances that can be solved within a small number of restarts (like scen11,
ehi-85-297-0, rb30-15-1 and ash958GPIA-4), the differences between the arithmetic and the geometric
restart policies are small. But, when some problem (like scen11-f7, aim-200-1-6, langford-4-10 and cc-
12-12-2) requires a large number of restarts to be solved, the geometric restart policy clearly outperforms
the arithmetic one. Importantly for the purposes of this paper, this behavior is independent of the selected
variable ordering heuristic.

Comparing search without restart to the geometric restart policy, we can see that the latter is more ef-
ficient some instances. But in general restarts are necessary to solve very hard problems. Importantly, the
relative behavior of the conflict-driven heuristics compared to impact based heuristics is not significantly
affected by the presence or absence of restarts. That is, the conflict-driven heuristics are always faster
than the impact based ones, with or without restarts. Some small differences in the relative performance
of the conflict-driven heuristics can be noticed when no restarts are used, but they generally have similar
cpu times. Random probing seems to work better with no restarts, in accordance with the results and
conjectures in [39], but this small improvement is not enough for it to become more efficient than the
dom/wdeg, “alldel” and “fully assigned” heuristics.

4.8. Using random value ordering

As noted at the beginning of Section 4, all the experiments were ran with a lexicographic value ordering.
In order to check if this affects the performance of the evaluated variable ordering heuristics, we have
ran some additional experiments. In these experiments we study the performance of the heuristics when
random value ordering is used.

Selected results are depicted in Table 8 where we show cpu times for both random and lexicographic
value ordering. Concerning the random value ordering, all the results presented here are averaged values
for 50 runs. Looking at the results and comparing the performance of the heuristics under the differ-
ent value orderings, we can see some differences in cpu time. However, the relative behavior of the
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Table 7. Cpu times for the three selected restart policies: without restarts, arithmetic restarts and geometric
restarts. Best cpu time is in bold.

Instance restart d/wdeg d/wdeg d/wdeg Impact Node Impact alldel fully

policy r.probe RSC Impact RSC by #del assigned

scen11 no restart 42,5 102,2 148,3 > 1h > 1h > 1h 112,4 41,3
(sat) arithmetic 8 109,5 142,7 29 211,3 218,3 4 4,5

geometric 5,5 118,1 141,2 29,3 210,6 224,8 4 4,3

scen11-f7 no restart > 1h 109 > 1h > 1h > 1h > 1h > 1h > 1h

(unsat) arithmetic 1848 1464 1991 > 1h > 1h > 1h 3207 2164
geometric 133,7 189,9 211,2 > 1h > 1h > 1h 130,6 137,7

aim-200-1-6 no restart 4,8 1,5 4,7 2,3 2,8 3,1 0,28 0,31
(unsat) arithmetic 81,4 150,3 212,7 124,8 9,4 9,2 0,39 0,27

geometric 1,9 3,2 5,3 105,9 4,8 8,5 0,19 0,23

ehi-85-297-0 no restart 17,1 90,4 7,1 11,8 12,2 12,4 0,16 1,9
(unsat) arithmetic 2 102,2 2,8 12,8 12,4 12,3 0,15 1,18

geometric 2,1 94,2 2,7 11,7 12,1 12 0,15 1,2

frb30-15-1 no restart 3,2 30,1 3,6 152,6 215,1 201,5 7,1 3,8
(sat) arithmetic 15,9 149,2 15,1 303,9 626,1 532,5 184,3 201,2

geometric 10,5 42 13,2 66,4 295,6 375,6 20,5 15,6

langford-4-10 no restart 16,2 193,7 24,6 59,1 74,6 79,3 24,1 20,8
(unsat) arithmetic 521,1 749,7 557,2 2579 904,1 1293 1011 744,9

geometric 65,9 238,2 101,2 183,4 289,3 301,1 106,7 70,3

cc-12-12-2 no restart 17 27,6 25,4 16,4 115,9 98,2 17,9 17,2
(unsat) arithmetic 2939 1976 > 1h > 1h > 1h > 1h 2501 2589

geometric 50,7 67,6 79,3 65 523,6 555,6 49,1 54,3

ash958GPIA-4 no restart 10,4 35,6 162,2 383,7 > 1h > 1h 6,3 6,4
(sat) arithmetic 13 36,2 310,2 118,3 > 1h > 1h 14 10,7

geometric 12,8 36,8 299,2 111,4 > 1h > 1h 11,6 1,2

conflict-driven heuristics compared to impact based heuristics is not significantly affected by the use of
lexicographic or random value ordering.

4.9. A general summary of the results

In order to get a summarized view of the evaluated heuristics, we present six figures. In these fig-
ures we have included cpu time and number of visited nodes for the three major conflict-driven variants
(dom/wdeg, “alldell” and “fully assigned”) and we have compared them graphically to the Impact heuris-
tic (which has the best performance among the impact based heuristics).

Results are collected in Figure 1. The left plots in these figures correspond to cpu times and the
right plots to visited nodes. Each point in these plots, shows the cpu time (or nodes visited) for one
instance from all the presented benchmarks. The y-axes represent the solving time (or nodes visited)
for the Impact heuristic and the x-axes the corresponding values for the dom/wdeg heuristic (Figures
(a) and (b)), “alldell” heuristic (Figures (c) and (d)) and “fully assigned” heuristic (Figures (e) and (f)).
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Table 8. Cpu times for the two different value orderings: lexicographic and random. Best cpu time for each
ordering is in bold.

Instance value d/wdeg d/wdeg d/wdeg Impact Node Impact alldel fully

ordering r.probe RSC Impact RSC by #del assigned

scen11-f7 random 161 232,5 191,3 > 1h > 1h > 1h 157,2 178,9
(unsat) lexico 133,7 189,9 211,2 > 1h > 1h > 1h 130,6 137,7

aim-200-1-6 random 2,3 2,3 6,2 11,9 6,4 6,1 0,18 0,23
(unsat) lexico 1,9 3,2 5,3 105,9 4,8 8,5 0,19 0,23

ehi-85-297-0 random 1,3 3,5 5,1 11,4 11,8 11,9 0,16 0,8
(unsat) lexico 2,1 94,2 2,7 11,7 12,1 12 0,15 1,2

frb30-15-1 random 39,7 52,8 27,5 120,9 132,4 123,6 32,3 28,2
(sat) lexico 10,5 42 13,2 66,4 295,6 375,6 20,5 15,6

langford-4-10 random 61,2 229,8 75,4 155,7 255,7 249,6 280,5 83,8
(unsat) lexico 65,9 238,2 101,2 183,4 289,3 301,1 106,7 70,3

cc-12-12-2 random 55,6 74,5 82,4 51,2 423,9 437,2 55,8 54,8
(unsat) lexico 50,7 67,6 79,3 65 523,6 555,6 49,1 54,3

ash958GPIA-4 random 5,3 35,6 242,2 106,6 515,4 450,1 3,8 3,9
(sat) lexico 12,8 36,8 299,2 111,4 > 1h > 1h 11,6 1,2

Therefore, a point above line y = x represents an instance which is solved faster (or with less node
visits) using one of the conflict-driven heuristics. Both axes are logarithmic.

As we can clearly see from Figure 1 (left plots), conflict-driven heuristics are almost always faster.
Concerning the numbers of visited nodes, the right plots do not reflect an identical performance. Al-
though it seems that in most cases conflict-driven heuristics are making a better exploration in the search
tree, there is a considerable set of instances where the Impact heuristic visit less nodes.

The main reason for this variation in performance (cpu time versus nodes visited) that the impact
heuristic has, is the time consuming process of initialization. The idea of detecting choices which are
responsible for the strongest domain reduction is quite good. This is verified by the left plots of Figure 1.
But the additional computational overhead of computing the “best” choices, really affect the overall
performance of the impact heuristic (Figure 1, right plots). As our experiments showed the impact
heuristic cannot handle efficiently problems which include variables with relatively large domains. For
example in the RLFA problems where we have 680 variables with at most 44 values in their domains
results in Table 2 verified our hypothesis. On the other hand in problems where variables have only a
few values in their domains (as in the Boolean instances of Section 4.6) results showed that the impact
heuristic is quite competitive.

Finally, it has to be noted that the dominant conflict-driven heuristics are generic and can be also
applied in solvers that use 2-way branching and make heavy use of propagators2 for global constraints,
as do most commercial solvers. In the case of 2-way branching the heuristics can be applied in exactly the
same way as in d-way branching. In the case of global constraints simple modifications may be necessary,
for example to associate each constraint with a weight independent from the propagator chosen for the
constraint. But having said these, it remains to be verified experimentally whether the presence of global

2A propagator is essentially a specialized filtering algorithm for a constraint.
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constraints or the application of 2-way instead of d-way branching influence the relevant performance of
the heuristics.

5. Conflict-driven revision ordering heuristics

Having demonstrated that conflict-driven heuristics such as dom/wdeg are the dominant modern variable
ordering heuristics, we turn our attention to the use of failures discovered during search in a different
context. To be precise, we investigate their use in devising heuristics for the ordering of the (G)AC
revision list.

It is well known that the order in which the elements of the revision list are processed affects the
overall cost of the search [38, 7, 34]. This is true for solvers that implement variable or constraint based
propagation as well as for propagator oriented solvers like Ilog Solver and Geocode. In general, revision
ordering and variable ordering heuristics have different tasks to perform when used by a search algorithm
like MAC. Prior to the emergence of conflict-driven heuristics there was no way to achieve an interaction
with each other, i.e. the order in which the revision list was organized during the application of AC could
not affect the decision of which variable to select next (and vice versa). The contribution of revision
ordering heuristics to the solver’s efficiency was limited to the reduction of list operations and constraint
checks.

In this section we first show that the ordering of the revision list can affect the decisions taken by a
conflict-driven DVO heuristic. That is, different orderings can lead to different parts of the search space
being explored. Based on this observation, we then present a set of new revision ordering heuristics that
use constraint weights, which can not only reduce the numbers of constraints checks and list operations,
but also cut down the size of the explored search tree. Finally, we demonstrate that some conflict-driven
DVO heuristics, e.g. “alldel” and “fully assigned”, are less amenable to changes in the revision list
ordering than others (e.g. dom/wdeg).

First of all, to illustrate the interaction between a conflict-driven variable ordering heuristic and
revision list orderings, we give the following example.

Example 5.1. Assume that we want to solve a CSP (X,D,C), where X contains n variables {x1, x2,...,
xn}, using a conflict-driven variable ordering heuristic (e.g. dom/wdeg), and that at some point during
search and propagation the variables pending for revision are x1 and x5. Also assume that two of the
constraints in the problem are x1 > x2 and x5 > x6, and that the domains of x1, x2, x5, x6 are as
follows: D(x1) = D(x5) = {0, 1}, D(x2) = D(x6) = {2, 3}. Given these constraints and domains, the
revision of x1 against x2 would result in the DWO of x1, and the revision of x5 against x6 would result
in the DWO of x5. Independent of which variable is selected to be revised first (i.e. either x1 or x5), a
DWO will be detected and the solver will reject the current variable assignment. However, depending
on the order of revisions, the dom/wdeg heuristic will increase the weight of a different constraint. To
be precise, if a revision ordering heuristic R1 selects to revise x1 first then the DWO of D(x1) will be
detected and the weight of constraint c12 will be increased by 1. If some other revision ordering heuristic
R2 selects x5 first then the DWO of D(x5) will be detected, but this time the weight of constraint c56

will be increased by 1. Since increases in constraint weights affect the subsequent choices of the variable
ordering heuristic, R1 and R2 can lead to different future decisions for variable instantiation. Thus, R1

and R2 may guide search to different parts of the search space.
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(a) (b)

(c) (d)

(e) (f)

Figure 1. A summary view of run times (left figures) and nodes visited (right figures), for dom/wdeg and impact
heuristics (figures (a),(b)), “alldell” and impact heuristics (figures (c),(d)), “fully assigned” and impact heuristics
(figures (e),(f)).
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From the above example it becomes clear that the revision ordering can have an important impact on
the performance of conflict-driven heuristics like dom/wdeg. One might argue that a way to overcome
this is to continue propagation after the first DWO is detected, try to identify all possible DWOs and
increase the weights of all constraints involved in failures. The problem with this approach is threefold:
First, it may increase the cost of constraint propagation significantly, second it requires modifications in
the way all solvers implement constraint propagation (i.e. stopping after a failure is detected), and third,
experiments we have run showed that the possibility of more than one DWO occurring is typically very
low. As we will discuss in Section 5.5, some variants of dom/wdeg are less amenable to different revision
orderings, i.e. their performance do not depend on the ordering as much, without having to implement
this potentially complex approach.

In the following we first review three standard implementations of revision lists for AC, i.e. the
arc-oriented, variable-oriented, and constraint-oriented variants. Then, we summarize the major revision
ordering heuristics that have been proposed so far in the literature, before describing the new efficient
revision ordering heuristics we propose.

5.1. AC variants

The numerous AC algorithms that have been proposed can be classified into coarse grained and fine
grained. Typically, coarse grained algorithms like AC-3 [25] and its extensions (e.g. AC2001/3.1 [6] and
AC-3d [16]) apply successive revisions of arcs, variables, or constraints. On the other hand, fine grained
algorithms like AC-4 [28] and AC-7 [4] use various data structures to apply successive revisions of
variable-value-constraint triplets. Here we are concerned with coarse grained algorithms, and specifically
AC-3. There are two reasons for this. First, although AC-3 does not have an optimal worst-case time
complexity, as the fine grained algorithms do, it is competitive and often better in practice and has
the additional advantage of being easy to implement. Second, many constraint solvers that can handle
constraints of any arity follow the philosophy of coarse grained AC algorithms in their implementation
of constraint propagation. That is, they apply successive revisions of variables or constraints. Hence,
the revision ordering heuristics we describe below can be easily incorporated into most of the existing
solvers.

As mentioned, the AC-3 algorithm can be implemented using a variety of propagation schemes.
We recall here the three variants, following the presentation of [7], which respectively correspond to
algorithms with an arc-oriented, variable-oriented or constraint-oriented propagation scheme.

The first one (arc-oriented propagation) is the most commonly presented and used because of its
simple and natural structure. Algorithm 1 depicts the main procedure. As explained, an arc is a pair
(cij , xj) which corresponds to a directed constraint. Hence, for each binary constraint cij involving
variables xi and xj there are two arcs, (cij , xj) and (cij , xi). Initially, the algorithm inserts all arcs in the
revision list Q. Then, each arc (cij , xj) is removed from the list and revised in turn. If any value inD(xj)
is removed when revising (cij , xj), all arcs pointing to xj (i.e. having xi as second element in the pair),
except (cij , xi), will be inserted in Q (if not already there) to be revised. Algorithm 2 depicts function
REVISE(cij , xj) which seeks supports for the values of xj in D(xi). It removes those values in D(xj)
that do not have any support in D(xi). The algorithm terminates when the list Q becomes empty.

The variable-oriented propagation scheme was proposed by McGregor [27] and later studied in [12].
Instead of keeping arcs in the revision list, this variant of AC-3 keeps variables. The main procedure is
depicted in Algorithm 3. Initially, all variables are inserted in the revision list Q. Then each variable xi
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Algorithm 1 ARC-ORIENTED AC3
1: Q←{(cij , xj) | cij ∈ C and xj ∈ vars(cij)}
2: while Q 6= ∅ do
3: select and delete an arc (cij , xj) from Q
4: if REVISE(cij , xj) then
5: Q← Q ∪ {(ckj , xk) | ckj ∈ C, k 6= i}
6: end if
7: end while

Algorithm 2 REVISE(cij , xi)
1: DELETE← false
2: for each a ∈ D(xi) do
3: if @ b ∈ D(xj) such that (a, b) satisfies cij then
4: delete a from D(xi)
5: DELETE← true
6: end if
7: end for
8: return DELETE

Algorithm 3 VARIABLE-ORIENTED AC3
1: Q← {xi | xi ∈ X}
2: ∀ cij ∈ C,∀xi ∈ vars(cij), ctr(cij , xi)← 1
3: while Q 6= ∅ do
4: get xi from Q
5: for each cij | xi ∈ vars(cij) do
6: if ctr(cij , xi) = 0 then continue
7: for each xj ∈ vars(cij) do
8: if NEEDS-NOT-BE-REVISED(cij , xj) then continue
9: nbRemovals← REVISE(cij , xj)

10: if nbRemovals > 0 then
11: if dom(xj) = ∅ then return false
12: Q← Q ∪ {xj}
13: for each cjk | cjk 6= cij ∧ xj ∈ vars(cjk) do
14: ctr(cjk, xj)← ctr(cjk, xj) + nbRemovals
15: end for
16: end if
17: end for
18: for each xj ∈ vars(cij) do ctr(cij , xj)← 0
19: end for
20: end while
21: return true
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Algorithm 4 NEEDS-NOT-BE-REVISED(cij , xi)
1: return (ctr(cij , xi) > 0 and @xj ∈ vars(cij) | xj 6= xi ∧ ctr(cij , xj) > 0)

Algorithm 5 CONSTRAINT-ORIENTED AC3
1: Q← {cij | cij ∈ C}
2: ∀ cij ∈ C,∀xi ∈ vars(cij), ctr(cij , xi)← 1
3: while Q 6= ∅ do
4: get cij from Q
5: for each xj ∈ vars(cij) do
6: if NEEDS-NOT-BE-REVISED(cij , xj) then continue
7: nbRemovals← REVISE(cij , xj)
8: if nbRemovals > 0 then
9: if dom(xj) = ∅ then return false

10: for each cjk | cjk 6= cij ∧ xj ∈ vars(cjk) do
11: Q← Q ∪ {xj}
12: ctr(cjk, xj)← ctr(cjk, xj) + nbRemovals
13: end for
14: end if
15: end for
16: for each xj ∈ vars(cij) do ctr(cij , xj)← 0
17: end while
18: return true

is removed from the list and each constraint involving xi is processed. For each such constraint cij we
revise the arc (xj ,xi). If the revision removes some values from the domain of xj , then variable xj is
inserted in Q (if not already there).

Function NEEDS-NOT-BE-REVISED given in Algorithm 4, is used to determine relevant revisions.
This is done by associating a counter ctr(cij ,xi) with any arc (xi,xj). The value of the counter denotes
the number of removed values in the domain of variable xi since the last revision involving constraint
cij . If xi is the only variable in vars(cij) that has a counter value greater than zero, then we only need
to revise arc (xj ,xi). Otherwise, both arcs are revised.

The constraint-oriented propagation scheme is depicted in Algorithm 5. This algorithm is an ana-
logue to Algorithm 3. Initially, all constraints are inserted in the revision list Q. Then each constraint cij
is removed from the list and each variable xj ∈ vars(cij) is selected and revised. If the revision of the
selected arc (cij , xj) is fruitful, then the reinsertion of the constraint cij in the list is needed. As in the
variable-oriented scheme, the same counters are also used here to avoid useless revisions.

5.2. Overview of revision ordering heuristics

Revision ordering heuristics is a topic that has received considerable attention in the literature. The
first systematic study on this topic was carried out by Wallace and Freuder, who proposed a number
of different heuristics that can be used with the arc-oriented variant of AC-3 [38]. These heuristics,
which are defined for binary constraints, are based on three major features of CSPs: (i) the number of
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acceptable pairs in each constraint (the constraint size or satisfiability), (ii) the number of values in each
domain and (iii) the number of binary constraints that each variable participates in (the degree of the
variable). Based on these features, they proposed three revision ordering heuristics: (i) ordering the list
of arcs by increasing relative satisfiability (sat up), (ii) ordering by increasing size of the domain of the
variables (dom j up) and (iii) ordering by descending degree of each variable (deg down).

The heuristic sat up counts the number of acceptable pairs of values in each constraint (i.e the num-
ber of tuples in the Cartesian product built from the current domains of the variables involved in the
constraint) and puts constraints in the list in ascending order of this count. Although this heuristic re-
duces the list additions and constraint checks, it does not speed up the search process. When a value is
deleted from the domain of a variable, the counter that keeps the number of acceptable arcs has to be
updated. This process is usually time consuming because the algorithm has to identify the constraints in
which the specific variable participates and to recalculate the counters with acceptable value pairs. Also
an additional overhead is needed to reorder the list.

The heuristic dom j up counts the number of remaining values in each variable’s current domain
during search. Variables are inserted in the list by increasing size of their domains. This heuristic
reduces significantly list additions and constraint checks and is the most efficient heuristic among those
proposed in [38].

The deg down heuristic counts the current degree of each variable. The initial degree of a variable xi
is the number of variables that share a constraint with xi. During search, the current degree of xi is the
number of unassigned variables that share a constraint with xi. The deg down heuristic sorts variables
in the list by decreasing size of their current degree. As noticed in [38] and confirmed in [7], the (deg
down) heuristic does not offer any improvement.

Gent et al. [19] proposed another heuristic called kac. This heuristic is based on the number of
acceptable pairs of values in each constraint and tries to minimize the constrainedness of the resulting
subproblem. Experiments have shown that kac is time expensive but it performs less constraint checks
when compared to sat up and dom j up.

Boussemart et al. [7] performed an empirical investigation of the heuristics of [38] with respect to the
different variants (arc, variable and constraint) of AC-3. In addition, they introduced some new heuristics.
Concerning the arc-oriented AC-3 variant, they have examined the dom j up as a stand alone heuristic
(called domv) or together with deg down which is used in order to break ties (called ddeg ◦ domv).
Moreover, they proposed the ratio sat up/dom j up (called domc/domv) as a new heuristic. Regarding
the variable-oriented variant, they adopted the domv and ddeg heuristics from [38] and proposed a new
one called remv. This heuristic corresponds to the greatest proportion of removed values in a variable’s
domain. For the constraint-oriented variant they used domc (the smallest current domain size) and remc

(the greatest proportion of removed values in a variable’s domain). Experimental results showed that the
variable-oriented AC-3 implementation with the domv revision ordering heuristic (simply denoted dom
hereafter) is the most efficient alternative.

5.3. Revision ordering heuristics based on constraint weights

The heuristics described in the previous subsection, and especially dom, improve the performance of
AC-3 (and MAC) when compared to the classical queue or stack implementation of the revision list.
This improvement in performance is due to the reduction in list additions and constraint checks. A key
principle that can have a positive effect on the performance of the AC algorithms is the “ASAP principle”
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by Wallace and Freuder [38] which urges to “remove domain values as soon as possible”. Considering
revision ordering heuristics this principle can be translated as follows: When AC is applied during search
(within an algorithm such as MAC), to reach as early as possible a failure (DWO), order the revision list
by putting first the arc or variable which will guide you to early value deletions and thus, most likely,
earlier to a DWO.

To apply the “ASAP principle” in revision ordering heuristics, we must use some metric to compute
which arc (or variable) in the AC revision list is the most likely to cause failure. Until now, constraint
weights have only been used for variable selection. In the next paragraphs we describe a number of new
revision ordering heuristics for all three AC-3 variants. These heuristics use information about constraint
weights as a metric to order the AC revision list and they can be used efficiently in conjunction with
conflict-driven variable ordering heuristics to boost search.

The main idea behind these new heuristics is to handle as early as possible potential DWO-revisions
by appropriately ordering the arcs, variables, or constraints in the revision list. In this way the revision
process of AC will be terminated earlier and thus constraint checks can be reduced significantly. More-
over, with such a design we may be able to avoid many redundant revisions. As will become clear, all of
the proposed heuristics are lightweight (i.e. cheap to compute) assuming that the weights of constraints
are updated during search.

Arc-oriented heuristics are tailored for the arc-oriented variant where the list of revisions Q stores
arcs of the form (cij ,xi). Since an arc consists of a constraint cij and a variable xi, we can use information
about the weight of the constraint, or the weight of the variable, or both, to guide the heuristic selection.
These ideas are the basis of the proposed heuristics described below. For each heuristic we specify the
arc that it selects. The names of the heuristics are preceded by an “a” to denote that they are tailored for
arc-oriented propagation.

• a wcon: selects the arc (cij ,xi) such that cij has the highest weight wcon among all constraints
appearing in an arc in Q.

• a wdeg: selects the arc (cij ,xi) such that xi has the highest weighted degree wdeg among all
variables appearing in an arc in Q.

• a dom/wdeg: selects the arc (cij ,xi) such that xi has the smallest ratio between current domain
size and weighted degree among all variables appearing in an arc in Q.

• a dom/wcon: selects the arc (cij ,xi) having the smallest ratio between the current domain size of
xi and the weight of cij among all arcs in Q.

The call to one of the proposed arc-oriented heuristics can be attached to line 3 of Algorithm 1. Note
that heuristics a dom/wdeg and a dom/wcon favor variables with small domain size hoping that the
deletion of their few remaining values will lead to a DWO. To strictly follow the “ASAP principle” which
calls for early value deletions we intend to evaluate the following heuristics in the future:

• a dom/wdeg inverse: selects the arc (cij ,xi) such that xj has the smallest ratio between current
domain size and weighted degree among all variables appearing in an arc in Q.

• a dom/wcon inverse: selects the arc (cij ,xi) having the smallest ratio between the current do-
main size of xj and the weight of cij among all arcs in Q.
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Heuristics a dom/wdeg inverse and a dom/wcon inverse favor revising arcs (cij ,xi) such that
xj , i.e. the other variable in constraint cij , has small domain size. This is because in such cases it is more
likely that some values in D(xi) will not be supported in D(xj), and hence will be deleted.

Variable-oriented heuristics are tailored for the variable-oriented variant of AC-3 where the list of
revisions Q stores variables. For each of the heuristics given below we specify the variable that it selects.
The names of the heuristics are preceded by an “v” to denote that they are tailored for variable-oriented
propagation.

• v wdeg: selects the variable having the highest weighted degree wdeg among all variables in Q.

• v dom/wdeg: selects the variable having the smallest ratio between current domain size and wdeg
among all variables in Q.

The call to one of the proposed variable-oriented heuristics can be attached to line 4 of Algorithm 3.
After selecting a variable, the algorithm revises, in some order, the constraints in which the selected
variable participates (line 5). Our heuristics process these constraints in descending order according to
their corresponding weight.

Finally, the constraint-oriented heuristic c wcon selects a constraint cij from the AC revision list
having the highest weight among all constraints in Q. The call to this heuristic can be attached to line 4
of Algorithm 5. One can devise more complex constraint-oriented heuristics by aggregating the weighted
degrees of the variables involved in a constraint. However, we have not yet implemented such heuristics.

5.4. Experiments with revision ordering heuristics

In this section we experimentally investigate the behavior of the new revision ordering heuristics pro-
posed above on several classes of real world, academic and random problems. We only include results
for the two most significant arc consistency variants: arc and variable oriented. We have excluded the
constraint-oriented variant since this is not as competitive as the other two [7].

We compare our heuristics with dom, the most efficient previously proposed revision ordering heuris-
tic. We also include results from the standard fifo implementation of the revision list which always se-
lects the oldest element in the list (i.e. the list is implemented as a queue). In our tests we have used
the following measures of performance: cpu time in seconds (t), number of visited nodes (n), number of
constraint checks (c) and the number of times (r) a revision ordering heuristic has to select an element in
the propagation list Q.

Tables 9 and 10 show results from some real-world RLFAP instances. In the arc-oriented implemen-
tation of AC-3 (Table 9), heuristics a wcon, mainly, and a dom/wcon, to a less extent, decrease the
number of constraint checks and list revisions compared to dom. However, the decrease is not substan-
tial and is rarely leads into a decrease in cpu times. The notable speed-up observed for problem s11-f6
is mainly due to the reduction in the number of visited nodes offered by the two new heuristics. a wdeg
and a dom/wdeg are less competitive, indicating that information about the variables involved in arcs is
less important compared to information about constraints.

The variable-oriented implementation (Table 10) is clearly more efficient than the arc-oriented one.
This confirms the results of [7]. Concerning this implementation, heuristic v dom/wdeg in most cases is
better than dom and queue in all the measured quantities (number of visited nodes, constraint checks and
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Table 9. Cpu times (t), constraint checks (c), number of list revisions (r) and nodes (n) from frequency allocation
problems (hard instances) using arc oriented propagation. The s prefix stands for scen instances. Best cpu time is
in bold.

ARC ORIENTED
Inst. queue dom a wcon a wdeg a dom/wdeg a dom/wcon

s11-f9 t 18,8 12,8 14,6 14,8 19 14,2
c 25,03M 19,3M 13,2M 20,8M 21M 16,8M
r 1,1M 910060 529228 1,04M 1,01M 737803
n 1202 1153 1155 1145 1148 1159

s11-f8 t 37,5 20,3 22,5 21,9 28,5 23,5
c 46,5M 29,3M 19,1M 30,1M 32,9M 27,5M
r 1,95M 1,3M 748050 1,52M 1,43M 1,11M
n 1982 1830 1843 1876 1832 1928

s11-f7 t 257,5 146,5 170 265,2 205,8 326,2
c 268,4M 159,4M 128,5M 281,4M 205,1M 300M
r 13,3M 10,2M 6,1M 17,7M 12,1M 15M
n 17643 14734 15938 20617 15318 29845

s11-f6 t 568,5 465,2 309,4 540,4 834,9 396,4
c 482,3M 468,2M 230,8M 517,2M 745,4M 362,7M
r 27,5M 29,7M 10,4M 34,9M 49,5M 16,6M
n 46671 50021 29057 49201 68217 35860

s11-f5 t 2821 2307 3064 3234 2898 2291
c 2,492G 2,139G 2,097G 2,928G 2,596G 1,965G
r 137,8M 157M 116,5M 215,7M 172,2M 103,3M
n 212012 217407 287017 258261 185991 187363

s11-f4 t 11216 7774 8256 10386 12520 10473
c 9,938G 7,054G 5,298G 9,020G 10,711G 8,598G
r 533,4M 523,1M 311,7M 681,2M 738,1M 464,7M
n 753592 709196 762477 832892 850446 786924

list revisions). Importantly, these savings are reflected on notable cpu time gains making the variable-
oriented heuristic v dom/wdeg the overall winner. Results also show that as the instances becomes
harder, the efficiency of v dom/wdeg compared to dom increases. The variable-oriented v wdeg heuris-
tic in most cases is better than dom but is clearly less efficient than v dom/wdeg.

In Table 11 we present results from structured instances belonging to benchmark classes langford
and driver. As the variable-oriented AC-3 variant is more efficient than the arc-oriented one, we only
present results from the former. Results show that on easy problems all heuristics except queue are quite
competitive. But as the difficulty of the problem increases, the improvement offered by the v dom/wdeg
revision heuristic becomes clear. On instance driverlogw-09 we can see the effect that weight based
revision ordering heuristics can have on search. v dom/wdeg cuts down the number of node visits by
more than 5 times resulting in a similar speed-up. It is interesting that v dom/wdeg is considerably
more efficient than v wdeg and dom, indicating that information about domain size or weighted degree
alone is not sufficient to efficiently order the revision list.

Finally, in Table 12 we present results from random and quasi-random problems. In the geo50-
20-d4-75-2 , which is a quasi-random instance we can see that the proposed heuristics (v wdeg and
v dom/wdeg) are one order of magnitude faster than dom. This suggest that the small presence of
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Table 10. Cpu times (t), constraint checks (c), number of list revisions (r) and nodes (n) from frequency allocation
problems (hard instances) using variable oriented propagation. The s prefix stands for scen instances. Best cpu
time is in bold.

VARIABLE ORIENTED
Inst. queue dom v wdeg v dom/wdeg

s11-f9 t 14,3 10,2 10,9 9,9
c 22,6M 11,4M 12,9M 11M
r 28978 17177 20161 17048
n 1413 1117 1145 1137

s11-f8 t 21,2 17,3 18,5 16,7
c 42,1M 17,2M 20,4M 16,8M
r 48568 24885 28807 24819
n 2112 1842 1830 1841

s11-f7 t 133,7 158,1 154,5 108,2
c 193,3M 116,9M 157,6M 82,7M
r 313568 223094 263306 156160
n 12777 18773 14570 13181

s11-f6 t 391,4 391 434,4 269,5
c 306,2M 263,2M 413,6M 192,6M
r 426469 509474 673935 340583
n 34714 46713 41609 31538

s11-f5 t 2473 3255 2019 1733
c 2,073G 2,115G 1,502G 1,157G
r 3,63M 4,52M 2,97M 2,2M
n 223965 397590 190496 199854

s11-f4 t 13969 11859 9490 6669
c 12,059G 7,512G 6,915G 4,322G
r 20,3M 15,9M 14M 8,9M
n 1,148M 1,354M 939094 716427

structure is this problem results in behavior similar to the behavior observed in the structured instances
of Table 11.

On the rest of the instances, which are purely random, there is a large variance in the results. All
heuristics seems to lack robustness and there is no clear winner. The constraint weight based heuristics
can be faster than dom (instance frb30-15-1), but they can also be significantly slower (frb30-15-2). In
all cases, the large run time differences in favor of one or another heuristic are caused by corresponding
differences in the size of the explored search tree, as node visits clearly demonstrate.

A plausible explanation for the diversity in the performance of the heuristics on pure random prob-
lems as opposed to structured ones is the following. When dealing with structured problems, and as-
suming we use the variable-oriented variant of AC-3, a weighted based heuristic like v dom/wdeg will
give priority for revision to variables that are involved in hard subproblems and hence will carry out
DWO-revisions faster. This will in turn increase the weights of constraints that are involved in such hard
subproblems and thus search will focus on the most important parts of the search space. Pure random
instances that lack structure do not in general consist of hard local subproblems. Thus, different deci-
sions on which variables to revise first can lead to different DWO-revisions being discovered, which in
turn can guide search tree to different parts of the search space with unpredictable results. Note that for



28 T. Balafoutis and K. Stergiou / Evaluating and Improving Modern Variable and Revision Ordering Strategies in CSPs

Table 11. Cpu times (t), constraint checks (c), number of list revisions (r) and nodes (n) from structured problems
using variable oriented propagation. Best cpu time is in bold.

Instance queue dom v wdeg v dom/wdeg

langford-2-9 t 56,5 46,9 60,3 46,2
c 99,6M 81,7M 99,9M 81,5M
r 633113 533656 741596 533261
n 48533 40228 49114 40363

langford-2-10 t 489,8 430,6 418,9 340,1
c 336,1M 283,7M 275,2M 197,9M
r 5,3M 4,5M 4M 2,9M
n 337772 280600 260343 208651

langford-3-11 t 695,8 648,5 843,5 513,5
c 408,6M 352,7M 468,8M 256,7M
r 2,3M 1,9M 2,9M 1,6M
n 99508 68042 103863 65958

langford-4-10 t 81,4 57,7 99,4 41,2
c 52,3M 33,2M 59,6M 21,7M
r 150493 99646 194952 75889
n 3852 2973 5759 2661

driverlogw-08c t 19,4 14,7 14,4 14,6
c 20,8M 8,6M 10,9M 9M
r 86809 39063 40256 38748
n 3151 3040 1960 2660

driverlogw-09 t 174,6 411 346,3 70,1
c 151,5M 251,5M 203,6M 39,5M
r 521358 1,05M 583686 139962
n 21220 41039 31548 7457

structured problems only very few possible DWO-revisions are present in the revision list at each point
in time, while for random ones there can be a large number of such revisions.

5.5. Dependency of conflict-driven heuristics on the revision ordering

As we showed in the previous section, dom/wdeg is strongly dependent on the order in which the revision
list is constructed and updated during constraint propagation. Looking at the results in Tables 9 – 12, we
can see that there are cases where the differences in cpu performance between dom and v dom/wdeg
can be up to 5 times. Hence, when dom/wdeg is used as DVO heuristic, we must carefully select a good
revision ordering using for example one of the heuristics we have proposed in Section 5.3. In contrast,
the conflict-driven DVO heuristics “alldel” and “fully assigned” are not as amenable to the selection of
revision ordering. To better illustrate this statement, let us consider the following example.

Example 5.2. Assume that we want to solve a CSP (X,D,C) with X: {x1, x2, x3, x4}, by using
two different revision ordering heuristics R1 (lexicographic ordering) and R2 (reverse lexicographic
ordering). For the revision of each xi ∈ X , we assume that the following hypotheses are true: a) The
revision of x1 is fruitful and it causes the addition of the variable x3 in the revision list. b) The revision
of x2 is fruitful and it causes the addition of the variable x4 in the revision list. c) The revision of x4 is
fruitful and it causes the addition of the variable x3. We also assume the a DWO can only occur either d)
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Table 12. Cpu times (t), constraint checks (c), number of list revisions (r) and nodes (n) from random problems
using variable oriented propagation. Best cpu time is in bold.

Instance queue dom v wdeg v dom/wdeg

frb30-15-1 t 22,3 20,9 29,3 14,1
c 16,5M 11,1M 16,4M 7,5M
r 105626 70924 102724 46727
n 3863 3858 4138 2499

frb30-15-2 t 84,9 29,7 118,9 95
c 45,7M 21,8M 90M 68,9M
r 311040 149119 624360 472124
n 15457 7935 25148 24467

frb35-17-1 t 125,8 193,7 118 250,9
c 93,9M 144M 89,7M 180,9M
r 533694 836462 514258 1,03M
n 18587 40698 19167 50611

rand-2-30-15 t 1240 74,4 98 108,1
c 114,5M 53M 72,5M 78,1M
r 922251 443792 602582 642665
n 28725 19846 20192 28766

geo50-20-d4-75-2 t 226,1 401,8 34,8 39,5
c 191,8M 310,3M 28,2M 28,8M
r 778758 1,3M 117241 124163
n 20069 60182 3735 5484

in x4 after a sequential revision of x2 and x3 or e) in x3 after a sequential revision of x4 and x1. Finally,
assume that at some point during search only the variables x1 and x2 have remained in the AC revision
list Q, but with different orderings for R1 and R2. That is, QR1 :{x1,x2}, QR2 :{x2,x1}. Following all
these assumptions (which can exist commonly in any real world CSP), lets now trace the behavior of both
R1 and R2 during problem solving. Considering the QR1 list, the revision of x1 is fruitful and adds x3 in
the list (due to hypothesis a). Now the revision list changes to QR1 :{x2,x3}. The sequential revision of
x2 and x3 leads to the DWO of x4 (due to hypotheses b and d). Considering the QR2 list, the revision of
x2 is fruitful and adds x4 in the list (due to hypothesis b). Now the revision list changes to QR2 :{x4,x1}.
The sequential revision of x4 and x1 leads to the DWO of x3. (due to hypotheses c and e).

From the above example it is clear that although only one DWO is identified in the revision list,
both x1 and x2 can be responsible for this. In R1 where x1 is the DWO variable, we can say that
x2 is also a “potential” DWO variable i.e. it would be a DWO variable, if the R2 revision ordering
was used. Although the dom/wdeg heuristic ignores all the “potential” DWO variables, the other two
DVO heuristics,“alldel” and “fully assigned”, take into account their contribution. The former heuristic
increases the weights for every constraint that causes a value deletion, and thus succeeds to increase the
weights of the constraints related to the “potential” DWO variables. The latter heuristic increases the
weights of constraints that participate in fruitful revisions (only for revision lists that lead to a DWO),
and thus is able to frequently identify “potential” DWO variables.

To experimentally verify the strong dependance of dom/wdeg heuristic on the revision ordering and
the ability of the “alldel” and “fully assigned” heuristics to be less dependent, we have computed the
variance in the number of node visits for the three conflict-driven heuristics on some selected instances.
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Table 13. The computed variances for the three conflict-driven heuristics. Best values is in bold.

Instance dom/wdeg alldel fully assigned

scen-11 96732 7432 67
scen-11-f8 6893 2127 701
scen-11-f7 3974589 6384509 1454538

jnh01 6123 80 41280
jnh17 1316 52 91
jnh201 4238 12 7
jnh301 66738 19783 91

langford-2-10 7564932 4547893 10923451
driverlogw-08c 291287 8465 912
driverlogw-09 71643951 19821345 13189345

will199GPIA-5 1139 0 3717
will199GPIA-6 5313746 860138 614930

The variance is a measure of how spread out a distribution of a variable’s values is. A variable’s
spread is the degree to which the values of the variable differ from each other. If all values of the variable
were about equal, the variable would have very little spread. In other words, it is a measure of variability.
In our case the measured variable x is the number of visited nodes for the conflict-driven heuristics. For
each conflict-driven heuristic the x variable can take N=3 values. That is, the number of visited nodes
when any one of the 3 main revision ordering heuristics (queue, dom, v dom/wdeg) is used.

The variance is calculated by taking the arithmetic mean of the squared differences between each
value and the mean value, using the following equation:

V ARIANCE =
∑

(x− x̄)2

N
(4)

where x is the number of node visits when a specific revision ordering heuristic is used and x̄ is the mean
number of visited nodes of the N=3 main revision ordering heuristics (queue, dom, v dom/wdeg).

The smaller the variance of a conflict-driven heuristic, the less the dependance from the selected
revision ordering heuristic. Results from these experiments are depicted in Table 13. As we can see,
in almost all cases the dom/wdeg heuristic displays the highest variance, while the other two conflict-
driven heuristics in most cases have smaller values. This suggests that indeed the “alldel” and “fully
assigned” heuristics are less amenable to changes in the revision ordering than dom/wdeg and therefore
can be more robust.

Finally, it would be interesting to apply similar ideas as the ones presented in Section 5 to propagator-
heavy solvers. Constraint propagation in such solvers is not handled by a revision list of variables or
constraints, but they do use heuristics to choose the order in which propagators will be applied [34].
Hence taking exploiting information such as constraint weights might be beneficial.

6. Conclusions and future work

In this paper we experimentally evaluated the most recent and powerful variable ordering heuristics, and
new variants of them, over a wide range of academic, random and real world problems. These heuris-
tics can be divided in two main categories: heuristics that exploit information about failures gathered
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throughout search and recorded in the form of constraint weights and heuristics that measure the impor-
tance/impact of variable assignments for reducing the search space. Results demonstrate that heuristics
based on failures have much better cpu performance. Although impact based heuristics are in general
slow, there are some cases where they perform a smarter exploration of the search tree resulting in
fewer node visits. Among the tested conflict-driven heuristics, dom/wdeg seems to be the faster followed
closely by its variants “alldel” and “fully assigned”.

We also showed how information about failures can be exploited to design efficient revision ordering
heuristics for algorithms that maintain (G)AC using coarse grained arc consistency algorithms. The pro-
posed heuristics order the revision list by trying to carry out possible DWO-revisions as soon as possible.
Importantly, these heuristics can not only reduce the numbers of constraint checks and list operations but
they can also have a significant effect on search. Among the revision ordering heuristic we experimented
with, the one with best performance was v dom/wdeg in the variable-oriented implementation of arc
consistency.

Finally, we experimentally demonstrated that although dom/wdeg is the most efficient conflict-driven
heuristic, other conflict-driven heuristics like ‘alldel” and “fully assigned” have the advantage of being
less dependent on the revision ordering heuristic used. Hence, the performance of dom/wdeg can be less
predictable under different revision orderings.

As a future work, we intent to experimentally examine the behavior of the modern variable ordering
heuristics, on problems with global constraints. Concerning revision ordering heuristics, we plan to
evaluate the inverse arc-oriented heuristics: a dom/wdeg inverse and a dom/wcon inverse, which
favor revising arcs (cij ,xi) such that xj , has small domain size.
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