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1   Introduction 
This paper is concerned with the problem of distributed task allocation and coordination in large-
scale networks of homogeneous or heterogeneous cooperative agents. Such a problem typically 
arises in peer-to-peer systems, grids and virtual organizations, in crisis management scenarios, etc. 
Decentralized control of large-scale systems of cooperative agents is a hard problem in the general 
case: The computation of an optimal control policy when each agent possesses an approximate 
partial view of the state of the environment (which is the case for large-scale distributed systems) 
and agents’ observations are interdependent (i.e. one agent’s actions affect the observations of the 
other) is very hard even if agents’ activities are independent (i.e. the state of one agent does not 
depend on the activities of the other) [9]. Decentralized control of such a system in cases where 
agents have to act jointly is even more complex. In the case of joint activity, subsets of agents have 
to form teams in order to perform tasks subject to constraints: Acting as a team, each group has to 
be coordinated by scheduling subsidiary tasks with respect to temporal and possibly other 
constrains, as well as other tasks that team members aim to perform (e.g. as members of other 
teams). 

Let us for instance consider a scenario (e.g. a terrorist attack) where crisis-management agents 
(policemen, fire brigades, health professionals, army forces) need to jointly perform numerous 
tasks within a certain time interval (i.e. agents have a limited time horizon due to the emergency of 
the situation). Each agent has its own capabilities and they all form an acquaintance network 
depending on the physical communication means available. While requests for joint activities 
arrive (e.g. new explosions, civilians requesting for help etc.) agents need to form teams to handle 
each individual situation. This comprises of three interleaved sub-problems: searching for the 
appropriate agents, allocating tasks to them according to their capabilities, and scheduling these 
tasks subject to temporal and other constraints. In contrast to previous works where these sub-
problems are largely tackled independently, in this paper we view and solve the three-step process 
as a single problem. 

The method we propose facilitates effective and efficient searching through the dynamic 
construction of overlay networks of gateway agents and the exploitation of routing indices. The 
search for the appropriate agents is done via the “heads” of services (gateway agents), which best 
know the availability and capabilities of subsidiaries (exploiting routing indices). However, since 
heads have to manage numerous incoming requests (e.g. emergent situations in the above 
scenario), they can propagate such requests to subsidiaries, which act so as to form task-specific 
teams depending on the requirements of each situation. After a team of agents is formed, the 
members of the team need to jointly schedule their activities taking into account 
interdependencies, as well as their other scheduled activities. This is in itself a hard problem which 
in our framework is tackled using a combination of dynamic team reorganization and distributed 
constraint optimization methods. 

Being interested in the development of decentralized methods for the efficient task allocation 
and coordination in large multi-agent systems, we addressed the problem by building on self-
organization approaches for ad-hoc networks, token-based approaches for coordination in large-
scale systems, and distributed constraint satisfaction/optimization. In summary, we make the 
following contributions: 

a. We propose a method that addresses searching, task allocation and scheduling in large-
scale systems of cooperative agents. Specifically, we demonstrate how the interplay of 
simple searching, task allocation and scheduling techniques using routing indices, with the 
dynamic self-organization of the acquaintance network to an overlay network of gateway 
agents, can contribute to solving a complex problem in multi-agent systems efficiently. The 
applicability of our method is demonstrated by allocating temporally interdependent tasks 
with specific capability requirements to time-bounded agents. 

b. We propose a generic method for task allocation and scheduling that combines dynamic 
reorganization of agent teams with distributed constraint optimization. Several versions of 
this method, which may differ either in the way task allocation or/and scheduling is 
performed, are implemented and compared experimentally.  

c. We provide experimental results from simulated settings that demonstrate the efficiency 
of the proposed overall method and different variations of it. We compare two different 
configurations with distinct distributed constraint optimization methods and evaluate the 
efficiency of the task allocation and scheduling mechanism. Results show that the task 
allocation methods we propose coupled with the complete constraint optimization algorithm 
Adopt achieve quite promising results. 
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The rest of the paper is structured as follows: In Section 2 we discuss related work. In Section 3 
we formally state the problem we deal with. Sections 4 and 5 describe the individual techniques 
employed for searching, task allocation and scheduling. In particular, Section 4 discusses the 
formation of the overlay network of gateways and the construction of routing indices, while 
Section 5 is concerned with the alternative methods for distributed constraint optimization used 
during the task allocation/scheduling phase. In Section 6 we present the overall method for 
integrating searching, task allocation and scheduling, outlining the different approaches to 
searching and task allocation. Experimental results are given in Section 7. Finally, Section 8 
concludes the paper. 

 

2 Related Work 
In a large-scale system with decentralized control it is very hard for agents to possess accurate 
partial views of the environment, and it is even harder for agents to possess a global view of the 
environment. Furthermore, the agents’ observations can not be independent, as one agent’s actions 
can affect the observations of the others: for instance, when one agent leaves the system, then this 
may affect those agents that are waiting for a response; or when an agent schedules a task, then 
this must be made known to its team-mates who need to schedule temporally dependent tasks 
appropriately. This last example shows that transitions are interdependent too, which further 
complicates the computations. 

Even if agents’ activities are independent (i.e. the state of one agent does not depend on the 
activities of the other) [9] the overall complexity is exceedingly higher compared to centralized 
systems. Moreover, decentralized control of cooperative agent systems in cases where agents have 
to act jointly adds an even higher amount of complexity. In the case of joint activity, subsets of 
agents have to form teams in order to perform tasks, subject to ordering constraints. Acting as a 
team, each group has to be coordinated by scheduling subsidiary tasks with respect to temporal 
and possibly other constrains, as well as other tasks that team members aim to perform (e.g. as 
members of other teams). 
    Generally, in cases where the system has to allocate and schedule joint activities that involve 
temporally interdependent subsidiary tasks, the process involves at least (a) searching: finding 
agents that have the required capabilities and resources, (b) task allocation: allocating tasks to 
appropriate agents, and (c) scheduling: constructing a commonly agreed schedule for these agents. 
Each of these issues has received considerable interest in the literature.  

The control process can be modelled as a decentralized partially-observable Markov decision 
process [9]. The computation of an optimal control policy in this case is simple given that global 
states can be factored, the probability of transitions and observations are independent, the 
observations combined determine the global state of the system and the reward function can be 
easily defined as the sum of local reward functions.  

Decentralized control in systems where agents have to act jointly in the presence of temporal 
constraints, is a challenge. This challenge has been recognized in [13], where authors propose an 
anytime algorithm for centralized coordination of heterogeneous robots with spatial and temporal 
constraints, integrating task assignment, scheduling and path planning. In addition to providing a 
centralized solution, they do not deal with ordering constraints between tasks. Although the 
authors demonstrate that their method can find schedules for up to 20 robots within seconds, it is 
unclear how it would perform in networks with hundreds of agents. On the other hand, it has to be 
pointed that their algorithm, being efficient for small groups and providing error bounds, may be 
combined with our approach, given small groups of potential team-mates. However this is an issue 
for further research since the inclusion of ordering constraints will impact the solution complexity. 

Extreme teams is a term coined in [23], emphasizing on four key constraints of task allocation: 
(a) domain dynamics may cause tasks to appear and disappear, (b) agents may perform multiple 
tasks within resource limits, (c) many agents have overlapping functionality to perform each task, 
but with differing levels of capability, and (d) inter-task constraints may be present. In this paper 
we deal with these four key issues, extending the problem along the following dimensions: (a) 
handling temporal constraints among tasks, (b) dealing with agents that do not have the 
capabilities to perform every task, and (c) integrating searching with task allocation and 
scheduling. 

Token-based approaches are promising for scaling coordination to large-scale systems 
effectively. The algorithm proposed in [29] focuses on routing models and builds on individual 
token-based algorithms. Additionally, in [29] authors provide a mathematical framework for 
routing tokens, providing a three-level approximation to solving the original problem. Token-
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based approaches do not inherently deal with scheduling constraints and dynamic settings. In our 
approach, tokens concerning the availability of resources and capabilities are being used for 
constructing agents’ partial views of the network status using routing indices. Routing is further 
restricted to the connected dynamic sub-network of gateway agents which manage searching. 

In [15,16] a protocol was proposed for solving a distributed resource allocation problem while 
conforming to soft real-time constraints in a dynamic environment.  Although this is not the same 
problem as task allocation, it is worth mentioning that the approach towards solving the resource 
allocation problem taken in [15] has certain similarities with our approach. To be precise, resource 
allocation was solved modelled as an optimization problem, similar to a Partial Constraint 
Satisfaction Problem. The protocol of [15] uses constraint satisfaction based pruning techniques to 
cut down the search space, coupled with a hill climbing procedure.  

It has to be noticed that in this paper we do not deal with communication decisions for 
optimizing information sharing/exchange as done in [10], or for proactively exchanging 
information [34]: This is orthogonal to our research which may further increase the efficiency of 
the proposed method. However, we point that this can not be done in any way such that agents 
share a global view of the environment state (as in [22, 30, 31]). 

The (C_TÆMS) representation [2] is a general language (based on the original TÆMS 
language [6]) widely used for distributed planning and scheduling in multiagent systems. In order 
to deal with uncertainties, C_TÆMS tasks have probabilistic utilities and durations. Agent 
coordination and scheduling in dynamic and uncertain environments using C_TÆMS has been in 
addressed by various approaches within the DARPA Coordinators program [14, 19, 25]. These 
approaches are more general than ours in the type of tasks they consider, since for the purposes of 
this paper we limit ourselves to tasks with fixed duration. Musliner et al. use distributed Markov 
Decision Processes (MDPs) as the underlying formalism to capture uncertainty [19]. Smith et al. 
use Simple Temporal Networks (STNs) to infer feasible start times for the tasks allocated to agents 
in the system [25]. Once dynamic changes occur, agents heuristically determine task insertions in 
their schedule and change the STN constraints in order to make such insertions feasible. Finally, 
[14] introduced the Predictability and Criticality Metrics (PCM) approach in which dynamic 
changes are handled by making schedule modifications, chosen heuristically through simple 
metrics from within a set of possible modifications that can increase the team utility.  

In a more relevant note to our work, in [26] the authors solve a class of multi-agent task 
scheduling problems by mapping specifications expressed in a subset of C_TÆMS to distributed 
constraint optimization problems (DCOPs) and hence allowing the use of algorithms such as 
Adopt [18]. Apart from the mapping, this work focuses on the use of constraint propagation to 
prune the domains of the variables in the resulting DCOPs and hence achieve efficient solving. We 
should note that this work and all the C_TÆMS ones mentioned above, focus on how to handle 
distributed planning and scheduling. In contrast, the approach we present here views the whole 
process of task allocation and scheduling as tightly interconnected problem and to this extend we 
propose a combination of methods, concerning all of its aspects, to tackle it.  

Finally, we need to point out that the approach presented in this paper extends the work 
proposed in [27]. Indeed, this paper is an extended version of [27] that explains the overall 
approach in more detail and, most significantly, it presents and evaluates configurations of the 
overall method using new methods (compared to that of [27]) for task allocation and scheduling. 
Experimental results given in Section 7 demonstrate that the new methods outperform the ones 
proposed in [27].  

 

3 Problem Formulation 
In this section we formally define the problem we deal with, discussing the various assumptions 
made, and we give an overview of our proposed approach. We first describe the setting of the 
agent network and the type of task requests we consider. 

3.1   Agent Network 

In this paper we assume large-scale networks of collaborating agents that are distributed 
geographically. Therefore, the network’s connectivity factor varies between different geographical 
regions. The acquaintance network of agents is modelled as a connected graph G=(N,E), where N 
is the set of agents and E is a set of bidirectional edges denoted as non-ordered pairs (Ai,Aj). The 
(immediate) neighbourhood of an agent Ai includes all the one-hop away agents (i.e. each agent Aj 
such that (Ai, Aj)∈ E. The set of neighbours (or acquaintances) of Ai is denoted by N(Ai).  
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Agents are considered to be time-bounded with specific discrete capabilities. We assume that 
each agent has a single type of resource and at each time point at most one of the requested tasks 
(presented in subsection 3.2) can use any such resource. Under these assumptions the problem of 
allocating tasks to the resources becomes equivalent to the problem of finding available time 
intervals in the agents’ schedule to allocate to the various tasks. Therefore we can consider that the 
only resource that an agent manages is a set of time units. These assumptions are not restrictive as 
the method can be extended to other resources, which can be treated mostly as we treat the 
availability of time units or agents’ capabilities. 
Therefore, each agent Ai is being attributed with a set of capability types Capi={capi1, capi2… 
capim}, a set of time-units Ri={ri1, ri2,...,rin}, totally ordered with a relation “consecutive” denoted 
by “<”, and a priority Pi which is a positive integer. The function earliest(R) (resp., latest(R)) 
denotes the time point rik in R,R⊆Ri, for which there is not any other point r in R with r< rik (resp. 
rik <r). The priority is a unique identifier that is assigned to each agent when it enters the multi 
agent system [3]: This is necessary for the computation of an overlay network (explained in 
Section 4.1) and for the non-cyclic update of routing indices (explained in 4.2), and it may depend 
on several factors such as the battery life of the agent, its availability of resources, its capabilities 
etc.  The initial state of an example network is shown in Figure 1. In this network each agent has 
10 consecutive time-units, which are available for allocation, and a specific set of capabilities. 

3.2   Task Requests 

 

 
Figure 1. A network of acquaintances 

 
We assume that there is a set of requests concerning k independent tasks T = {t1,…, tk}. Each 

task ti can be either atomic or complex, in which case it may require the joint achievement of a set 
of atomic subtasks {gi1, gi2,.., gik}. Atomic tasks require the commitment of a single agent. Each 
atomic task ti (or subtask gil) is a tuple <ai, starti, endi,Capi>,  where αi, starti and endi, are non-
negative integers representing the maximum number of time units that the task needs to be 
completed, the earlier time point when ti should start to be executed and the latest time point that ti 
should finish executing, respectively. Capi is the set of agent capabilities that are required for the 
successful execution of the task. 

For each complex task ti consisting of a set of sub-tasks {gi1,.., gik} there is also a set of 
constraints Ci corresponding to the interdependencies between ti’s subtasks. In this paper we 
consider binary precedence constraints specifying temporal distances between the executions of 

5 



subtasks. For example, constraint start(gij)+3≤ start(gil) means that the execution of subtask gil 
must start at least 3 time units after the execution of subtask gij. 

 

3.3   Problem Specification and Overview of our Approach 

Given the above, the problem that this article deals with is as follows: Given a network of 
agents G=(N,E) and a set of requests for performing a set of tasks T, we require 

(a) for each atomic task ti = <ai,starti,endi,Capi> in T, to find an agent Aj in N, such that 
perform(Aj, ti)=1.  

This holds if Aj has the required capabilities and time resources: 
{(Capi⊆Capj) ∧ (∃ R⊆Rj  s.t. |R|≥ai ∧ starti≥earliest(R) ∧ latest(R)≥endi), where R is an interval 

of consecutive time points}. On the contrary, perform(Aj, ti)=0 
(b) for each joint (complex) task ti in T with subsidiary tasks {gi1,.., gik} to find a set of agents G 

that form a network of potential team-mates (PTN) such that  
(i) for each sub-task there is an agent in G that can  

perform it: 1( , ) { ,..., }l ik i ik
gik

perform A g g g=∑  
(ii) the precedence constraints between the subtasks of ti are satisfied.  
For that purpose, following [17], we assume that for each constraint ckl∈Ci between two 

subsidiary tasks gik and gil there is a cost function fkl providing a measure of the constraint’s 
violation. The total satisfaction of the complex task’s constraints is defined as an aggregation of 
these cost functions. In Section 5.1 we explain in detail how complex tasks are modeled, how the 
cost functions are evaluated and how their aggregation is computed.  

The aim is twofold. First, to increase the benefit of the system, i.e. the ratio of tasks 
successfully allocated to the total number of requests. As explained above, we consider an atomic 
task to have been successfully allocated if the system has located an agent that has the available 
resources and capabilities to serve the requested task. A complex task is considered successfully 
allocated if a team of agents is formed such that all sub-tasks of the complex task are successfully 
allocated and all inter-task constraints are satisfied. Our second goal is to increase the message 
gain, i.e. the ratio of the benefit to the number of messages exchanged. 

To achieve these goals we propose an approach that builds on self-organization approaches 
for ad-hoc networks, token-based approaches for coordination in large-scale systems, and 
distributed constraint optimization. Namely, the agents in the network are organized in a dynamic 
overlay structure consisting of dominating nodes, which act as “heads of service”, and non-
dominating ones which only provide resources (see Section 4.1). The dominating nodes are 
responsible for forwarding task requests through the network as they are the ones that have some, 
incomplete, view of the available resources. This is achieved by equipping each dominating node 
with a routing index which is a compact summary of the resources available through this node and 
its neighbours (see Section 4.2). Once a complex task request enters the system it is forwarded 
through the network until a set of agents that have the available resources and capabilities to serve 
it are located. The way the task “travels” through the network, either broken down to its subtasks 
or as a whole, is determined by certain heuristics that are explained in Section 6. Once an 
appropriate set of agents is located, they receive the constraints between the subtasks of the 
complex task; they form a potential team, and try to find a joint schedule for the task so that the 
interdependencies between its subtasks are satisfied. This is done using distributed constraint 
optimization techniques (see Section 5). If no satisfying schedule is found then the potential team 
is reorganized by releasing one or more agents from the team and having other appropriate agents 
enter it. This process, which is explained in Section 6, is repeated until the task has been 
successfully scheduled or its deadline expires. 

 

4 Self-Organization and Searching 
This section presents the individual techniques employed in the proposed method. Specifically, it 
describes the construction of dynamic overlay networks of gateway agents, and the construction 
and maintenance of routing indices. 

4.1   Dynamic Overlay Networks of Gateways  

A dominating set of nodes in a network is a connected subset of nodes that preserves and 
maintains the “coverage” of all the other nodes in the network [4]. In a connected network where 
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each node owns a distinct priority, a node A is fully covered by a subset S of its neighbours in case 
the following hold [3]: 
• S is connected 
• Each neighbour (excluding the nodes in S) of A is a neighbour of at least one node in S 
• All nodes in S have higher priority than A.  

A node belongs to the dominating set if no subset of its neighbours fully covers it.  
Although originally proposed for area coverage and monitoring [3, 5], nodes may be considered 

to cover an information space, or the space of capabilities and/or resources required for the 
execution of tasks. The algorithm of Dai and Wu [5] for the computation of a dominating set of 
nodes allows each node to decide about its dominating node status without requiring excessive 
message exchange and based only in local knowledge: the knowledge of a node’s neighbours is 
sufficient [3]. The algorithm is as shown in Table 1: 

 
1. Collect information about one-hop neighbours and their priorities 
2. Compute the sub-graph of neighbouring nodes that have higher priority 
3.If (this sub-graph is connected and   

(every one-hop neighbour is  in this sub-graph  
or 
it is the neighbour of at least one node in the sub-graph)),  

   then opt for a non-gateway node.  
    Else opt for a gateway node. 

Table 1. Computing the gateway status of an agent 
 

Dominating nodes (gateway agents) are dynamically computed in case the acquaintance network 
changes. Having computed an overlay network of gateways that constitute the backbone of the 
system and “cover” all the other (non-dominating or non-gateway) nodes in the network, the 
propagation of requests and indices’ updates can be restricted to this set of nodes. Specifically, 
according to our approach, gateway agents have the responsibility to forward requests to their 
neighbours and keep a record of their neighbours’ availability and capabilities. Non-gateways 
forward all requests to gateways and possess only information about their own availability. 
Therefore, as the percentage of gateways in a network decreases, the searching task is expected to 
become more efficient, although the maximum workload of the agents is expected to increase. 

A simple network of 10 agents is depicted in the following figure for illustration purposes. The 
form of the presented example network is similar to the ones produced in any of the presented of 
experiments sets. Here, we consider nodes with low index numbers having the highest priorities 
(e.g. agent 0 has higher priority than agent 1).  

 

 
Figure 2. Example of a simple network of 10 agents with 3 edges at maximum for each one. 

Agents 0,1,2,4 and 7 are gateway agents. 
 

4.2   Routing Indices 

Given a network of agents G=(N,E), and the set of neighbours N(A) of an agent A in N, the 
routing index (RI) of A (denoted by RI(A)) is a collection of |N(A)∪{A}| vectors of resources’ and 
capabilities’ availability, each corresponding to a neighbour of A or to A itself. Given an agent Ai 
in N(A), then the vector in RI(A) that corresponds to Ai is an aggregation of the resources that are 
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available to A via Ai. The key idea is that given a request, A will forward this request to Ai if the 
resources/capabilities available to the network via Ai can serve this request. 

As it can be understood from the above, the efficiency and effectiveness of RIs depend on the 
way availability is being modelled and on the way this information for a set of agents is 
aggregated in a single vector [4].  

To compactly capture information about the availability of time units, each agent Ai has a time 
vector Vi of m tuples <j,s> representing the time-units available to the agent. Each non-negative 
integer s represents the number of consecutive non-allocated time-units that follow the time point 
j, 0≤ j≤ m. This vector can be depicted as a time line of m points. For example, the time vector 
Vi=(<0,3>,<1,2>,<2,1>,<3,0>,<4,0>,<5,1>,<6,0>,<7,3>,<8,2>,<9,1>) represents the time 
line shown in Figure 3 with m=10. The vector specifies the existence of 3 available time-units 
starting from the point 0, 1 available time unit after the point 5, and 2 time units after the time 
point 7.  

 
 

 
 

Figure 3. Vector of time-units availability 
 

 
Assuming that m (the total number of time units per agent) is constant for all agents, given two 

time vectors Vi and Vj, their aggregation, denoted by agg(Vi,Vj), is a vector that comprises elements 
<jak,sak>, with 0≤ k ≤ m, such that, given the elements <jik,sik> and <jlk,slk> of Vi  and Vj 
respectively, with jik=jlk , then jak=jik= jlk, and sak=max(sik,slk). For instance, given the tuples <ji4, 
si4>= <4,4> and <jj4, sj4>= <4,0> the corresponding tuple in the aggregation is <ja4, sa4>=<4, 
max(4,0)>=<4,4>. This type of aggregation can generally be applied to any type of resources that 
can be committed to a single request. 

 

 
Figure 4. Aggregation of vectors 

 
Figure 4 shows an example for aggregating the vectors Vi

 and Vj  of two agents Ai and Aj 
respectively with m=10. The vectors are depicted as time lines. More precisely, agent Ai has 
committed to allocate the intervals (2,4) and (8,9) to two tasks. Similarly, the agent Aj has 
committed to allocate the interval (3,6) to one task and (8,9) to another. The resulting vector 
(Agg(Vi,Vj)) shows the availability of the two nodes as a whole, without distinguishing the 
availability of each node.  

The aggregation of all vectors in the routing index of an agent A gives information about the 
maximum availability of any agent in N(A)∪{A}. Specifically, given RI(A), A updates the indices 
of its neighbour Ai  by sending the aggregation of the vectors of the agents in N(A)∪{A}\{Ai} to Ai.  

Every time the vector that models the availability of resources in a node changes, the node has 
to compute and send the new vector of aggregations to the appropriate neighbours. Then, its 
neighbours have to propagate these updates to their neighbours and so on, until they reach nodes 
whose routing indices are not affected.  

To capture the availability of time-units in conjunction to the availability of capabilities, we 
extend RIs to multiple routing indices (MRIs). An MRI for the agent Ai, MRI(Ai), has the generic 
form {RIcap1,…, RIcapm}. Each RIcapj represents the available resources that Ai can reach through 
neighbours that own the capability capj. MRIs not only provide an agent with the information 
about the temporal availability of its neighbours, but they also capture information about the 
available agents that own specific capabilities. 
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Routing indices are rather problematic when the updates of indices propagate in cycles [4]: In 
the worst case, information about resources availability is misleading, leading to inefficient search 
mechanisms. Although cycles can be detected, known techniques are not appropriate for open 
networks where network configurations change frequently. We have managed to deal with cyclic 
updates of agents’ indices by forcing each agent to propagate indices’ updates only to 
neighbouring agents with higher priority. Considering that routing indices are being maintained 
only by gateway agents, these record the corresponding indices for the non-gateway neighbours 
and the aggregations of indices for gateway neighbours with lower priority. Updating the indices 
of gateways by aggregating the indices of their gateway neighbours with lower priority has the 
following effects: (a) Since agents have distinct priorities, indices can not be updated in a cyclic 
way, avoiding the distracting affects of cycles to searching. (b) Priorities denote the “search and 
bookkeeping abilities” of agents: Agents with high priorities index their neighbours and guide 
search. (c) Gateways with lower priority do not know about the indices of their gateway 
neighbours with higher priority. Since requests propagate from low to high priority gateway 
agents, some of the high priority gateways may function like “traps” since they may not know how 
to fulfil or propagate requests. Experiments showed that the benefits gained by avoiding cycles 
outweigh this disadvantage.  

As agents schedule tasks, the availability of agents with certain resources and capabilities 
changes, causing the update of indices. The update of MRIs due to this phenomenon is done 
dynamically, albeit not instantly, and in parallel to the propagation of requests. 

5 Distributed Constraint Solving 
A Distributed Constraint Satisfaction Problem (dis CSP) consists of a set of agents, each of 

which controls one or more variables, each variable has a (finite) domain, and there is a set of 
constraints [33]. Each constraint is defined on a subset of the variables and restricts the possible 
combinations of values that these variables can simultaneously take. A constraint that involves 
variables controlled by a single agent is called an inter-agent constraint. One that involves 
constraints of different agents is called an intra-agent constraint. A Distributed Constraint 
Optimization Problem (DCOP) is a dis CSP with an optimization function which the agents must 
cooperatively optimize. The DCOP framework has recently emerged as a promising framework 
for modelling a wide variety of multi-agent coordination problems. Such problems are, for 
example, distributed planning, distributed scheduling and distributed resource allocation. We now 
present the way complex tasks are modelled as DCOPs in our framework and then we describe the 
constraint solving techniques we have used for efficient task allocation and scheduling. 

5.1   Modeling Complex Tasks as DCOPs 

To efficiently capture interdependencies between the subtasks of a complex task, we model 
complex tasks as DCOPs.  We assume that for each complex task t consisting of a set of sub-tasks 
{g1,,...,gk} and a set of constraints Ct, a set of agents A={A1,…,Am} , with m≤k, is located using the 
gateway and routing indices searching infrastructure described in Sections 4.1 and 4.2. This is also 
explained in Section 6. Each Aj ∈ A has the necessary capabilities and resource availability to 
undertake at least one subtask. The DCOP model is as follows: 

 
• For each subtask gi=<ai, starti, endi, Capi> there is a variable Xi controlled by an agent Ai ∈ A, 

corresponding to the start time of gi. 
• The domain D(Xi) of each variable Xi is a set R ⊆ Ri of time points that agent Ai can allocate to 

the start time of gi (Ri is the total set of time units for the agent Ai). D(Xi) includes each time 
point r ∈ Ri such that all time units between r and r+α are available on Ai’s time line. 

• There is a hard intra-agent constraint between any two subtasks that are allocated to an agent 
Ai, specifying that the execution of the two subtasks cannot overlap1. To be precise, for any two 
subtasks gi and gl allocated to Ai, with durations αi and αl respectively, there is a hard 
disjunctive intra-agent constraint cil (∈Ct) = (Xi + αi ≤ Xl) ∨ (Xl + αl ≤ Xi). Note that such a 
constraint exists between any two subtasks (or atomic tasks in general) that are allocated to the 
same agent even if they belong to different tasks. This occurs when an agent participates in the 
allocation of more than one complex task. 

                                                           
1  This is under our assumption that each resource can be used by at most one task at any point in time. In general, these 

constraints depend on the type of resource. 

9 



• A binary precedence constraint cil ∈Ct between two variables Xi and Xl is modelled as a soft 
constraint with a cost function fil : D(Xi) × D(Xl) → N which associates a cost to each pair of 
value assignments to Xi and Xl  (similarly to [18]). Recall that a precedence constraint specifies 
a temporal distance between the executions of the corresponding subtasks. For example, the 
constraint Xi + αi + 5 ≤ Xl specifies that the execution of gl must start at least 5 time units after 
gi has finished. Such a constraint may be inter-agent if the two subtasks have been allocated to 
different agents or intra-agent if the two subtasks have been allocated to the same agent. The 
cost function fil is defined as follows: 
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where di∈D(Xi), dl∈D(Xl) and M is a non negative number. M is a measure of the constraint’s 
violation “degree”, defined as the minimum distance that the starting time of one of the 
subtasks has to be shifted on the time line of the corresponding agent in order for the constraint 
to be satisfied. Agents try to minimize the cost function associated with such a constraint by 
repeatedly changing the values of the variables they control. For example let us consider the 
constraint cil: Xi + αi + 5 ≤ Xl and assume that Xi and Xl take values di and dl respectively such 
that: di + αi + 5 > dl. Since the constraint is violated, one of the agents that control variables Xi 
and Xl must change the value of its variable at least by M= di + αi + 5 - dl in order to satisfy the 
constraint. For example a new value for Xl that satisfies the constraint could be dl΄= dl+M. 
Generally, given a constraint c: Q≤K, M is defined as follows: 

0,
,

Q K
M

Q K Q K
≤⎧

= ⎨ − >⎩  
Similarly we can define M for other types of interdependencies. For example, given a constraint 

c: Q<K, M is defined as follows:  
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Collectively, the agents in A try to minimize the aggregated function F(Ct) which is a measure 
of violation for all the constraints of a complex task t :  

,
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Note that in the general case no agent in A has complete knowledge of the function F(Ct). 

Hence, the use of a distributed constraint optimization method by the agents in A is a necessity. In 
this paper we consider summation as the aggregation operator for the optimization functions, but 
this is not a requirement.  

5.2   Techniques for the Scheduling of Complex Tasks 

To achieve efficient task allocation and scheduling in dynamic settings, where several requests 
may enter the system simultaneously, it is essential that a fast, scalable, and dynamically adaptable 
method is used. Several distributed constraint satisfaction and optimization techniques have been 
proposed in the literature. For example, there exist simple distributed local search methods, such 
as the distributed stochastic algorithm (DSA) [8], and the distributed breakout algorithm [11]. 
These are fast and scalable methods but as a downside they are incomplete. On the other hand, a 
number of complete distributed CSP and DCOP algorithms have been proposed, such as Adopt 
[18], DPOP [21] and their extensions (e.g. [1, 6, 32]). These methods guarantee that the computed 
results are optimal and have been shown to perform satisfactorily in terms of run time for agent 
networks of up to medium size. However, they cannot yet handle large networks. As will be 
explained in detail below, in the context of this work we do not consider very large DCOPs. 
Although agent networks may consist of many hundreds, or even thousands, of nodes, it is safe to 
assume that complex tasks that enter the network will consist of relatively few subtasks in most 
practical cases. Hence, by modelling each complex task as a separate DCOP, the sizes of the 
DCOPs that are generated can be efficiently handled by methods such as Adopt.    

The task allocation and scheduling approach we follow in this paper combines distributed 
constraint optimization with dynamic agent team reorganization. Concerning the scheduling of 
tasks via constraint optimization, we have implemented and compared two different approaches; 
the first one is an incomplete local search method based on DSA, and the second one is a complete 
optimization algorithm based on Adopt. Before going into further details in the subsections that 
follow, let us briefly explain our approach.  

Given a complex task t, and assuming that there is a set of agents to which the atomic 
subsidiary tasks of t have been allocated (i.e. a Potential Teammates’ Network – PTN), the agents 
in the PTN apply a DCOP algorithm. If a solution is found then t is considered as successfully 
scheduled and the agents in PTN form a network of teammates. If no solution is found, or a time-
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out occurs, then PTN self-organizes. That is, one or more of the agents in the PTN exit the PTN, 
tasks are being allocated to new agents that have the appropriate capabilities, and thus, these 
agents join the PTN. Then, the agents in the new PTN try again to schedule the subtasks of t using 
a DCOP algorithm. This process continues until t is successfully scheduled or a time-out occurs, in 
which case t is considered as a failed request. 

Before describing in detail in the two DCOP methods that have been implemented (subsections 
5.2.1 and 5.2.2), we give a motivating example.    

 
Example 5.1 

 
Consider a task with 3 individual subtasks ti = {gi1, gi2, gi3} that enters the agent network. For 

the individual sub-tasks we can assume the following:  
 gi1=<ai1=1, starti1 ≥0, endi1<5,Capi1=1> 
 gi2=<ai2=2, starti2≥ endi2, endi2<8,Capi2=1> 
 gi3=<ai3=2, starti3≥ endi3, endi3<10,Capi3=1> 
Let us also assume that we have an agent network G=(N,E) of 5 agents defined as follows: 
N = {A1, A2, A3, A4, A5}. 
E = {(A1, A2), (A1, A3), (A1, A4), (A3, A5)}. 
 
The agent network and the availability of resources for each agent are shown graphically in 

Figure 5. For simplification reasons and without loss of generality we can assume that all 
capabilities (for the tasks and agents) have the same value (Cap = 1).  

In Figure 5 there are 2 gateway agents (A1, A3) and the priorities between them are set according 
to their index (i.e. A1 has lower priority than A3 since its index is lower). Consequently only A3  has 
a complete view of all the network’s resources.  A1 can only record information about the 
availability of itself and of agents A2, A4 . Routing indices are not shown as they are simple to 
compute. Also, the availability of each agent in shown in vector form. 

 
Figure 5. A network of acquaintances 

 
Assuming that the gateway agent A1 has received the task request, it performs a search in its 

immediate neighbourhood in order to find agents that can provide the requested resources for the 
satisfaction of the task. As already described, resources belonging to A3 are completely invisible to 
A1, since the priority of the latter is lower than that of the former. Consequently, A1 will try to 
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allocate the task to itself and/or to agents A2, A4. One possible assignment is {( A1  , gi1 ), (A2  , gi2), 
(A4  , gi3 )}  where each tuple denotes a possible sub-task to agent allocation. Doing so, the three 
agents A1, A2, A4   form a PTN and will jointly try to schedule the three subtasks. 

The next step after the formation of the PTN consists of the construction of a new overlay 
network according to the inter-agent constraints among the agents in the PTN (let is call this type 
of overlay networks “c-overlay”). As far as the DCOP algorithms are concerned, two agents <Ai, 
Aj> are considered neighbours in the c-overlay network if there is a constraint between their 
variables. As with the overlay of gateways (with which c-overlay networks should not be 
confused), the c-overlay network is constructed on-demand and dynamically depending on the 
existing inter-agent constraints. This is done by any PTN that has been formed in order to schedule 
a complex task. Such a network is either reformed when the PTN dynamically re-organizes, or it is 
dissolved when PTN is dissolved. The later happens when the complex task has been either 
allocated successfully or its allocation has failed.  

Since an agent can be a member of more than one PTN that executes a DCOP algorithm, it can 
simultaneously belong to many c-overlay networks. But since each DCOP is for scheduling a 
different task, messages created for a single c-overlay network cannot travel on edges belonging to 
another such network. 

Returning to Example 5.1, once the three agents in the PTN have received the subtasks 
allocated to them, they will try to jointly schedule the atomic subsidiary tasks of the complex task 
by modelling it as DCOP. In this case, the c-overlay network shown in Figure 6 will be formed. 

 

 
Figure 6. A c-overlay network for the network of agents in Figure 5 

 
Since there are three subtasks,  there are three corresponding variables X1, X2, X3 that  are 

controlled by agents A1, A2, A4, respectively. Constraints are depicted as bi-directional edges 
beetwen agents. The constraints that involve one variable (unary constraints) are enforced on the 
domains of the corresponding variables. For example, value 9 for agent A1 is not included in the 
set of potential values for X1 , since this variable must be smaller than 5. 

This is the initial state of the DCOP solving process. Henceforth, each agent will assign values 
to its variables, send messages to other agents about its state, and react to incoming messages 
according the DCOP algorithm used. Message exchange for the DCOP is carried out exclusively 
on the c-overlay network constructed due to the constraints in the DCOP for this specific complex 
task (e.g. due to the network depicted in Figure 5). 

 

5.2.1   Solving DCOPs using Local Search 

The first method for solving DCOPs that we implemented and evaluated is a local search 
procedure. This is an instantiation of the Distributed Stochastic Algorithm (DSA) [8]. In this 
method each agent may control more than one variable and the optimization criterion takes into 
account the cost functions of the constraints involved. As demonstrated in [35], DSA displays 
good performance in certain constraint optimization problems compared to distributed breakout. In 
its simplest form the local search method is based on a min conflicts hill-climbing procedure [17] 
without stochastic moves. Figure 7 depicts this basic algorithm.  

 
1: assign values to variables so that the aggregation of cost functions is minimized 
2: while (termination condition has not been met) do 
3:     for each new value assignment of a variable X 
4:          send the new value to agents that control a variable involved in a constraint with X 
5:     end for 
6:     collect the neighbours’ new values, if any, and compute constraint violations and cost functions 
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7:     choose values for the variables so that the aggregation of cost functions is minimized 
8:     assign the selected values to the variables 
9: end while 

Figure 7.  Basic Local Search algorithm executed by all agents 
 
Let us now describe the operation of the basic algorithm. Each agent Aj initially assigns values 

to its variables so that the sum of the cost functions is minimized. This can be a dynamic process 
since subtasks may dynamically allocated to the agent Aj during the operation of the system. In 
other words, as soon as an agent receives a subtask gi, it tries to assign a value to Xi (i.e. find a start 
time for gi) that minimizes the sum of the cost functions. This may involve changing the 
assignment of other variables that Aj controls (line 6). If a new assignment of some variable X is 
made, this is communicated to Aj’s neighbours in the corresponding c-overlay network (i.e. the 
agents that share constraints with Aj involving variable X). All similar assignments made by Aj’s 
neighbours are collected and the constraint violations are recomputed. This may lead to the 
assignment of new values to Aj’s variables (line 7). The choice of value assignments is an 
important issue of the algorithm. The basic algorithm makes a new assignment only if it can 
reduce the sum of the cost functions. Note that no single agent has complete knowledge of the cost 
function F(Ct) of a complex task t (unless all subtasks of t are assigned to a single agent). 
Therefore, each agent tries to minimize the aggregation of the cost functions for the constraints 
that it is “aware of”. That is, the constraints that involve variables that it controls. In case no 
assignment that reduces the aggregation of the cost functions can be made, then the agent will not 
make any change to its variable assignments. In this case, the agent has reached a local optimum 
and will have to wait for messages from its neighbours in the corresponding c-overlay network.  

This basic algorithm may quickly reach a local optimum as it is not equipped with any 
technique for escaping such situations (e.g. stochastic moves). In case all agents in the team reach 
a local optimum, or a termination condition related to the time allowed for constraint solving is 
met, then, as already explained, the PTN re-reorganizes itself. Self-organization is further 
explained in Section 6.  

Note that local search methods comply with the requirements for speed and dynamicity, but on 
the other hand, because of their inherent incompleteness, may not find optimal (or simply feasible) 
allocations, even if they exist. This means that some complex tasks may not be served, although 
there may be agents in the system that can cooperatively serve them.  

5.2.2   Solving DCOPs using Adopt 

Alternatively to the Local Search method we evaluated an alternative configuration of the 
proposed method using the complete DCOP algorithm Adopt [18]. The majority of the existing 
methods for DCOP (e.g. local search methods) are not able to provide theoretical guarantees on 
global solution quality given that agents have to operate asynchronously. Nevertheless, we can 
overcome this disadvantage by allowing agents to make local decisions based on cost estimates. 
This approach, introduced in [18], results in a polynomial-space algorithm for DCOP named 
Adopt. Adopt guarantees a globally optimal solution. Furthermore it allows agents to execute 
asynchronously and in parallel. As noted in [18] “The Adopt algorithm consists of three key ideas: 
a) a novel asynchronous search strategy where solutions may be abandoned before they are proven 
suboptimal, b) efficient reconstruction of those abandoned solutions, and c) built-in termination 
detection”. A sketch of Adopt’s operation is as follows: 

First, agents form a prioritized tree structure. The priorities in this structure are decided after 
considering the constraints between variables inherent in the CSP problem which we have to 
solve. In [18] there is a precise explanation on how this is done. The priority ordering is then used 
to perform a distributed backtrack search using a best-first search strategy. To be more precise, 
based on the current available information, each agent keeps on choosing the best value for its 
variables. That is, each agent always chooses the variable value which minimizes its lower bound 
as defined in [18].  

To efficiently reconstruct a previously explored solution, Adopt uses a stored lower bound as a 
backtrack threshold. When an agent knows from previous search experience that lb is a lower 
bound for its subtree, it should inform the agents in the subtree not to bother searching for a 
solution whose cost is less than lb. Bound intervals track the progress towards the optimal 
solution. This is the core of the built-in termination detection mechanism. A bound interval 
consists of both a lower bound and an upper bound on the optimal solution cost. When the size of 
the bound interval shrinks to zero (the lower bound equals the upper bound) the cost of the optimal 
solution has been determined and agents can safely terminate when a solution of this cost is 
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obtained. This technique increases the efficiency of the algorithm. Furthermore it requires only 
polynomial space in the worst case. 

The prioritized Depth-First Search (DFS) tree defines parent and child relationships and of 
course priorities between the agents. Variable value assignments (VALUE messages) are sent 
down the DFS tree while cost feedback (COST messages) propagate back up the DFS tree. It may 
be useful to view COST messages as a generalization of NOGOOD messages from DisCSP 
algorithms. THRESHOLD messages are used to reduce redundant search and sent only from 
parents to children.  A THRESHOLD message contains a single number representing a backtrack 
threshold, initially zero.  

For the agent group formed in Example 5.1 a possible sequence of events in order to solve the 
formed DCOP is as follows. Agent A1 chooses X1 = 0 first. Agent A2 receives this value through a 
VALUE message and re-evaluates its own value. If, for instance, it was X2 = 0 this will change to 
X2 = 2. Then A2 sends a COST message back. Since the constraint between A1  and A2  is satisfied 
the cost is zero. A2  also sends a VALUE message to A4 . Now A1 upon receiving a zero cost re-
evaluates its upper bound and sets it to zero. This is equal to the THRESHOLD value  as well. 
Consequently A1   sends to A2 a TERMINATION message and these agents halt their DCOP 
solution procedure. Under the same procedure agent A4 eventually receives the final value A2 has 
chosen and a terminate message. Therefore A4 re-evaluates its own value, setting X3 = 4 and 
terminates.  

 

6 Searching, Task Allocation and Scheduling 
This section describes the interplay of the methods for the scheduling of tasks (described in the 

previous sections), with the methods for the (re-) formation of teams in large networks of agents: 
Special emphasis is given to the searching of agents and to the allocation of tasks to agents, 
forming a network of potential teammates (PTN).  

The primary task in a network of acquaintances AN, is to organize itself into a network where a 
set of agents form a connected overlay sub-network of “gateways” GN. Each time a change occurs 
in AN (due to uncontrollable events), agents may need to reorganize themselves forming a new 
GN. Self-organization happens by means of agents’ local criteria using the algorithm explained in 
Section 4.1 for the computation of dominating nodes.  

Given an arbitrary GN, each of the non-gateway agents connects to at least one gateway agent. 
To facilitate searching and maintenance of routing indices, gateway agents maintain routing 
indices for the resources and capabilities available to non gateway neighbours. Also, every 
gateway agent in GN, stores aggregated indices of its gateway neighbours with lower-priority. 
This forms an aggregated and approximate view of the network state, resulting in a jointly fully 
observable setting [9]. Gateways’ views (i.e. routing indices) are maintained by means of 
capability-informing and resource-informing tokens.  

Requests concerning atomic or complex tasks enter the agent network in an arbitrary fashion. 
Any agent can be considered as an entry point for a demand over the network’s resources.  

This dynamic self-organizing searching infrastructure supports the formation of teams for the 
performance of joint activities: Given a request for a joint task t originated by an agent in the 
network, then all its sub-tasks {g1,,..,gi,…,gk} must be allocated to the appropriate agents, i.e. the 
agents that have the resources and the capabilities to perform each subtask. The search for the 
appropriate agent for each of these atomic tasks proceeds as it will be described in section 6.1. The 
appropriate agents (i.e. have the required capabilities and resources) form a logical network of 
potential teammates (PTN), who jointly try to schedule their activities with respect to the 
constraints associated to t, conjunctively with constraints that must hold for their other activities. 
This is done by means of one of the DCOP algorithms of Section 5. In case they are not successful 
in forming a common schedule, and depending on the violated constraints, they reform the PTN 
until a team is formed successfully (i.e. a team that has successfully scheduled all subsidiary tasks) 
or the time-to-live (TTL) of the request for the joint activity expires. Depending on the DCOP 
algorithm used, this occurs either when the algorithm determines inconsistency (in the case of 
Adopt) or is trapped in a local minimum (in the case of DSA).  

We have tried two different approaches to the process of PTN reformation that are detailed 
below in Sections 6.1.1 and 6.1.2. Briefly, in the first approach reformation consists of forwarding 
the whole complex task to another gateway agent. In the second approach, the request originator 
asks one (randomly selected) agent involved in a constraint violation to release its subtask and 
then propagates the request for this subtask. In the first approach, the new PTN formed may 
involve a completely different set of agents, while in the second approach the new PTN involves 
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only one different agent than before. Reformation of a PTN may proceed as long as the 
corresponding joint task exceeds its TTL: In this case the task is considered as unsatisfied.  

We have to point out that agents are allowed to reconsider their existing schedules when they 
face requests for participation in new joint activities as long as they have not committed their 
resources to already successfully allocated tasks. That is, if an agent is involved in a PTN that has 
not yet been resolved and at some point the agent joins another PTN (i.e. it now participates in two 
PTNs at the same time) then it can try to accommodate all subtasks that have been assigned to it 
by making the necessary shifts in its schedule. However, decisions made about already 
successfully allocated tasks are not backtracked on in order to find a better overall allocation. That 
is our approach, in its current design and implementation, is tuned to greedily try and 
accommodate incoming requests in the best possible way. Once agents commit to certain tasks, 
these commitments cannot be undone in order to accommodate requests arriving later. Hence, an 
agent that has committed part of its resources to allocated tasks stays idle until a new request 
arrives. 

We now turn our attention to the searching and allocation tasks, and describe two alternative 
methods for achieving them. 

6.1 Searching and Task Allocation 

Upon the arrival of a complex task gi, one of the following two cases holds: Aj is either a 
gateway agent or a non-gateway agent. If it is a gateway agent, then depending on whether gi is a 
complex or an atomic task, it tries to locate the appropriate agent(s). This is further explained in 
Sections 6.1.1 and 6.1.2. In case Aj is a non-gateway agent, we have considered two possible 
modes of operation:  

• Inactive non-gateway mode: the non-gateway agent immediately forwards the tasks to a 
gateway agent. In this case, the complex task is forwarded to the one-hop away gateway 
agent that has the higher priority among the gateways covering Aj. 

• Active non-gateway mode: The non-gateway agent performs a quick local placement effort, 
checking whether it can satisfy the request itself. According to this mode, the non-gateway 
Aj checks whether its own resources and capabilities can satisfy all requirements 
concerning gi.  

In the case of a single atomic task, the task start time, end time and actual demand are the sole 
parameters taken into consideration. Similarly, in the case of a complex task, Aj will check if it has 
the time resources to accommodate all the subtasks, while respecting the constraints between 
them. Since the agent has a clear view of the whole task, this is straightforward.  

At this time point, Aj being aware of the task requirements can decisively conclude whether it is 
capable to satisfy these requirements. Note that in this case there is no need to formulate a DCOP 
for the given task. If the agent decides that it can successfully accommodate the requested task, it 
updates its timeline appropriately to reflect the current situation. The task is marked as satisfied 
and Aj continues receiving requests from other agents. 

 In case Aj decides that it cannot accommodate the requested task using only its own resources, 
it will send this task to one of its gateway agents. As in the inactive non-gateway mode, it will 
send the task to the one-hop away gateway agent with the highest priority.  

Comparing the two alternatives, we expect the active mode to speed up the system as some 
requests will be immediately handled by the agents used as entry points. On the other hand, we 
expect that the inactive mode will result in more efficient allocation as this process will be handled 
only by the gateway agents who, through their routing indices, have a better view of the agents’ 
availability. 

Henceforth we assume that the complex task is in the hands of a gateway agent, either because 
this agent has been used as the entry point to the system, or because the non-gateway agent that 
first received the request has sent it to a gateway agent. This may have happened either 
immediately, or after the non-gateway agent has decided that it cannot satisfy the task 
requirements on its own. In the sub-sections that follow we specify two different methods for 
searching and allocating tasks. 

6.1.1 Method A 

According to this method, the gateway node Aj that has received the task will first examine 
whether the task can be served by any of its non-gateway neighbours (i.e. by any of the agents it 
covers). If the task is atomic the course of action is straightforward, meaning that Aj only searches 
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for the first agent with adequate capabilities and resources. In the case of a complex task Aj breaks 
it down into individual subtasks and derives the constraints between them. Then it searches for 
neighbouring agents, including itself, that have the required resources and capabilities to 
accommodate subtasks. In both the cases of an atomic task and a subtask of a complex task, if 
more than one neighbouring agents are capable of serving, according to capabilities and resources, 
it then the first found is selected. That is, the agents’ numbering scheme is followed. When all 
subtasks have been assigned, the agents form a PTN and subsequently, they form a new c-overlay 
network, as required by the DCOP algorithm. As they are now aware of the constraints between 
the subtasks allocated to them, they start executing the DCOP algorithm to determine if there is a 
solution.  

If Aj cannot locate any non-gateway agent with the necessary resources and capabilities, or if 
the PTN formed cannot solve the DCOP, then Aj forwards the request to its gateway neighbour 
with the highest priority. In case there is no gateway neighbour with higher priority than Aj, then Aj 
propagates the request to all of its gateway neighbours. Since requests propagate through many 
different gateways, it is possible that there will be more than one agent that can serve a request. In 
such a case, all these agents inform the request originator about their availability, and the 
originator decides to whom the task shall be allocated (for example, based on their workload). 

The execution of method A is summarized as a flowchart in the following figure. 
 

 
 

Figure 8. Flowchart for Method A 

6.1.2 Method B 

As an alternative to the approach described above, we introduce a method that is based on a 
more elaborate initialization process between neighbouring gateway agents. While the main course 
of action is the one described in the previous paragraph when the gateway agent Aj cannot 
accommodate a task in its immediate neighbourhood (i.e. in the one-hop away non-gateway 
agents), the procedure thereafter is different. Recall that through the use of routing indices, a 
gateway agent is fully aware not only of its own resources but of the resources and capabilities that 
are available via its neighbours: Therefore a gateway agent is aware of  (a) its own resources and 
capabilities at any given time, (b) the resources and capabilities of all non-gateway agents that 
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exist in its neighbourhood and (c) the resources and capabilities of the agents that can be reached 
by the  gateway agents and have lower priority while existing at a one hop distance.  

Consequently, if Aj can not satisfy the requirements for resources or capabilities upon receiving 
a request, it tries to form a group with the “eligible” subtask recipients in order to satisfy the task. 
Eligible candidates are all neighbouring non-gateway agents and lower priority gateway agents. 
However, the gateway agent’s view of its neighbours is not always accurate. This is because 
gateway agents have no way of knowing what task requests the other agents process at any 
moment, since routing indices are not updated immediately after each change in the availability of 
the agents. For instance, if an agent is in the process of using constraint solving techniques to 
decide if a previously submitted task or subtask can be accommodated by it, we may have a 
situation in which its own accurate view pertaining to its own resources is not in accordance with 
the (out of date) view that neighbouring gateway agents have.  

Consequently, in method B the gateway agent Aj consults its neighbouring agents in order to 
decide whether a certain part of the task is going to be forwarded to one of them. Before doing this 
the gateway agent checks its routing indices to decide which agent seems most capable for 
receiving one or more subtasks. These remote agents are contacted and the final decision is made 
by each one of them after they have checked their own accurate view of their resources’ 
availability. The first agent that answers positive to a request concerning a specific subtask is the 
one that receives it. The procedure for resolving the constraints involved cannot begin before the 
allocation procedure for the particular task has ended. 

The major difference between Methods A and B is the gateway’s ‘view’ during the allocation 
process. In Method A the gateway allocates each subtask based merely on its routing indices. On 
the contrary, in Method B the gateway consults its neighbours to acquire a clearer up-to-date view 
of their resources. The routing indices act as a first lead but the procedure continues and the 
gateway asks for an accurate snapshot of the potential recipients’ timeline. Another point of 
difference is that in Method A the gateway searches for potential candidates in its immediate 
neighbourhood only. In method B the request may propagate through gateway agents with lower 
priority. Therefore, in Method B a subtask can be allocated to an agent that resides several hops 
away.     

At this point the status of the recipient agent (being gateway or not) can lead to alternative ways 
in order to accomplish the assignment process:  

• If the recipient is a non-gateway agent it can respond to a request by simply checking its 
own view. Therefore, the answer is plainly positive or negative.  

• If the remote agent is a gateway agent (note that its priority is always lower than the one of 
the agent that initiated the assignment procedure) and this agent cannot handle the subtask 
or subtasks in question, an additional step is involved before the final answer. The lower 
priority gateway agent starts a similar procedure to the one already started by the 
requesting gateway node, trying to forward the requests in discussion to its own 
neighbourhood. If unsuccessful, the higher priority gateway is notified that the lower 
priority gateway agent cannot satisfy the request. Otherwise, the lower priority agent sends 
the agents’ ids that can possibly satisfy each subtask. Due to gateway priorities, it is 
impossible for a given subtask to circle in the agent network during the allocation process. 
In case an agent cannot be assigned the subtask requested by the gateway, the next 
neighbouring agent that seems capable to accommodate the specific fraction of the initial 
request is consulted.  

Consecutive negative answers from all neighbouring agents result in sending the task to a 
higher priority one-hop-away gateway agent. Since lower priority gateway agents do not have 
information about resource availability of their higher priority gateway agents, the decision is 
based on a simple request over the amount of total resources and capabilities that the higher 
priority gateways have in their view. This means that if a gateway agent cannot accommodate a 
task, and consequently must send it to a higher priority gateway agent, it only asks for the 
resources (time units) available via its one-hop-away gateways. The actual recipient is the one 
among them that possesses the highest number of available time units in its view. 

The execution of method B is summarized as a flowchart in the following figure. 
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Figure 9. Flowchart for Method B 
 
Comparing the two methods for searching and task allocation we can say that Method A uses 

simple (and fast) means for propagating the requests to those directions where it seems that there is 
a high possibility to locate the appropriate agents. In contrast, Method B uses a slightly more 
sophisticated (and hence slower) approach by first contacting neighbouring agents and acquiring a 
more accurate view of their availability. Therefore, Method B helps gateways in having more 
options during the task allocation process and increases the possibility of directing requests 
towards parts of the network where it is more likely that the requested task will be successfully 
allocated and scheduled. 

6.1.3 Discussion 

Analyzing the complexity of designing organizations Horling [12] has shown that the 
complexity of constructing an organization template and allocating agents to organizational roles 
is NEXP-Complete. This agrees with complexity results by Nair, Tambe and Marsella [20]. 
Knowledgeable and heuristic methods [24] may prune the search space for constructing 
suboptimal organizations. Our approach does not deal with designing organizational templates: 
Given a set of complex tasks and the network of acquaintances, agents need to be assigned to 
specific atomic tasks with respect to the required and own resources and capabilities. Therefore, 
the organizational structures are quite simple with respect to the roles agents need to play (i.e. the 
tasks to perform) and the network has to be clustered in specific teams of agents that can jointly 
perform the requested tasks. In this setting, each agent may be assigned multiple atomic tasks (i.e. 
participate in multiple teams), which need to be scheduled consistently to the atomic and team 
constraints. According to this, given a specific overlay network of gateways, the complexity of our 
approach lies mostly to the searching and constraint problem solving tasks. The searching task 
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aims at reducing the complexity of allocating agents to specific tasks by exploiting indices of 
agents’ resources and capabilities. Searching is bounded by the number of gateways and the 
maximum number of immediate acquaintances of each gateway agent. The decision of which 
agents to participate in a team is distributed among the agents and it is subject to their joint  ability 
to resolve the constraints: In such a case a simple method (e.g. a contract net protocol) would not 
be suitable for decision making given that each agent needs to satisfy jointly with its potential 
teammates the constraints of a task, in conjunction to all the constraints imposed by the other 
teams in which it aims to participate. According to the above, our approach is mostly suitable in 
cases where the gateway agents are proportionally less than the number of agents in the 
acquaintance network, and in cases where there are complex tasks that need to be jointly 
performed by teams of agents. 

 

7 Experiments and Results 
The experiments we carried out aimed at evaluating two important aspects of our methods. 

More specifically, we evaluated the two methods for DCOP solving described in Section 5.2 and 
the various combinations of methods for searching and task allocation put forward in Section 6.1. 
We first discuss the way test problems were generated and then we present the experimental 
results.  

7.1 Problem Generation 

We experimented with two models for the generation of the agent network. The first one 
generates networks of randomly deployed agents, assuming that the geographical distance among 
agents determines the topology of the system. Each node A establishes connections with all nodes 
that exist in a specific distance from it, according to a given radius r. That is, all nodes located in a 
cycle with center A and radius r are neighbors of A. Networks are constructed by distributing 
randomly |N| agents in an n×n area, each with a “visibility” ratio equal to r. The acquaintances of 
an agent are those that are “visible” to the agent and those from which the agent is visible (since 
edges in the acquaintance network are bidirectional). Although this method of generation, which 
we will call geographic henceforth, distributes agents randomly in an area, the “visibility” ratio 
ensures that only agents that are “close by” can communicate directly. Hence, some kind of 
structure is introduced. The experiments in Sections 7.2 and 7.3 concern networks AN=(N,E), with 
|N|=500 nodes, randomly placed in a 250x250 grid. The radius parameter r was set to 25 and only 
connected networks were considered in the experiments. Note that since the area of placement is 
large and r is small, these settings tend to create relatively sparse networks where a message 
originating at some agent may need to travel through many edges in order to reach distant agents. 
In Section 7.4 we discuss an alternative random generation method that constructs the agent 
network in a way that allows for messages to reach any other agent by traveling through fewer 
edges on average. 

We assume that each agent Ai possesses an amount of Si time units. Agents are simultaneously 
requested to jointly fulfil a set of tasks T={t1,t2, … ,tn}, where ti=<ai, starti, endi,Capi> such that 

| |

1 1

Nn

i
i i

a
= =

=∑ ∑ iS : This is a worst-case scenario where the system has to simultaneously fulfil the 
maximum number of tasks that fit its resource capacity. In the experiments below, Si was 
uniformly set to 10 for all agents. Therefore, the total available and required capacity was 
500x10=5000 time units. 

For simplicity we assume that the cardinality of each Capi is 1, which means that a unique type 
of capability is sufficient for ti’s satisfaction. We assume that each Ai∈N is also attributed with a 

unique type of capability, such that i i

i i

t A
t T A N

Cap Cap Cap
∀ ∈ ∀ ∈

= =U U AN . We divided our experiments into 
three sets in terms of the capabilities that agents have and that tasks require. The first set includes 
experiments where all agents have the same capability type (i.e. Capi =1) and all tasks require an 
agent with Capi =1. In the second set there are two possible values for Capi, simply denoted by 1 
and 2. Hence, every agent has Capi =1 or Capi =2 and accordingly, each atomic task either requires 
one agent with Capi =1 or one with Capi =2. Finally, in the last set of experiments there are three 
possible values for Capi (1, 2, and 3). 

The complex tasks in the set of task requests T are generated sequentially in a way such that the 
total duration of all subtasks does not exceed the network’s total capacity. In the experiments 
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presented below each complex task consists of, at maximum, 3 or 7 subtasks. The TTL of all tasks 
was set to 10. The actual number of subtasks for each complex task is chosen randomly with a 
uniform distribution. The next step in the generation of a complex task involves deciding the 
duration of its subtasks. This is done by randomly setting the duration of each subtask so that their 
total duration is at most Si, i.e. at most equal to the uniform capacity of the agents. To be more 
specific, assuming a complex task with 3 subtasks, this is generated as follows. We first pick a 
subtask tj and randomly set its duration dj to a number between 1 and Si. We then select another 
subtask tk and randomly set its duration dk to a number between 1 and Si - dj. Finally, the duration 
of the remaining subtask is randomly set to a number between 1 and  Si - dj - dk. If at some point 
during this process there is no available choice for the duration of a subtask, because of previously 
set durations of other subtasks, then the process is restarted.   

We then generate the set of constraints between the subtasks. Given X subtasks in a complex 
task, this is done by first selecting randomly y% of the possible constraints between the subtasks 
(i.e. ⎣(y/100) × X × (X-1)/2⎦ constraints). For example, when y=50 in a complex task with 7 
subtasks we generate randomly ⎣0.5×(7×6)/2⎦ =10 constraints between the subtasks. For all the 
experiments presented below, y was set to 50. This value resulted in creating complex tasks that 
are relatively hard while at the same time rarely being over-constrained. Then for each constraint 
we choose a random label among the following set: {>, <, =,  ≥, ≤)}. For instance, if the chosen 
label is ‘>’ it means that the start time of the second subtask participating in the constraint must be 
greater than the end time of the first participator. For example, if the first subtask’s duration is 2 
and its start time is 1, the second subtask’s start time must be greater than 3.  

As a final step, we use ADOPT to check if the generated complex task is actually satisfiable. If 
it happens to be over-constrained then it is dropped and a new complex task is generated. In all 
experiments all complex tasks enter the agent system through a randomly chosen agent at the start 
of the system run.  

 
In the reported experiments we report averages over 10 experiments for each individual case of 

parameter settings. Throughout the following sections we compute and compare three basic 
measures:  

1. Benefit: The percentage of complex tasks scheduled over the complex tasks requested 
to be scheduled. 

2. Messages: This is the total number of messages exchanged between any two agents 
throughout the  task allocation and scheduling process 

3. Message Gain: The ratio of the benefit over the total number of exchanged messages. 
In some cases we also report additional useful information such the number of gateway agents 

created and the numbers of PTNs formed during the task allocation process. 

7.2 Adopt vs Local Search for solving DCOPs  

Experiments here compare the two methods described in Section 5.2 for solving the DCOPs 
derived from the temporal interdependencies of tasks. That is, we evaluate the performance of the 
system’s scheduling component when either Local Search or Adopt is used to solve the DCOPs. 
For a fair comparison, experiments for both algorithms ran in a system that uses the same method 
for searching and task allocation (Method A with active non-gateways). Therefore, the 
experiments presented here illustrate the contrast between a complete (Adopt) and an incomplete 
(Local Search) algorithm for solving DCOPs generated from complex tasks. As we detail below, 
results show that Adopt, compared to Local Search, improves the efficiency without considerably 
increasing the cost in terms of exchanged messages. 

The parameters of the generated geographic networks are as follows: 
• 500 nodes  
• n=250, r=25  
• 1 or 2 or 3 distinct capability types  
• 3 or 7 subtasks per task at maximum 

 
Note that with the above settings for n, r, and 500 nodes, the average density of the generated 

networks is around 1.95%.  The average number of nodes that obtained gateway status was 227. 
Figures 10 and 11 give the benefit and message gain of the compared methods when complex 

tasks include at maximum 3 subtasks. Accordingly, Figures 12 and 13 give the same information 
when complex tasks consist of 7 subtasks at maximum. As displayed in Figures 10 and 11, when 
Capi is 1, both Adopt and Local Search achieve a very high benefit while Local Search displays 
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higher message gain because of the increased message exchange that Adopt incurs. However, as 
the number of available capabilities increases and the problems become harder, Adopt achieves a 
much higher benefit and also outperforms Local Search in terms of message gain. This is because 
Adopt is able to solve more DCOPs and hence successfully schedule more complex tasks than 
Local Search. This success outweighs Adopt’s extra message cost and results in higher message 
gain. 

As displayed in Figures 12 and 13, when the complexity of the task requests increases, Adopt is 
constantly better than Local Search both in terms of benefit and message gain for all values of 
Capi. It is notable that when there are 3 types of capabilities (which is the hardest case) a system 
that uses Adopt can achieve nearly three times the benefit achieved by Local Search.  
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Figure 10. Benefit achieved by Adopt and Local Search when there are at most 3 subtasks per 

complex task. 
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Figure 11.  Message gain achieved by Adopt and Local Search when there are at most 3 

subtasks per complex task. 
 

To summarize, the use of Adopt displayed increased efficacy as far as the obtained benefit is 
concerned. Furthermore, the number or exchanged messages did not increase considerably 
compared to Local Search. As a result, Adopt demonstrated a better message gain than Local 
Search. Therefore, we can safely conclude that, on hard problems, the method that applies Adopt 
for scheduling is more efficient than the one that applies Local Search.  
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Figure 12. Benefit achieved by Adopt and Local Search when there are at most 7 subtasks per 

complex task. 
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Figure 13. Message gain achieved by Adopt and Local Search when there are at most 7 subtasks 

per complex task. 

7.3 Evaluating different approaches to searching and task allocation  

Having established that Adopt offers considerable advantages in terms of the system’s benefit, 
we now evaluate the different approaches to searching and task allocation using the same networks 
as in Section 7.2 (i.e. |N|=500, r=25, n=250). For all the experiments presented hereafter in the 
paper we have used Adopt for scheduling despite the relative increase in the number of exchanged 
messages that it sometimes occurs compared to Local Search. We evaluated the following methods 
outlined in Section 6.1: 

 
1. Method A with active non-gateways 
2. Method A with inactive non-gateways 
3. Method B with active non-gateways 
4. Method B with inactive non-gateways 
 
Considering the two methods (A and B) for performing task allocation and scheduling, recall 

that as discussed in Paragraph 6.1.2, Method B seems to be more flexible in finding agents with 
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free resources and consequently in forming PTNs. Indeed, experiments verified this as Method B 
consistently demonstrated better results than Method A in each single experiment (10 experiments 
for each parameter setting).  Both variations of Method B performed better than any variation of 
Method A in terms of the total number of satisfied complex tasks. A small downside is that 
Method B produced more messages. However, Method A produced an average message gain of 
0.5984×10-5 when each complex task has at most 3 subtasks, while for Method B the message gain 
was 0.6271×10-5. The average difference of 0.0287×10-5 in favor of Method B amounts to 4.79% 
of Method A’s message gain. In the case of 7 subtasks the average message gain was 0.2759×10-5 
for Method A and 0.2853×10-5 for Method B. Therefore, the average difference in favor of Method 
B was 0.0094×10-5 (3.41% of Method A’s message gain). These are the average variations in 
message gain between Methods A and B with either active or inactive non-gateway agents and 
capability types 1,2 or 3. Method A achieved a slightly better average message gain only in the 
(simple) case of complex tasks with at most 3 subtasks and 1 type of capability. Therefore, in the 
rest of Section 7.3 we opt to present results from the two variations of Method B (active and 
inactive non-gateways) only. Section 7.4.1 presents a detailed statistical analysis comparing 
Method A to Method B. We now first present some information regarding the generated sets of 
tasks, and then we give results from the two variants of Method B. 
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Figure 14. Average number of complex tasks for 3 subtasks at maximum and average number 

of complex tasks with exactly 1,2 and 3 subtasks respectively. 
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Figure 15. Average number of complex tasks for 7 subtasks at maximum and average number 

of complex tasks with exactly 1,2,…,7 subtasks respectively. 
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In the first column of Figures 14 and 15 we show the average number of complex tasks created 
in a set of task requests T when the maximum number of subtasks per complex task is 3 and 7 
respectively.  We also give the average number of complex tasks with exactly 1,2,3 subtasks for 
the first case and 1,2,…,7 subtasks for the second case. We can see that although the number of 
subtasks per complex task was uniformly selected, complex tasks with few subtasks appeared 
more often than ones with many subtasks. This is due to the fact that preprocessing with Adopt 
detected unsatisfiability for many of the latter complex tasks, and therefore they were not included 
in the generated set T. 

Figures 16 and 17 present the average duration of the complex tasks in a set of tasks T for the 
two cases (3 or 7 subtasks at maximum). In these figures, we also give the average duration of the 
complex tasks broken down to the number of subtasks. As expected, in the first case shorter tasks 
are generated, meaning that their allocation and scheduling is more likely to succeed as they can 
often be assigned to a single agent.  In contrast, complex tasks with many subtasks have an 
average total duration closer to the capacity of the agents which means that most likely a PTN with 
several agents needs to be formed in order to serve them, especially in the cases where 3 distinct 
capability types exist.  
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Figure 16. Average duration of complex tasks of 3 subtasks at maximum and average duration 

of complex tasks with exactly 1,2 and 3 subtasks respectively. 
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Figure 17. Average duration of complex tasks of 7 subtasks at maximum and average duration 

of complex tasks with exactly 1,2 … 6 and 7 subtasks respectively. 
 
Figures 18 and 19 report the number of PTNs formed while trying to resolve a complex task, 

the number of attempts that succeeded in finding resources for a complex task, and the number of 
attempts failed(and thus required reconsideration/reformation of the unsuccessful PTN). In Figure 
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18 we give these measurements for the case of 3 subtasks at maximum, while Figure 19 contains 
this data for 7 subtasks at maximum. Note that in both cases there are two methods (the two 
versions of Method B) and three different types of existing capabilities. 
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Figure 18. Number of total PTNs formed for each case of problems concerning complex tasks 

with maximum 3 subtasks, followed by the number of those that were successful and unsuccessful. 
 
Both figures demonstrate that the inactive non-gateways method forms a larger number of 

PTNs on average. Although the number of successful PTNs does not vary much between the two 
methods, the number of unsuccessful PTNs is visibly higher for the inactive non-gateways variant 
of Method B. The number (over all values of capability types) of unsuccessful PTNs for each 
successful PTN (or for each successfully allocated task) ranges from 0.44 when there are at most 3 
subtasks within any complex task up to 17.01 unsuccessful PTNs for each successful one when 
there are at most 7 subtasks. These numbers are approximately 2.98% higher on average for the 
inactive non-gateways method compared to the active non-gateways method. For the active non-
gateways method we have an average of 6.56 unsuccessful PTNs for each successful one (this 
average number takes into account all this paragraph’s experiments of Method B following the 
active non-gateways model). This number becomes 6.75 for the inactive non-gateways method. 
The active gateways method forms fewer PTNs because in some cases a task that enters the system 
through a non-gateway node can be directly accommodated by this node. In contrast, in the non-
active gateways method the task will be immediately forwarded to a gateway agent and therefore 
the process of searching for a PTN to accommodate the task will begin. Despite this, and as results 
below demonstrate, the non-active gateways method provides greater flexibility to the system 
since non-gateways that receive incoming tasks do not engage their resources immediately, and in 
this way fill up their timeline, but allow for gateway agents that a have a more accurate view of the 
system’s available resources to forward the task to agents that may have better availability to serve 
it.  
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Figure 19. Number of total PTNs formed for each case of problems concerning complex tasks 

with maximum 7 subtasks, followed by the number of those that were successful and unsuccessful. 
 
Concluding this section we give the average benefit and message gain for the two alternatives 

of Method B. Figures 20 and 21 depict the benefit for the cases of 3 and 7 maximum subtasks per 
complex task respectively, while Figures 22 and 23 depict the message gain for the two cases. In 
each figure we give the average numbers for problems with 1, 2, and 3 possible capabilities. 
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Figure 20. Benefit achieved when there are 3 subtasks per complex task. 
 
As displayed, the inactive non-gateways method achieves slightly better performance compared 

to the active non-gateways method, especially in the case of 7 subtasks. Despite the fact that the 
inactive non-gateway method forms more PTNs on average, the increase in the number of 
messages exchanged incurred is not important enough to affect the message gain factor 
considerably. Hence, the inactive non-gateways method also obtains a higher message gain. 
However, the difference in the message gain obtained is reduced as the number of subtasks in each 
complex task increases. This is to be expected as a higher number of subtasks within each complex 
task decreases the potential of each active non-gateway agent to serve a request, resulting in more 
messages being exchanged while searching for PTNs to serve the tasks.   

Relating these results to the discussion on Figures 14-17, it is interesting to note that the decline 
in benefit achieved when moving from fewer to more subtasks per complex task is not significant 
(see the first two bars in Figures 20 and 21) in the case of a single capability for all agents. 
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However, the decline is rapid as the number of capabilities increases as it becomes increasingly 
difficult to locate the appropriate agents and successfully form PTNs. 
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Figure 21. Benefit achieved when there are 7 subtasks per complex task. 
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Figure 22. Message Gain when there are 3 subtasks per complex task. 
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Figure 23. Message Gain when there are 7 subtasks per complex task. 
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7.4 Evaluating different approaches to searching and task allocation networks with 
random connections 

In this section we study the performance of the proposed methods in different agent network 
settings aiming to investigate whether and to what extent the topology of the network influences 
the performance of our proposed techniques.  

The networks in this set of experiments were generated in a way such that connections can be 
created between any two nodes in the network, discarding the radius parameter. Hence, we call 
this the random_connections generation method. The generator takes a parameter n denoting the 
maximum number of edges that can be attached to any node in the agent network. That is, the 
maximum number of agents each agent can have in its immediate neighborhood.  For each agent, 
the actual number m of its neighbors is selected randomly between 1 and n. The generation process 
starts by randomly selecting an agent Ai and a number m, m>0. Then, we randomly select m agents 
to connect to Ai and the corresponding edges are added to the network. This process continues 
until the connections of all agents have been determined. When determining the connections of an 
agent we take into account the connections it may have already acquired through previous steps in 
the process. We ensure that the resulting network is connected by randomly adding edges between 
any disconnected components.  For the experiments presented here n varied from 3 to 15 with an 
increasing step of 2. 

The average number of complex tasks generated for the experiments of this section was 1637 
for the case of 3 subtasks and 933 for the case of 7 subtasks. Note that the generation of complex 
tasks is not influenced by the underlying network’s topology and therefore their characteristics are 
very close to the ones shown in Figures 14 and 15. The average graph density of the graphs 
generated for n= 3, 5, 7,…, 15 is shown below (Figure 24).  
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Figure 24. Average graph density for n= 3, 5, …, 15 
 
Note that the generated graphs are sparse as the average graph density ranges from 0.48% for 

n=3 to 2.52% for n=15. After each agent network is generated and each agent acquires knowledge 
of its neighbors we decide which ones will be assigned the gateway status using the algorithm 
given in Section 4.1 [2].  Information on this is presented in Figure 25 where we give the average 
number of agents that opted for gateway status over the maximum number of connections for each 
agent. As expected, as the density of the network increases, the number of gateways decreases.  
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Figure 25. Average number of gateway agents for n maximum possible immediate neighbors.  
 
We have performed a detailed evaluation the proposed searching and allocation methods (the 

variants of Method A and Method B) on the problems generated with the random connections 
generation method whose characteristics are explained in Figures 24 and 25. Before presenting the 
results of our most competitive methods (the two variants of Method B) in Section 7.4.2, we first 
give a statistical analysis confirming the (slight) advantage of Method B over Method A. 

7.4.1 Method A vs. Method B 

As it is also reported in Section 7.3, Method B is generally slightly better than Method A.  We 
now give results from a statistical analysis, performed using non-parametric Wilcoxon signed-rank 
tests that verify this.  The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test 
for the case of two related samples or repeated measurements on a single sample. The test is based 
on the magnitude of the difference between the pairs of observations. The Wilcoxon signed-ranks 
tests assume a continuous value distribution. It can be used as an alternative to the paired Student's 
t-test when the population cannot be assumed to be normally distributed. Table 2 compares 
Method B with active non-gateways to Method A with active non-gateways, while Table 3 gives 
similar results for the case of inactive non-gateways. We give the mean and standard deviation of 
the difference in benefit and the difference in the number of messages sent by the compared 
methods. We also give the Z-value and the p-value for each combination of Capability types/Max. 
subtasks. If the computed p-value is equal or less to 0.05, then the two methods can be said to 
differ significantly. Otherwise, no statistically significant difference can be assumed between the 
two methods. 
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Benefit_B_a - Benefit_A_a Messages_B_a - Messages_A_a Capa-
bility 
types / 
Max. 
Sub- 
tasks 

Mean SD Z-value p-value Mean SD Z-value p-value 

1/3 -0.11 1.40 -0.296(b) 0.767 3398 4080 -2.090(a) 0.037

2/3 1.66 1.90 -2.191(a) 0.028 3751 4339 -2.090(a) 0.037

3/3 1.74 1.97 -2.701(a) 0.007 6394 4720 -2.599(a) 0.009

1/7 1.97 2.22 -2.191(b) 0.028 6663 5341 -2.803(b) 0.005

2/7 2.48 3.00 -2.191(a) 0.028 1115 5701 -0.255(a) 0.799 

3/7 1.48 3.07 -1.362(a) 0.173 14584 6865 -2.803(a) 0.005

Table 2. Statistical results comparing Method B with active non-gateways (denoted by B_a) to 
Method A with active non-gateways (denoted by A_a). Column 1 gives the number of capability 
types and the maximum number of subtasks per complex task. Columns 2-5 give statistics 
regarding the difference in achieved benefit. Columns 6-9 give statistics regarding the difference 
in sent messages.  P-values and Z-values that indicate statistical significance are underlined. A 
sample of 10 instances was used for each combination of values for the capabilities and the 
maximum subtasks per complex task.  

 
Results from Tables 2 and 3 show that in all cases, except in the case of 1 capability and 3 

subtasks per task in Table 2, Method B achieves a higher benefit on average than Method A. 
Moreover, in most cases the difference is statistically significant as the p-values indicate. In 
contrast, in all cases Method B has a higher average cost than Method A, measured by the  
messages sent. Also, in most cases the difference in the number of messages is statistically 
significant. Having established that Method B achieves a higher benefit than Method A, in the rest 
of Section 7.4 we only present results from the two variants of Method B. 
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Benefit_B_i - Benefit_A_i Messages_B_i - Messages_A_i Caps / 
Max. 
Sub- 
tasks 

Mean SD Z-value p-value Mean SD Z-value p-value 

1/3 0.36 1.65 -0.663(a) 0.508 8494 4492 -2.803(a) 0.005

2/3 1.95 1.83 -2.395(a) 0.017 1504 3338 -1.274(a) 0.203 

3/3 3.01 2.94 -2.395(a) 0.017 6574 6685 -2.701(a) 0.007

1/7 6.39 2.12 -2.803(b) 0.005 5387 6903 -2.090(b) 0.037

2/7 2.51 1.89 -2.599(a) 0.009 2127 6358 -0.968(a) 0.333 

3/7 1.98 1.91 -2.293(a) 0.022 11861 8850 -2.599(a) 0.009

Table 3. Statistical results comparing Method B with inactive non-gateways (denoted by B_i) to 
Method A with inactive non-gateways (denoted by A_i). Column 1 gives the number of 
capabilities and the maximum number of subtasks per complex task. Columns 2-5 give statistics 
regarding the difference in achieved benefit. Columns 6-9 give statistics regarding the difference 
in sent messages.  P-values and Z-values that indicate statistical significance are underlined. A 
sample of 10 instances was used for each combination of values for the capabilities and the 
maximum subtasks per complex task. 

7.4.2 Active vs. Inactive Non-Gateways 

In Figures 26 and 27 we compare the benefit achieved by the two variations of Method B in 
problems with complex tasks consisting of at most 3 and 7 subtasks respectively, while in Figures 
28 and 29 we show the message gain for the same classes of problems. The numbers given are 
averages for all values of the maximum number of agents’ neighbors n (3 up to 15). We do not 
present separate results for the different values of n because changes in the graph’s density in the 
range of 0.48 to 2.52 did not have a significant impact on the system’s benefit. Of course, for 
much denser networks this may not be true and we intend to investigate this in more detail in the 
future. While the average density for networks with n=3 was substantially lower than the one for 
networks with n=15 (around 5 times lower), the system’s benefit throughout all sets of 
experiments had a variation of only 1.5% between the highest and the lowest benefit obtained for 
networks of any density, noting that slightly higher benefit was achieved as the density was 
increased. Hence, it seems that the proposed method is quite robust regarding the network’s 
density, at least for the random_connections generation method. 
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Figure 26. Benefit achieved when there are at most 3 subtasks per complex task. 
 

Complex Tasks - 7 Subtasks - Benefit

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

|CapsG| = 1 |CapsG| = 2 |CapsG| = 3

Caps

B
en

ef
it

Method B Active Non-GWs Method B Inactive-Non-GWs
 

Figure 27. Benefit achieved when there are at most 7 subtasks per complex task. 
 
Results show that the system’s benefit remains high independent of the allocation method 

selected. The second method (method B with inactive non-gateways “non-GWs”) performs 
slightly better compared to the other one in terms benefit but it incurs more exchanged messages, 
as in Section 7.3. Hence, the active non-gateways method achieves slightly better message gain in 
the case of 3 subtasks per complex task. However, in the case of 7 subtasks this is reversed due to 
the higher difference in benefit in favor of the inactive non-gateways method. 

To obtain a better understanding of the difference in performance between the two variants of 
Method B, we performed a statistical analysis similar to the one presented in Section 7.4.1. Table 4 
presents the results of this analysis that confirm that the inactive non-gateways variation always 
achieves a higher benefit on average compared to the active gateways variation. However there is 
only a small difference which is not always statistically significant. On the other hand, the inactive 
non-gateways method incurs a slight increase in the number of exchanges messages, but this 
increase is very small and rarely has a statistical significance. 
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Benefit_B_i - Benefit_B_a Messages_B_i - Messages_B_a Caps / 
Max. 
Sub- 
tasks 

Mean SD Z-value p-value Mean SD Z-value p-value 

1/3 0.63 1.47 -1.073(a) 0.283 5473 5792 -2.395(a) 0.017

2/3 0.88 2.21 -0.866(a) 0.386 442 3440 -0.153(b) 0.878 

3/3 2.66 2.00 -2.803(a) 0.005 1981 4899 -1.274(a) 0.203 

1/7 3.98 2.20 -2.803(b) 0.005 1913 5169 -0.866(b) 0.386 

2/7 0.32 2.30 -0.255(b) 0.799 2244 6860 -1.070(a) 0.285 

3/7 2.22 2.23 -2.090(a) 0.037 1504 6635 -0.866(a) 0.386 

Table 4. Statistical results comparing Method B with active non-gateways (denoted by B_a) to 
Method B with inactive non-gateways (denoted by B_i). Column 1 gives the number of capability 
types and the maximum number of subtasks per complex task. Columns 2-5 give statistics 
regarding the difference in achieved benefit. Columns 6-9 give statistics regarding the difference 
in sent messages.  P-values and Z-values that indicate statistical significance are underlined. A 
sample of 10 instances was used for each combination of values for the capabilities and the 
maximum subtasks per complex task. 

 
Comparing the results of Section 7.4 with the ones presented in Section 7.3 we can conclude 

that the proposed method for allocation and scheduling is quite robust with respect to the problem 
generation method (at least for geographical and random_connections networks). That is, the 
benefit achieved does not vary considerably between the two generation methods. Specifically, the 
variation between the results of paragraphs 7.3 and 7.4 with respect to the system’s benefit was 
1.9% on average, with maximum value of 3.85%, for the case of 3 subtasks per complex task. In 
the case of 7 subtasks the variation was 2.6% on average and the maximum difference was 3.14%. 
In all cases the benefit achieved on the networks generated with the random_connections method 
is higher.  
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Figure 28. Message Gain when there are 3 subtasks per complex task. 
 

Complex Tasks - 7 Subtasks - Message Gain

0.000001000

0.000002000

0.000003000

0.000004000

0.000005000

0.000006000

0.000007000

|CapsG| = 1 |CapsG| = 2 |CapsG| = 3

Caps

M
es

sa
ge

 G
ai

n

Method B Active Non-GWs Method B Inactive-Non-GWs
 

Figure 29. Message Gain when there are 7 subtasks per complex task. 
 
Comparing the results from the geographical and random_connections types of networks that 

have the same average density (i.e. around 1.95%) the average benefit variation is roughly 1%, 
again in favor of the random_connections generation method. Although this is not significant 
statistically, we conjecture that on the random_connections networks the higher benefit may be 
due to th that a message can reach any node in the network in fewer hops (on average) than in 
geographical networks. This means that a task request that enters through a specific agent Ai in a 
geographical network, and requires resource availability and capabilities offered by distant agents 
only, may not be served because its TTL may expire before the appropriate agents are located and 
the corresponding PTN is formed. In contrast, in random_connections networks the appropriate 
agents could be reached faster (because of the random shortcuts), within the TTL, and the request 
might therefore be served. Of course, this conjecture requires further and more detailed 
experimental evidence.   

7.4.3 Changing the distribution of capabilities 

Up to this point capabilities have been assigned to agents using a uniform distribution. In 
practice though, many systems tend to behave in a different way as certain agent capability types 
are frequent and others are scarce. Hence, we also experimented with problem sets where 
capabilities are distributed in a different way. To be precise, the agent networks here were 
randomly generated using the random_connections method and capabilities of 3 distinct types 
were assigned to the agents following the Zipfean distribution. In this case, the number of agents 
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having capability type 1 was much higher than the one of agents having capability type 2. In turn, 
agents with capability type 2 are more than ones with capability type 3.  The performance of the 
system is shown in Figures 30 (benefit) and 31 (message gain). As can be seen, there is a sharp 
drop in the benefit achieved compared to Figures 26 and 27, especially in the case of 3 subtasks. 
For example, in this case, the benefit of the non-active gateways method drops from approx. 60% 
down to just over 30%. Similar results hold with relevance to the message gain obtained.  

These results are not unexpected since the system has increasing difficulty in finding agents 
capable of serving atomic tasks that require capabilities 2 or 3. Hence most of the complex tasks 
that include subtasks requiring these capabilities will not be served, resulting in reduced benefit. In 
addition, the difficulty to locate appropriate agents results in a larger volume of messages 
exchanged.  On the other hand, if all the subtasks in a complex task require agents with capability 
type 1, it will be very easy to locate them, form a PTN and subsequently successfully schedule the 
task. However, this is not a very common case. Note that we did not use the Zipfean distribution to 
assign required capabilities to subtasks, but rather the uniform one. If we had used the Zipfean 
distribution for the subtasks then the distribution of capabilities to agents would follow that of 
capabilities to subtasks, resulting in easier problems. 
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Figure 30. Benefit for networks with possible capability values 1, 2 or 3 following the Zipfean 

distribution. 
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Figure 31. Message Gain for networks with possible capability values 1, 2 or 3 following the 

Zipfean distribution. 
 

To conclude the experimental evaluation, viewing the task allocation and scheduling as a two 
step process we can note that different approaches to each step have different repercussions on the 
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system’s efficiency. As demonstrated in Subsection 7.2, different approaches to the scheduling 
step can lead to significant variance in the amount of successfully scheduled tasks (benefit). Hence 
moving from local search to a sophisticated complete DCOP algorithm like Adopt is indeed very 
beneficial. On the contrary, in this and the previous subsections we have shown that trying to 
improve the task allocation process through more elaborate mechanisms does not have a similarly 
significant impact on the system’s benefit since the use of the gateway/routing indices 
infrastructure is by itself very effective. However, it remains to be seen if even more intricate task 
allocation processes can have a significant impact on the system’s benefit for complex problems. 

7.5 Discussion 

The experimental results given in Sections 7.3 and 7.4 demonstrate that the benefit achieved by 
our method sharply declines as the problems become harder by increasing the number of available 
capabilities, especially when the number of subtasks per complex task is large. A natural question 
that follows is whether this is due to some inherent deficiency of our approach or to the extreme 
hardness of the generated instances. One way to answer this question is to measure the distance 
between the optimal benefit that can be achieved in the generated instances and the benefit 
achieved by our method. However, this is far from easy to do in practice since the problems we 
deal with are highly combinatorial and hence very hard. In practice, finding the optimal benefit in 
large enough random instances would require collecting all the generated tasks in a single agent 
and solving the resulting problem in a centralized way through some elaborate branch & bound 
search algorithm. Developing such an algorithm requires extensive research and is outside the 
scope of this paper. Therefore, measuring the optimal benefit in our randomly generated instances 
is beyond our reach at the moment.     

To obtain an indication of our method’s ability to approach the optimal benefit, we have run 
experiments with an alternative task generation method which guarantees that all generated tasks 
are satisfiable, not only on their own, but also considered collectively. Recall that the generation 
methods detailed above ensure that each task is satisfiable when considered individually but do not 
guarantee that all tasks are satisfiable when considered together. This alternative generation 
method proceeds as follows. 

At first the agents' timelines are processed one by one and broken into smaller fragments. Each 
fragment's duration is determined randomly and is between 1 and 5 time units (half of the agent's 
full capacity). Then, the complex tasks are constructed. Assuming a task with x subtasks is 
required, we randomly choose x time fragments from the previously broken down timelines. Each 
individual fragment of every timeline is chosen only once. For instance, when generating a 
complex task with 3 subtasks, we randomly select 3 timeline fragments from 3 agents (which are 
not necessarily different). Each fragment becomes an individual subtask within the complex 
task. Constraints are then posted between the subtasks making sure that they are satisfied. For 
example, assuming two subtasks (timeline fragments) t1=[1, 3] and t2=[5, 8], a constraint S1+3<S2 
may be posted. After a complex has been created, the corresponding timeline fragments are 
removed from the respective agents’ timelines and the process is repeated until no more satisfiable 
complex tasks can be created. Any remaining timeline fragments are considered as atomic tasks. 

This generation method guarantees that all tasks are satisfiable. This is because, ideally, any 
subtask of a given task can be allocated to the agent where the corresponding timeline fragment, 
from which it was created, belongs. Then this agent can schedule this subtask in exactly the 
“correct” timeline fragment. Therefore, the optimal benefit under this generation method is 100%.   

We ran experiments with Method B in combination with inactive non-gateways on randomly 
generated problems with 200 agents where the total capacity required by the generated tasks is 
equal to the total capacity of the agents. The results are given in Table 5. The first column gives 
the number of capabilities and the maximum number of subtask per complex task. Columns 2 to 4 
give the average performance of our method measured in the metrics used across all our 
experiments. Column 5 gives the average % coverage of the total capacity of the agents (i.e. the 
aggregation of their timelines) once the scheduling of the tasks has been completed. For instance, 
96.78% coverage in the case of one capability and 3 subtasks per task at maximum means that 
once the allocation and scheduling of the tasks was completed, the 3.22% of the total capacity was 
free (i.e. not allocated to any task). Column 6 gives the uniform TTL of the generated tasks. 

 
Capabilities –  
Max. Subtasks Benefit Messages Ben/Mess 

%Timeline 
Covered TTL 

1 - 3    97.38%    102368 0.000009513 96.78% 10 
1 - 7    95.17%    157422 0.000006046 94.83% 10 
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3 - 3 63.27% 167347 0.000003781 62.76% 30 
3 - 7 39.83% 198563 0.000002006 39.21% 30 
3 - 3 67.49% 173168 0.000003897 68.15% 50 
3 - 7 43.84% 203722 0.000002152 42.87% 50 

Table 5. Average performance of Method B with inactive non-gateways on problems where all 
tasks are guaranteed to be satisfiable. 

 
Table 5 demonstrates that as the TTL of the tasks increases the benefit achieved also increases. 

Recall that the TTL in all experiments presented above was set to 10, which is relatively low. This 
explains, to some extend, the drop in the achieved benefit as the tasks get harder. However, even 
with TTL=50, the benefit of the system is still under 50% in the case of 3 capabilities and 7 
subtasks per complex task. This is of course very far from the optimal 100% benefit but we must 
note that it is considerably higher than the benefit achieved under the previously used task 
generation methods. This is evident if we compare the results of the last line in Table 5 with those 
given in Figures 21 and 27.  

Concluding the above, we believe that these results do not demonstrate a deficiency in our 
approach but they rather show that the problems we tackle are very hard. As explained, the 
generation method we try here guarantees that all tasks can be satisfied, but in practice it will be 
nearly impossible for any heuristic method to locate the appropriate agents and schedule the 
subtasks to the “correct” timeline fragments for all the generated tasks.     

8 Conclusions  
We proposed a novel method for allocating atomic and complex tasks in large-scale networks 

of homogeneous or heterogeneous cooperative agents. In contrast to prior work, we treat 
searching, task allocation and scheduling as a single problem and propose a decentralized method 
for all these tasks where no accumulated or centralized knowledge or coordination is necessary. 
Efficient searching for agent groups that can facilitate task requests is accomplished through the 
use of a dynamic overlay structure of gateway agents and the exploitation of routing indices. The 
task allocation and scheduling of complex tasks is accomplished by combining dynamic 
reorganization of agent groups and distributed constraint optimization methods. Experimental 
results displayed the efficiency of the proposed method. 

In the immediate future we plan to perform a more in-depth experimental investigation of the 
effect that the various parameters have on the system’s performance. Specifically, we are referring 
to the way networks are generated, their density (as dictated by n and r for geographical networks 
for example), the size of the complex tasks in terms of subtasks they include, the density of the 
constraint graph for each complex task, and the number of available capabilities. 

Further work targets investigating in more detail the trade-off between DCOP solving and 
dynamic reorganization of PTNs during the scheduling process. First we intend to clarify through 
extensive experimentation the contribution that the DCOP algorithm has to the resolution of 
complex tasks compared to the dynamic reorganization of PTNs. That is, we will measure the 
percentage of complex tasks that are successfully allocated without reorganization and the extent 
of reorganization that occurs on average. This investigation will hopefully lead to the development 
of efficient heuristic methods for choosing whether to continue employing sophisticated DCOP 
algorithms or simply reorganize the PTN once conflicts are encountered during the scheduling 
process. 

Other, more general, directions for future work include extending our framework to consider 
other types of resources and tasks with uncertain durations as, as well as to situations where the 
agents have preferences on the tasks they can serve.  Also, it would be interesting to study the use 
of alternative DCOP algorithms within our method, such as DPOP and its extensions. 

Finally, a direction we aim to pursue is the extension of our approach so that changes to agent 
commitments can be made as tasks arrive dynamically so that a better overall allocation can be 
achieved. This requires modifying the scheduling and allocation methods involved in our 
approach, and will most likely increase their run times, but may well result in higher system 
benefit being obtained. 
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