
Overlay Networks for Task Allocation and
Coordination in Large-scale Networks of
Cooperative Agents

Panagiotis Karagiannis, George Vouros, Kostas Stergiou, Nikolaos Samaras

Abstract. This paper proposes a novel method for scheduling and allocating atomic and
complex tasks in large-scale networks of homogeneous or heterogeneous cooperative agents. Our
method encapsulates the concepts of searching, task allocation and scheduling seamlessly in a
decentralized process where no accumulated or centralized knowledge or coordination is
necessary. Efficient searching for agent groups that can facilitate the scheduling of tasks is
accomplished through the use of a dynamic overlay structure of gateway agents and the
exploitation of routing indices. The task allocation and the scheduling of complex tasks are
accomplished by combining dynamic reorganization of agent groups and distributed constraint
optimization methods. Experimental results display the efficiency of the proposed method.

Keywords: Task and resource allocation, coordination, cooperation, distributed constraint
processing, cooperative agents.

Panagiotis Karagiannis, Nikolaos Samaras

Department of Applied Informatics, University of Macedonia, Greece

email: pkar@uom.gr samaras@uom.gr

George Vouros, Kostas Stergiou

Department of Information and Communication Systems Engineering, University of the Aegean,
Greece

email: georgev@aegean.gr konsterg@aegean.gr

1

mailto:pkar@uom.gr
mailto:samaras@uom.gr
mailto:georgev@aegean.gr
mailto:konsterg@aegean.gr

1 Introduction
This paper is concerned with the problem of distributed task allocation and coordination in large-
scale networks of homogeneous or heterogeneous cooperative agents. Such a problem typically
arises in peer-to-peer systems, grids and virtual organizations, in crisis management scenarios, etc.
Decentralized control of large-scale systems of cooperative agents is a hard problem in the general
case: The computation of an optimal control policy when each agent possesses an approximate
partial view of the state of the environment (which is the case for large-scale distributed systems)
and agents’ observations are interdependent (i.e. one agent’s actions affect the observations of the
other) is very hard even if agents’ activities are independent (i.e. the state of one agent does not
depend on the activities of the other) [9]. Decentralized control of such a system in cases where
agents have to act jointly is even more complex. In the case of joint activity, subsets of agents have
to form teams in order to perform tasks subject to constraints: Acting as a team, each group has to
be coordinated by scheduling subsidiary tasks with respect to temporal and possibly other
constrains, as well as other tasks that team members aim to perform (e.g. as members of other
teams).

Let us for instance consider a scenario (e.g. a terrorist attack) where crisis-management agents
(policemen, fire brigades, health professionals, army forces) need to jointly perform numerous
tasks within a certain time interval (i.e. agents have a limited time horizon due to the emergency of
the situation). Each agent has its own capabilities and they all form an acquaintance network
depending on the physical communication means available. While requests for joint activities
arrive (e.g. new explosions, civilians requesting for help etc.) agents need to form teams to handle
each individual situation. This comprises of three interleaved sub-problems: searching for the
appropriate agents, allocating tasks to them according to their capabilities, and scheduling these
tasks subject to temporal and other constraints. In contrast to previous works where these sub-
problems are largely tackled independently, in this paper we view and solve the three-step process
as a single problem.

The method we propose facilitates effective and efficient searching through the dynamic
construction of overlay networks of gateway agents and the exploitation of routing indices. The
search for the appropriate agents is done via the “heads” of services (gateway agents), which best
know the availability and capabilities of subsidiaries (exploiting routing indices). However, since
heads have to manage numerous incoming requests (e.g. emergent situations in the above
scenario), they can propagate such requests to subsidiaries, which act so as to form task-specific
teams depending on the requirements of each situation. After a team of agents is formed, the
members of the team need to jointly schedule their activities taking into account
interdependencies, as well as their other scheduled activities. This is in itself a hard problem which
in our framework is tackled using a combination of dynamic team reorganization and distributed
constraint optimization methods.

Being interested in the development of decentralized methods for the efficient task allocation
and coordination in large multi-agent systems, we addressed the problem by building on self-
organization approaches for ad-hoc networks, token-based approaches for coordination in large-
scale systems, and distributed constraint satisfaction/optimization. In summary, we make the
following contributions:

a. We propose a method that addresses searching, task allocation and scheduling in large-
scale systems of cooperative agents. Specifically, we demonstrate how the interplay of
simple searching, task allocation and scheduling techniques using routing indices, with the
dynamic self-organization of the acquaintance network to an overlay network of gateway
agents, can contribute to solving a complex problem in multi-agent systems efficiently. The
applicability of our method is demonstrated by allocating temporally interdependent tasks
with specific capability requirements to time-bounded agents.

b. We propose a generic method for task allocation and scheduling that combines dynamic
reorganization of agent teams with distributed constraint optimization. Several versions of
this method, which may differ either in the way task allocation or/and scheduling is
performed, are implemented and compared experimentally.

c. We provide experimental results from simulated settings that demonstrate the efficiency
of the proposed overall method and different variations of it. We compare two different
configurations with distinct distributed constraint optimization methods and evaluate the
efficiency of the task allocation and scheduling mechanism. Results show that the task
allocation methods we propose coupled with the complete constraint optimization algorithm
Adopt achieve quite promising results.

2

The rest of the paper is structured as follows: In Section 2 we discuss related work. In Section 3
we formally state the problem we deal with. Sections 4 and 5 describe the individual techniques
employed for searching, task allocation and scheduling. In particular, Section 4 discusses the
formation of the overlay network of gateways and the construction of routing indices, while
Section 5 is concerned with the alternative methods for distributed constraint optimization used
during the task allocation/scheduling phase. In Section 6 we present the overall method for
integrating searching, task allocation and scheduling, outlining the different approaches to
searching and task allocation. Experimental results are given in Section 7. Finally, Section 8
concludes the paper.

2 Related Work
In a large-scale system with decentralized control it is very hard for agents to possess accurate
partial views of the environment, and it is even harder for agents to possess a global view of the
environment. Furthermore, the agents’ observations can not be independent, as one agent’s actions
can affect the observations of the others: for instance, when one agent leaves the system, then this
may affect those agents that are waiting for a response; or when an agent schedules a task, then
this must be made known to its team-mates who need to schedule temporally dependent tasks
appropriately. This last example shows that transitions are interdependent too, which further
complicates the computations.

Even if agents’ activities are independent (i.e. the state of one agent does not depend on the
activities of the other) [9] the overall complexity is exceedingly higher compared to centralized
systems. Moreover, decentralized control of cooperative agent systems in cases where agents have
to act jointly adds an even higher amount of complexity. In the case of joint activity, subsets of
agents have to form teams in order to perform tasks, subject to ordering constraints. Acting as a
team, each group has to be coordinated by scheduling subsidiary tasks with respect to temporal
and possibly other constrains, as well as other tasks that team members aim to perform (e.g. as
members of other teams).
 Generally, in cases where the system has to allocate and schedule joint activities that involve
temporally interdependent subsidiary tasks, the process involves at least (a) searching: finding
agents that have the required capabilities and resources, (b) task allocation: allocating tasks to
appropriate agents, and (c) scheduling: constructing a commonly agreed schedule for these agents.
Each of these issues has received considerable interest in the literature.

The control process can be modelled as a decentralized partially-observable Markov decision
process [9]. The computation of an optimal control policy in this case is simple given that global
states can be factored, the probability of transitions and observations are independent, the
observations combined determine the global state of the system and the reward function can be
easily defined as the sum of local reward functions.

Decentralized control in systems where agents have to act jointly in the presence of temporal
constraints, is a challenge. This challenge has been recognized in [13], where authors propose an
anytime algorithm for centralized coordination of heterogeneous robots with spatial and temporal
constraints, integrating task assignment, scheduling and path planning. In addition to providing a
centralized solution, they do not deal with ordering constraints between tasks. Although the
authors demonstrate that their method can find schedules for up to 20 robots within seconds, it is
unclear how it would perform in networks with hundreds of agents. On the other hand, it has to be
pointed that their algorithm, being efficient for small groups and providing error bounds, may be
combined with our approach, given small groups of potential team-mates. However this is an issue
for further research since the inclusion of ordering constraints will impact the solution complexity.

Extreme teams is a term coined in [23], emphasizing on four key constraints of task allocation:
(a) domain dynamics may cause tasks to appear and disappear, (b) agents may perform multiple
tasks within resource limits, (c) many agents have overlapping functionality to perform each task,
but with differing levels of capability, and (d) inter-task constraints may be present. In this paper
we deal with these four key issues, extending the problem along the following dimensions: (a)
handling temporal constraints among tasks, (b) dealing with agents that do not have the
capabilities to perform every task, and (c) integrating searching with task allocation and
scheduling.

Token-based approaches are promising for scaling coordination to large-scale systems
effectively. The algorithm proposed in [29] focuses on routing models and builds on individual
token-based algorithms. Additionally, in [29] authors provide a mathematical framework for
routing tokens, providing a three-level approximation to solving the original problem. Token-

3

based approaches do not inherently deal with scheduling constraints and dynamic settings. In our
approach, tokens concerning the availability of resources and capabilities are being used for
constructing agents’ partial views of the network status using routing indices. Routing is further
restricted to the connected dynamic sub-network of gateway agents which manage searching.

In [15,16] a protocol was proposed for solving a distributed resource allocation problem while
conforming to soft real-time constraints in a dynamic environment. Although this is not the same
problem as task allocation, it is worth mentioning that the approach towards solving the resource
allocation problem taken in [15] has certain similarities with our approach. To be precise, resource
allocation was solved modelled as an optimization problem, similar to a Partial Constraint
Satisfaction Problem. The protocol of [15] uses constraint satisfaction based pruning techniques to
cut down the search space, coupled with a hill climbing procedure.

It has to be noticed that in this paper we do not deal with communication decisions for
optimizing information sharing/exchange as done in [10], or for proactively exchanging
information [34]: This is orthogonal to our research which may further increase the efficiency of
the proposed method. However, we point that this can not be done in any way such that agents
share a global view of the environment state (as in [22, 30, 31]).

The (C_TÆMS) representation [2] is a general language (based on the original TÆMS
language [6]) widely used for distributed planning and scheduling in multiagent systems. In order
to deal with uncertainties, C_TÆMS tasks have probabilistic utilities and durations. Agent
coordination and scheduling in dynamic and uncertain environments using C_TÆMS has been in
addressed by various approaches within the DARPA Coordinators program [14, 19, 25]. These
approaches are more general than ours in the type of tasks they consider, since for the purposes of
this paper we limit ourselves to tasks with fixed duration. Musliner et al. use distributed Markov
Decision Processes (MDPs) as the underlying formalism to capture uncertainty [19]. Smith et al.
use Simple Temporal Networks (STNs) to infer feasible start times for the tasks allocated to agents
in the system [25]. Once dynamic changes occur, agents heuristically determine task insertions in
their schedule and change the STN constraints in order to make such insertions feasible. Finally,
[14] introduced the Predictability and Criticality Metrics (PCM) approach in which dynamic
changes are handled by making schedule modifications, chosen heuristically through simple
metrics from within a set of possible modifications that can increase the team utility.

In a more relevant note to our work, in [26] the authors solve a class of multi-agent task
scheduling problems by mapping specifications expressed in a subset of C_TÆMS to distributed
constraint optimization problems (DCOPs) and hence allowing the use of algorithms such as
Adopt [18]. Apart from the mapping, this work focuses on the use of constraint propagation to
prune the domains of the variables in the resulting DCOPs and hence achieve efficient solving. We
should note that this work and all the C_TÆMS ones mentioned above, focus on how to handle
distributed planning and scheduling. In contrast, the approach we present here views the whole
process of task allocation and scheduling as tightly interconnected problem and to this extend we
propose a combination of methods, concerning all of its aspects, to tackle it.

Finally, we need to point out that the approach presented in this paper extends the work
proposed in [27]. Indeed, this paper is an extended version of [27] that explains the overall
approach in more detail and, most significantly, it presents and evaluates configurations of the
overall method using new methods (compared to that of [27]) for task allocation and scheduling.
Experimental results given in Section 7 demonstrate that the new methods outperform the ones
proposed in [27].

3 Problem Formulation
In this section we formally define the problem we deal with, discussing the various assumptions
made, and we give an overview of our proposed approach. We first describe the setting of the
agent network and the type of task requests we consider.

3.1 Agent Network

In this paper we assume large-scale networks of collaborating agents that are distributed
geographically. Therefore, the network’s connectivity factor varies between different geographical
regions. The acquaintance network of agents is modelled as a connected graph G=(N,E), where N
is the set of agents and E is a set of bidirectional edges denoted as non-ordered pairs (Ai,Aj). The
(immediate) neighbourhood of an agent Ai includes all the one-hop away agents (i.e. each agent Aj
such that (Ai, Aj)∈ E. The set of neighbours (or acquaintances) of Ai is denoted by N(Ai).

4

Agents are considered to be time-bounded with specific discrete capabilities. We assume that
each agent has a single type of resource and at each time point at most one of the requested tasks
(presented in subsection 3.2) can use any such resource. Under these assumptions the problem of
allocating tasks to the resources becomes equivalent to the problem of finding available time
intervals in the agents’ schedule to allocate to the various tasks. Therefore we can consider that the
only resource that an agent manages is a set of time units. These assumptions are not restrictive as
the method can be extended to other resources, which can be treated mostly as we treat the
availability of time units or agents’ capabilities.
Therefore, each agent Ai is being attributed with a set of capability types Capi={capi1, capi2…
capim}, a set of time-units Ri={ri1, ri2,...,rin}, totally ordered with a relation “consecutive” denoted
by “<”, and a priority Pi which is a positive integer. The function earliest(R) (resp., latest(R))
denotes the time point rik in R,R⊆Ri, for which there is not any other point r in R with r< rik (resp.
rik <r). The priority is a unique identifier that is assigned to each agent when it enters the multi
agent system [3]: This is necessary for the computation of an overlay network (explained in
Section 4.1) and for the non-cyclic update of routing indices (explained in 4.2), and it may depend
on several factors such as the battery life of the agent, its availability of resources, its capabilities
etc. The initial state of an example network is shown in Figure 1. In this network each agent has
10 consecutive time-units, which are available for allocation, and a specific set of capabilities.

3.2 Task Requests

Figure 1. A network of acquaintances

We assume that there is a set of requests concerning k independent tasks T = {t1,…, tk}. Each

task ti can be either atomic or complex, in which case it may require the joint achievement of a set
of atomic subtasks {gi1, gi2,.., gik}. Atomic tasks require the commitment of a single agent. Each
atomic task ti (or subtask gil) is a tuple <ai, starti, endi,Capi>, where αi, starti and endi, are non-
negative integers representing the maximum number of time units that the task needs to be
completed, the earlier time point when ti should start to be executed and the latest time point that ti
should finish executing, respectively. Capi is the set of agent capabilities that are required for the
successful execution of the task.

For each complex task ti consisting of a set of sub-tasks {gi1,.., gik} there is also a set of
constraints Ci corresponding to the interdependencies between ti’s subtasks. In this paper we
consider binary precedence constraints specifying temporal distances between the executions of

5

subtasks. For example, constraint start(gij)+3≤ start(gil) means that the execution of subtask gil
must start at least 3 time units after the execution of subtask gij.

3.3 Problem Specification and Overview of our Approach

Given the above, the problem that this article deals with is as follows: Given a network of
agents G=(N,E) and a set of requests for performing a set of tasks T, we require

(a) for each atomic task ti = <ai,starti,endi,Capi> in T, to find an agent Aj in N, such that
perform(Aj, ti)=1.

This holds if Aj has the required capabilities and time resources:
{(Capi⊆Capj) ∧ (∃ R⊆Rj s.t. |R|≥ai ∧ starti≥earliest(R) ∧ latest(R)≥endi), where R is an interval

of consecutive time points}. On the contrary, perform(Aj, ti)=0
(b) for each joint (complex) task ti in T with subsidiary tasks {gi1,.., gik} to find a set of agents G

that form a network of potential team-mates (PTN) such that
(i) for each sub-task there is an agent in G that can

perform it: 1(,) { ,..., }l ik i ik
gik

perform A g g g=∑
(ii) the precedence constraints between the subtasks of ti are satisfied.
For that purpose, following [17], we assume that for each constraint ckl∈Ci between two

subsidiary tasks gik and gil there is a cost function fkl providing a measure of the constraint’s
violation. The total satisfaction of the complex task’s constraints is defined as an aggregation of
these cost functions. In Section 5.1 we explain in detail how complex tasks are modeled, how the
cost functions are evaluated and how their aggregation is computed.

The aim is twofold. First, to increase the benefit of the system, i.e. the ratio of tasks
successfully allocated to the total number of requests. As explained above, we consider an atomic
task to have been successfully allocated if the system has located an agent that has the available
resources and capabilities to serve the requested task. A complex task is considered successfully
allocated if a team of agents is formed such that all sub-tasks of the complex task are successfully
allocated and all inter-task constraints are satisfied. Our second goal is to increase the message
gain, i.e. the ratio of the benefit to the number of messages exchanged.

To achieve these goals we propose an approach that builds on self-organization approaches
for ad-hoc networks, token-based approaches for coordination in large-scale systems, and
distributed constraint optimization. Namely, the agents in the network are organized in a dynamic
overlay structure consisting of dominating nodes, which act as “heads of service”, and non-
dominating ones which only provide resources (see Section 4.1). The dominating nodes are
responsible for forwarding task requests through the network as they are the ones that have some,
incomplete, view of the available resources. This is achieved by equipping each dominating node
with a routing index which is a compact summary of the resources available through this node and
its neighbours (see Section 4.2). Once a complex task request enters the system it is forwarded
through the network until a set of agents that have the available resources and capabilities to serve
it are located. The way the task “travels” through the network, either broken down to its subtasks
or as a whole, is determined by certain heuristics that are explained in Section 6. Once an
appropriate set of agents is located, they receive the constraints between the subtasks of the
complex task; they form a potential team, and try to find a joint schedule for the task so that the
interdependencies between its subtasks are satisfied. This is done using distributed constraint
optimization techniques (see Section 5). If no satisfying schedule is found then the potential team
is reorganized by releasing one or more agents from the team and having other appropriate agents
enter it. This process, which is explained in Section 6, is repeated until the task has been
successfully scheduled or its deadline expires.

4 Self-Organization and Searching
This section presents the individual techniques employed in the proposed method. Specifically, it
describes the construction of dynamic overlay networks of gateway agents, and the construction
and maintenance of routing indices.

4.1 Dynamic Overlay Networks of Gateways

A dominating set of nodes in a network is a connected subset of nodes that preserves and
maintains the “coverage” of all the other nodes in the network [4]. In a connected network where

6

each node owns a distinct priority, a node A is fully covered by a subset S of its neighbours in case
the following hold [3]:
• S is connected
• Each neighbour (excluding the nodes in S) of A is a neighbour of at least one node in S
• All nodes in S have higher priority than A.

A node belongs to the dominating set if no subset of its neighbours fully covers it.
Although originally proposed for area coverage and monitoring [3, 5], nodes may be considered

to cover an information space, or the space of capabilities and/or resources required for the
execution of tasks. The algorithm of Dai and Wu [5] for the computation of a dominating set of
nodes allows each node to decide about its dominating node status without requiring excessive
message exchange and based only in local knowledge: the knowledge of a node’s neighbours is
sufficient [3]. The algorithm is as shown in Table 1:

1. Collect information about one-hop neighbours and their priorities
2. Compute the sub-graph of neighbouring nodes that have higher priority
3.If (this sub-graph is connected and

(every one-hop neighbour is in this sub-graph
or
it is the neighbour of at least one node in the sub-graph)),

 then opt for a non-gateway node.
 Else opt for a gateway node.

Table 1. Computing the gateway status of an agent

Dominating nodes (gateway agents) are dynamically computed in case the acquaintance network
changes. Having computed an overlay network of gateways that constitute the backbone of the
system and “cover” all the other (non-dominating or non-gateway) nodes in the network, the
propagation of requests and indices’ updates can be restricted to this set of nodes. Specifically,
according to our approach, gateway agents have the responsibility to forward requests to their
neighbours and keep a record of their neighbours’ availability and capabilities. Non-gateways
forward all requests to gateways and possess only information about their own availability.
Therefore, as the percentage of gateways in a network decreases, the searching task is expected to
become more efficient, although the maximum workload of the agents is expected to increase.

A simple network of 10 agents is depicted in the following figure for illustration purposes. The
form of the presented example network is similar to the ones produced in any of the presented of
experiments sets. Here, we consider nodes with low index numbers having the highest priorities
(e.g. agent 0 has higher priority than agent 1).

Figure 2. Example of a simple network of 10 agents with 3 edges at maximum for each one.

Agents 0,1,2,4 and 7 are gateway agents.

4.2 Routing Indices

Given a network of agents G=(N,E), and the set of neighbours N(A) of an agent A in N, the
routing index (RI) of A (denoted by RI(A)) is a collection of |N(A)∪{A}| vectors of resources’ and
capabilities’ availability, each corresponding to a neighbour of A or to A itself. Given an agent Ai
in N(A), then the vector in RI(A) that corresponds to Ai is an aggregation of the resources that are

7

available to A via Ai. The key idea is that given a request, A will forward this request to Ai if the
resources/capabilities available to the network via Ai can serve this request.

As it can be understood from the above, the efficiency and effectiveness of RIs depend on the
way availability is being modelled and on the way this information for a set of agents is
aggregated in a single vector [4].

To compactly capture information about the availability of time units, each agent Ai has a time
vector Vi of m tuples <j,s> representing the time-units available to the agent. Each non-negative
integer s represents the number of consecutive non-allocated time-units that follow the time point
j, 0≤ j≤ m. This vector can be depicted as a time line of m points. For example, the time vector
Vi=(<0,3>,<1,2>,<2,1>,<3,0>,<4,0>,<5,1>,<6,0>,<7,3>,<8,2>,<9,1>) represents the time
line shown in Figure 3 with m=10. The vector specifies the existence of 3 available time-units
starting from the point 0, 1 available time unit after the point 5, and 2 time units after the time
point 7.

Figure 3. Vector of time-units availability

Assuming that m (the total number of time units per agent) is constant for all agents, given two

time vectors Vi and Vj, their aggregation, denoted by agg(Vi,Vj), is a vector that comprises elements
<jak,sak>, with 0≤ k ≤ m, such that, given the elements <jik,sik> and <jlk,slk> of Vi and Vj
respectively, with jik=jlk , then jak=jik= jlk, and sak=max(sik,slk). For instance, given the tuples <ji4,
si4>= <4,4> and <jj4, sj4>= <4,0> the corresponding tuple in the aggregation is <ja4, sa4>=<4,
max(4,0)>=<4,4>. This type of aggregation can generally be applied to any type of resources that
can be committed to a single request.

Figure 4. Aggregation of vectors

Figure 4 shows an example for aggregating the vectors Vi

 and Vj of two agents Ai and Aj
respectively with m=10. The vectors are depicted as time lines. More precisely, agent Ai has
committed to allocate the intervals (2,4) and (8,9) to two tasks. Similarly, the agent Aj has
committed to allocate the interval (3,6) to one task and (8,9) to another. The resulting vector
(Agg(Vi,Vj)) shows the availability of the two nodes as a whole, without distinguishing the
availability of each node.

The aggregation of all vectors in the routing index of an agent A gives information about the
maximum availability of any agent in N(A)∪{A}. Specifically, given RI(A), A updates the indices
of its neighbour Ai by sending the aggregation of the vectors of the agents in N(A)∪{A}\{Ai} to Ai.

Every time the vector that models the availability of resources in a node changes, the node has
to compute and send the new vector of aggregations to the appropriate neighbours. Then, its
neighbours have to propagate these updates to their neighbours and so on, until they reach nodes
whose routing indices are not affected.

To capture the availability of time-units in conjunction to the availability of capabilities, we
extend RIs to multiple routing indices (MRIs). An MRI for the agent Ai, MRI(Ai), has the generic
form {RIcap1,…, RIcapm}. Each RIcapj represents the available resources that Ai can reach through
neighbours that own the capability capj. MRIs not only provide an agent with the information
about the temporal availability of its neighbours, but they also capture information about the
available agents that own specific capabilities.

8

Routing indices are rather problematic when the updates of indices propagate in cycles [4]: In
the worst case, information about resources availability is misleading, leading to inefficient search
mechanisms. Although cycles can be detected, known techniques are not appropriate for open
networks where network configurations change frequently. We have managed to deal with cyclic
updates of agents’ indices by forcing each agent to propagate indices’ updates only to
neighbouring agents with higher priority. Considering that routing indices are being maintained
only by gateway agents, these record the corresponding indices for the non-gateway neighbours
and the aggregations of indices for gateway neighbours with lower priority. Updating the indices
of gateways by aggregating the indices of their gateway neighbours with lower priority has the
following effects: (a) Since agents have distinct priorities, indices can not be updated in a cyclic
way, avoiding the distracting affects of cycles to searching. (b) Priorities denote the “search and
bookkeeping abilities” of agents: Agents with high priorities index their neighbours and guide
search. (c) Gateways with lower priority do not know about the indices of their gateway
neighbours with higher priority. Since requests propagate from low to high priority gateway
agents, some of the high priority gateways may function like “traps” since they may not know how
to fulfil or propagate requests. Experiments showed that the benefits gained by avoiding cycles
outweigh this disadvantage.

As agents schedule tasks, the availability of agents with certain resources and capabilities
changes, causing the update of indices. The update of MRIs due to this phenomenon is done
dynamically, albeit not instantly, and in parallel to the propagation of requests.

5 Distributed Constraint Solving
A Distributed Constraint Satisfaction Problem (dis CSP) consists of a set of agents, each of

which controls one or more variables, each variable has a (finite) domain, and there is a set of
constraints [33]. Each constraint is defined on a subset of the variables and restricts the possible
combinations of values that these variables can simultaneously take. A constraint that involves
variables controlled by a single agent is called an inter-agent constraint. One that involves
constraints of different agents is called an intra-agent constraint. A Distributed Constraint
Optimization Problem (DCOP) is a dis CSP with an optimization function which the agents must
cooperatively optimize. The DCOP framework has recently emerged as a promising framework
for modelling a wide variety of multi-agent coordination problems. Such problems are, for
example, distributed planning, distributed scheduling and distributed resource allocation. We now
present the way complex tasks are modelled as DCOPs in our framework and then we describe the
constraint solving techniques we have used for efficient task allocation and scheduling.

5.1 Modeling Complex Tasks as DCOPs

To efficiently capture interdependencies between the subtasks of a complex task, we model
complex tasks as DCOPs. We assume that for each complex task t consisting of a set of sub-tasks
{g1,,...,gk} and a set of constraints Ct, a set of agents A={A1,…,Am} , with m≤k, is located using the
gateway and routing indices searching infrastructure described in Sections 4.1 and 4.2. This is also
explained in Section 6. Each Aj ∈ A has the necessary capabilities and resource availability to
undertake at least one subtask. The DCOP model is as follows:

• For each subtask gi=<ai, starti, endi, Capi> there is a variable Xi controlled by an agent Ai ∈ A,

corresponding to the start time of gi.
• The domain D(Xi) of each variable Xi is a set R ⊆ Ri of time points that agent Ai can allocate to

the start time of gi (Ri is the total set of time units for the agent Ai). D(Xi) includes each time
point r ∈ Ri such that all time units between r and r+α are available on Ai’s time line.

• There is a hard intra-agent constraint between any two subtasks that are allocated to an agent
Ai, specifying that the execution of the two subtasks cannot overlap1. To be precise, for any two
subtasks gi and gl allocated to Ai, with durations αi and αl respectively, there is a hard
disjunctive intra-agent constraint cil (∈Ct) = (Xi + αi ≤ Xl) ∨ (Xl + αl ≤ Xi). Note that such a
constraint exists between any two subtasks (or atomic tasks in general) that are allocated to the
same agent even if they belong to different tasks. This occurs when an agent participates in the
allocation of more than one complex task.

1 This is under our assumption that each resource can be used by at most one task at any point in time. In general, these

constraints depend on the type of resource.

9

• A binary precedence constraint cil ∈Ct between two variables Xi and Xl is modelled as a soft
constraint with a cost function fil : D(Xi) × D(Xl) → N which associates a cost to each pair of
value assignments to Xi and Xl (similarly to [18]). Recall that a precedence constraint specifies
a temporal distance between the executions of the corresponding subtasks. For example, the
constraint Xi + αi + 5 ≤ Xl specifies that the execution of gl must start at least 5 time units after
gi has finished. Such a constraint may be inter-agent if the two subtasks have been allocated to
different agents or intra-agent if the two subtasks have been allocated to the same agent. The
cost function fil is defined as follows:

0, &
(,)

0,
ili l

il i l

iff d d satisfy c
f d d

M otherw ise
⎧

= ⎨ >⎩

where di∈D(Xi), dl∈D(Xl) and M is a non negative number. M is a measure of the constraint’s
violation “degree”, defined as the minimum distance that the starting time of one of the
subtasks has to be shifted on the time line of the corresponding agent in order for the constraint
to be satisfied. Agents try to minimize the cost function associated with such a constraint by
repeatedly changing the values of the variables they control. For example let us consider the
constraint cil: Xi + αi + 5 ≤ Xl and assume that Xi and Xl take values di and dl respectively such
that: di + αi + 5 > dl. Since the constraint is violated, one of the agents that control variables Xi
and Xl must change the value of its variable at least by M= di + αi + 5 - dl in order to satisfy the
constraint. For example a new value for Xl that satisfies the constraint could be dl΄= dl+M.
Generally, given a constraint c: Q≤K, M is defined as follows:

0,
,

Q K
M

Q K Q K
≤⎧

= ⎨ − >⎩
Similarly we can define M for other types of interdependencies. For example, given a constraint

c: Q<K, M is defined as follows:
0,

1,
Q K

M
Q K Q K

<⎧
= ⎨ − + ≥⎩

Collectively, the agents in A try to minimize the aggregated function F(Ct) which is a measure
of violation for all the constraints of a complex task t :

,
() (,)

i l

t il i l
X X

F C f d
∀

= d∑
Note that in the general case no agent in A has complete knowledge of the function F(Ct).

Hence, the use of a distributed constraint optimization method by the agents in A is a necessity. In
this paper we consider summation as the aggregation operator for the optimization functions, but
this is not a requirement.

5.2 Techniques for the Scheduling of Complex Tasks

To achieve efficient task allocation and scheduling in dynamic settings, where several requests
may enter the system simultaneously, it is essential that a fast, scalable, and dynamically adaptable
method is used. Several distributed constraint satisfaction and optimization techniques have been
proposed in the literature. For example, there exist simple distributed local search methods, such
as the distributed stochastic algorithm (DSA) [8], and the distributed breakout algorithm [11].
These are fast and scalable methods but as a downside they are incomplete. On the other hand, a
number of complete distributed CSP and DCOP algorithms have been proposed, such as Adopt
[18], DPOP [21] and their extensions (e.g. [1, 6, 32]). These methods guarantee that the computed
results are optimal and have been shown to perform satisfactorily in terms of run time for agent
networks of up to medium size. However, they cannot yet handle large networks. As will be
explained in detail below, in the context of this work we do not consider very large DCOPs.
Although agent networks may consist of many hundreds, or even thousands, of nodes, it is safe to
assume that complex tasks that enter the network will consist of relatively few subtasks in most
practical cases. Hence, by modelling each complex task as a separate DCOP, the sizes of the
DCOPs that are generated can be efficiently handled by methods such as Adopt.

The task allocation and scheduling approach we follow in this paper combines distributed
constraint optimization with dynamic agent team reorganization. Concerning the scheduling of
tasks via constraint optimization, we have implemented and compared two different approaches;
the first one is an incomplete local search method based on DSA, and the second one is a complete
optimization algorithm based on Adopt. Before going into further details in the subsections that
follow, let us briefly explain our approach.

Given a complex task t, and assuming that there is a set of agents to which the atomic
subsidiary tasks of t have been allocated (i.e. a Potential Teammates’ Network – PTN), the agents
in the PTN apply a DCOP algorithm. If a solution is found then t is considered as successfully
scheduled and the agents in PTN form a network of teammates. If no solution is found, or a time-

10

out occurs, then PTN self-organizes. That is, one or more of the agents in the PTN exit the PTN,
tasks are being allocated to new agents that have the appropriate capabilities, and thus, these
agents join the PTN. Then, the agents in the new PTN try again to schedule the subtasks of t using
a DCOP algorithm. This process continues until t is successfully scheduled or a time-out occurs, in
which case t is considered as a failed request.

Before describing in detail in the two DCOP methods that have been implemented (subsections
5.2.1 and 5.2.2), we give a motivating example.

Example 5.1

Consider a task with 3 individual subtasks ti = {gi1, gi2, gi3} that enters the agent network. For

the individual sub-tasks we can assume the following:
 gi1=<ai1=1, starti1 ≥0, endi1<5,Capi1=1>
 gi2=<ai2=2, starti2≥ endi2, endi2<8,Capi2=1>
 gi3=<ai3=2, starti3≥ endi3, endi3<10,Capi3=1>
Let us also assume that we have an agent network G=(N,E) of 5 agents defined as follows:
N = {A1, A2, A3, A4, A5}.
E = {(A1, A2), (A1, A3), (A1, A4), (A3, A5)}.

The agent network and the availability of resources for each agent are shown graphically in

Figure 5. For simplification reasons and without loss of generality we can assume that all
capabilities (for the tasks and agents) have the same value (Cap = 1).

In Figure 5 there are 2 gateway agents (A1, A3) and the priorities between them are set according
to their index (i.e. A1 has lower priority than A3 since its index is lower). Consequently only A3 has
a complete view of all the network’s resources. A1 can only record information about the
availability of itself and of agents A2, A4 . Routing indices are not shown as they are simple to
compute. Also, the availability of each agent in shown in vector form.

Figure 5. A network of acquaintances

Assuming that the gateway agent A1 has received the task request, it performs a search in its

immediate neighbourhood in order to find agents that can provide the requested resources for the
satisfaction of the task. As already described, resources belonging to A3 are completely invisible to
A1, since the priority of the latter is lower than that of the former. Consequently, A1 will try to

11

allocate the task to itself and/or to agents A2, A4. One possible assignment is {(A1 , gi1), (A2 , gi2),
(A4 , gi3)} where each tuple denotes a possible sub-task to agent allocation. Doing so, the three
agents A1, A2, A4 form a PTN and will jointly try to schedule the three subtasks.

The next step after the formation of the PTN consists of the construction of a new overlay
network according to the inter-agent constraints among the agents in the PTN (let is call this type
of overlay networks “c-overlay”). As far as the DCOP algorithms are concerned, two agents <Ai,
Aj> are considered neighbours in the c-overlay network if there is a constraint between their
variables. As with the overlay of gateways (with which c-overlay networks should not be
confused), the c-overlay network is constructed on-demand and dynamically depending on the
existing inter-agent constraints. This is done by any PTN that has been formed in order to schedule
a complex task. Such a network is either reformed when the PTN dynamically re-organizes, or it is
dissolved when PTN is dissolved. The later happens when the complex task has been either
allocated successfully or its allocation has failed.

Since an agent can be a member of more than one PTN that executes a DCOP algorithm, it can
simultaneously belong to many c-overlay networks. But since each DCOP is for scheduling a
different task, messages created for a single c-overlay network cannot travel on edges belonging to
another such network.

Returning to Example 5.1, once the three agents in the PTN have received the subtasks
allocated to them, they will try to jointly schedule the atomic subsidiary tasks of the complex task
by modelling it as DCOP. In this case, the c-overlay network shown in Figure 6 will be formed.

Figure 6. A c-overlay network for the network of agents in Figure 5

Since there are three subtasks, there are three corresponding variables X1, X2, X3 that are

controlled by agents A1, A2, A4, respectively. Constraints are depicted as bi-directional edges
beetwen agents. The constraints that involve one variable (unary constraints) are enforced on the
domains of the corresponding variables. For example, value 9 for agent A1 is not included in the
set of potential values for X1 , since this variable must be smaller than 5.

This is the initial state of the DCOP solving process. Henceforth, each agent will assign values
to its variables, send messages to other agents about its state, and react to incoming messages
according the DCOP algorithm used. Message exchange for the DCOP is carried out exclusively
on the c-overlay network constructed due to the constraints in the DCOP for this specific complex
task (e.g. due to the network depicted in Figure 5).

5.2.1 Solving DCOPs using Local Search

The first method for solving DCOPs that we implemented and evaluated is a local search
procedure. This is an instantiation of the Distributed Stochastic Algorithm (DSA) [8]. In this
method each agent may control more than one variable and the optimization criterion takes into
account the cost functions of the constraints involved. As demonstrated in [35], DSA displays
good performance in certain constraint optimization problems compared to distributed breakout. In
its simplest form the local search method is based on a min conflicts hill-climbing procedure [17]
without stochastic moves. Figure 7 depicts this basic algorithm.

1: assign values to variables so that the aggregation of cost functions is minimized
2: while (termination condition has not been met) do
3: for each new value assignment of a variable X
4: send the new value to agents that control a variable involved in a constraint with X
5: end for
6: collect the neighbours’ new values, if any, and compute constraint violations and cost functions

12

7: choose values for the variables so that the aggregation of cost functions is minimized
8: assign the selected values to the variables
9: end while

Figure 7. Basic Local Search algorithm executed by all agents

Let us now describe the operation of the basic algorithm. Each agent Aj initially assigns values

to its variables so that the sum of the cost functions is minimized. This can be a dynamic process
since subtasks may dynamically allocated to the agent Aj during the operation of the system. In
other words, as soon as an agent receives a subtask gi, it tries to assign a value to Xi (i.e. find a start
time for gi) that minimizes the sum of the cost functions. This may involve changing the
assignment of other variables that Aj controls (line 6). If a new assignment of some variable X is
made, this is communicated to Aj’s neighbours in the corresponding c-overlay network (i.e. the
agents that share constraints with Aj involving variable X). All similar assignments made by Aj’s
neighbours are collected and the constraint violations are recomputed. This may lead to the
assignment of new values to Aj’s variables (line 7). The choice of value assignments is an
important issue of the algorithm. The basic algorithm makes a new assignment only if it can
reduce the sum of the cost functions. Note that no single agent has complete knowledge of the cost
function F(Ct) of a complex task t (unless all subtasks of t are assigned to a single agent).
Therefore, each agent tries to minimize the aggregation of the cost functions for the constraints
that it is “aware of”. That is, the constraints that involve variables that it controls. In case no
assignment that reduces the aggregation of the cost functions can be made, then the agent will not
make any change to its variable assignments. In this case, the agent has reached a local optimum
and will have to wait for messages from its neighbours in the corresponding c-overlay network.

This basic algorithm may quickly reach a local optimum as it is not equipped with any
technique for escaping such situations (e.g. stochastic moves). In case all agents in the team reach
a local optimum, or a termination condition related to the time allowed for constraint solving is
met, then, as already explained, the PTN re-reorganizes itself. Self-organization is further
explained in Section 6.

Note that local search methods comply with the requirements for speed and dynamicity, but on
the other hand, because of their inherent incompleteness, may not find optimal (or simply feasible)
allocations, even if they exist. This means that some complex tasks may not be served, although
there may be agents in the system that can cooperatively serve them.

5.2.2 Solving DCOPs using Adopt

Alternatively to the Local Search method we evaluated an alternative configuration of the
proposed method using the complete DCOP algorithm Adopt [18]. The majority of the existing
methods for DCOP (e.g. local search methods) are not able to provide theoretical guarantees on
global solution quality given that agents have to operate asynchronously. Nevertheless, we can
overcome this disadvantage by allowing agents to make local decisions based on cost estimates.
This approach, introduced in [18], results in a polynomial-space algorithm for DCOP named
Adopt. Adopt guarantees a globally optimal solution. Furthermore it allows agents to execute
asynchronously and in parallel. As noted in [18] “The Adopt algorithm consists of three key ideas:
a) a novel asynchronous search strategy where solutions may be abandoned before they are proven
suboptimal, b) efficient reconstruction of those abandoned solutions, and c) built-in termination
detection”. A sketch of Adopt’s operation is as follows:

First, agents form a prioritized tree structure. The priorities in this structure are decided after
considering the constraints between variables inherent in the CSP problem which we have to
solve. In [18] there is a precise explanation on how this is done. The priority ordering is then used
to perform a distributed backtrack search using a best-first search strategy. To be more precise,
based on the current available information, each agent keeps on choosing the best value for its
variables. That is, each agent always chooses the variable value which minimizes its lower bound
as defined in [18].

To efficiently reconstruct a previously explored solution, Adopt uses a stored lower bound as a
backtrack threshold. When an agent knows from previous search experience that lb is a lower
bound for its subtree, it should inform the agents in the subtree not to bother searching for a
solution whose cost is less than lb. Bound intervals track the progress towards the optimal
solution. This is the core of the built-in termination detection mechanism. A bound interval
consists of both a lower bound and an upper bound on the optimal solution cost. When the size of
the bound interval shrinks to zero (the lower bound equals the upper bound) the cost of the optimal
solution has been determined and agents can safely terminate when a solution of this cost is

13

obtained. This technique increases the efficiency of the algorithm. Furthermore it requires only
polynomial space in the worst case.

The prioritized Depth-First Search (DFS) tree defines parent and child relationships and of
course priorities between the agents. Variable value assignments (VALUE messages) are sent
down the DFS tree while cost feedback (COST messages) propagate back up the DFS tree. It may
be useful to view COST messages as a generalization of NOGOOD messages from DisCSP
algorithms. THRESHOLD messages are used to reduce redundant search and sent only from
parents to children. A THRESHOLD message contains a single number representing a backtrack
threshold, initially zero.

For the agent group formed in Example 5.1 a possible sequence of events in order to solve the
formed DCOP is as follows. Agent A1 chooses X1 = 0 first. Agent A2 receives this value through a
VALUE message and re-evaluates its own value. If, for instance, it was X2 = 0 this will change to
X2 = 2. Then A2 sends a COST message back. Since the constraint between A1 and A2 is satisfied
the cost is zero. A2 also sends a VALUE message to A4 . Now A1 upon receiving a zero cost re-
evaluates its upper bound and sets it to zero. This is equal to the THRESHOLD value as well.
Consequently A1 sends to A2 a TERMINATION message and these agents halt their DCOP
solution procedure. Under the same procedure agent A4 eventually receives the final value A2 has
chosen and a terminate message. Therefore A4 re-evaluates its own value, setting X3 = 4 and
terminates.

6 Searching, Task Allocation and Scheduling
This section describes the interplay of the methods for the scheduling of tasks (described in the

previous sections), with the methods for the (re-) formation of teams in large networks of agents:
Special emphasis is given to the searching of agents and to the allocation of tasks to agents,
forming a network of potential teammates (PTN).

The primary task in a network of acquaintances AN, is to organize itself into a network where a
set of agents form a connected overlay sub-network of “gateways” GN. Each time a change occurs
in AN (due to uncontrollable events), agents may need to reorganize themselves forming a new
GN. Self-organization happens by means of agents’ local criteria using the algorithm explained in
Section 4.1 for the computation of dominating nodes.

Given an arbitrary GN, each of the non-gateway agents connects to at least one gateway agent.
To facilitate searching and maintenance of routing indices, gateway agents maintain routing
indices for the resources and capabilities available to non gateway neighbours. Also, every
gateway agent in GN, stores aggregated indices of its gateway neighbours with lower-priority.
This forms an aggregated and approximate view of the network state, resulting in a jointly fully
observable setting [9]. Gateways’ views (i.e. routing indices) are maintained by means of
capability-informing and resource-informing tokens.

Requests concerning atomic or complex tasks enter the agent network in an arbitrary fashion.
Any agent can be considered as an entry point for a demand over the network’s resources.

This dynamic self-organizing searching infrastructure supports the formation of teams for the
performance of joint activities: Given a request for a joint task t originated by an agent in the
network, then all its sub-tasks {g1,,..,gi,…,gk} must be allocated to the appropriate agents, i.e. the
agents that have the resources and the capabilities to perform each subtask. The search for the
appropriate agent for each of these atomic tasks proceeds as it will be described in section 6.1. The
appropriate agents (i.e. have the required capabilities and resources) form a logical network of
potential teammates (PTN), who jointly try to schedule their activities with respect to the
constraints associated to t, conjunctively with constraints that must hold for their other activities.
This is done by means of one of the DCOP algorithms of Section 5. In case they are not successful
in forming a common schedule, and depending on the violated constraints, they reform the PTN
until a team is formed successfully (i.e. a team that has successfully scheduled all subsidiary tasks)
or the time-to-live (TTL) of the request for the joint activity expires. Depending on the DCOP
algorithm used, this occurs either when the algorithm determines inconsistency (in the case of
Adopt) or is trapped in a local minimum (in the case of DSA).

We have tried two different approaches to the process of PTN reformation that are detailed
below in Sections 6.1.1 and 6.1.2. Briefly, in the first approach reformation consists of forwarding
the whole complex task to another gateway agent. In the second approach, the request originator
asks one (randomly selected) agent involved in a constraint violation to release its subtask and
then propagates the request for this subtask. In the first approach, the new PTN formed may
involve a completely different set of agents, while in the second approach the new PTN involves

14

only one different agent than before. Reformation of a PTN may proceed as long as the
corresponding joint task exceeds its TTL: In this case the task is considered as unsatisfied.

We have to point out that agents are allowed to reconsider their existing schedules when they
face requests for participation in new joint activities as long as they have not committed their
resources to already successfully allocated tasks. That is, if an agent is involved in a PTN that has
not yet been resolved and at some point the agent joins another PTN (i.e. it now participates in two
PTNs at the same time) then it can try to accommodate all subtasks that have been assigned to it
by making the necessary shifts in its schedule. However, decisions made about already
successfully allocated tasks are not backtracked on in order to find a better overall allocation. That
is our approach, in its current design and implementation, is tuned to greedily try and
accommodate incoming requests in the best possible way. Once agents commit to certain tasks,
these commitments cannot be undone in order to accommodate requests arriving later. Hence, an
agent that has committed part of its resources to allocated tasks stays idle until a new request
arrives.

We now turn our attention to the searching and allocation tasks, and describe two alternative
methods for achieving them.

6.1 Searching and Task Allocation

Upon the arrival of a complex task gi, one of the following two cases holds: Aj is either a
gateway agent or a non-gateway agent. If it is a gateway agent, then depending on whether gi is a
complex or an atomic task, it tries to locate the appropriate agent(s). This is further explained in
Sections 6.1.1 and 6.1.2. In case Aj is a non-gateway agent, we have considered two possible
modes of operation:

• Inactive non-gateway mode: the non-gateway agent immediately forwards the tasks to a
gateway agent. In this case, the complex task is forwarded to the one-hop away gateway
agent that has the higher priority among the gateways covering Aj.

• Active non-gateway mode: The non-gateway agent performs a quick local placement effort,
checking whether it can satisfy the request itself. According to this mode, the non-gateway
Aj checks whether its own resources and capabilities can satisfy all requirements
concerning gi.

In the case of a single atomic task, the task start time, end time and actual demand are the sole
parameters taken into consideration. Similarly, in the case of a complex task, Aj will check if it has
the time resources to accommodate all the subtasks, while respecting the constraints between
them. Since the agent has a clear view of the whole task, this is straightforward.

At this time point, Aj being aware of the task requirements can decisively conclude whether it is
capable to satisfy these requirements. Note that in this case there is no need to formulate a DCOP
for the given task. If the agent decides that it can successfully accommodate the requested task, it
updates its timeline appropriately to reflect the current situation. The task is marked as satisfied
and Aj continues receiving requests from other agents.

 In case Aj decides that it cannot accommodate the requested task using only its own resources,
it will send this task to one of its gateway agents. As in the inactive non-gateway mode, it will
send the task to the one-hop away gateway agent with the highest priority.

Comparing the two alternatives, we expect the active mode to speed up the system as some
requests will be immediately handled by the agents used as entry points. On the other hand, we
expect that the inactive mode will result in more efficient allocation as this process will be handled
only by the gateway agents who, through their routing indices, have a better view of the agents’
availability.

Henceforth we assume that the complex task is in the hands of a gateway agent, either because
this agent has been used as the entry point to the system, or because the non-gateway agent that
first received the request has sent it to a gateway agent. This may have happened either
immediately, or after the non-gateway agent has decided that it cannot satisfy the task
requirements on its own. In the sub-sections that follow we specify two different methods for
searching and allocating tasks.

6.1.1 Method A

According to this method, the gateway node Aj that has received the task will first examine
whether the task can be served by any of its non-gateway neighbours (i.e. by any of the agents it
covers). If the task is atomic the course of action is straightforward, meaning that Aj only searches

15

for the first agent with adequate capabilities and resources. In the case of a complex task Aj breaks
it down into individual subtasks and derives the constraints between them. Then it searches for
neighbouring agents, including itself, that have the required resources and capabilities to
accommodate subtasks. In both the cases of an atomic task and a subtask of a complex task, if
more than one neighbouring agents are capable of serving, according to capabilities and resources,
it then the first found is selected. That is, the agents’ numbering scheme is followed. When all
subtasks have been assigned, the agents form a PTN and subsequently, they form a new c-overlay
network, as required by the DCOP algorithm. As they are now aware of the constraints between
the subtasks allocated to them, they start executing the DCOP algorithm to determine if there is a
solution.

If Aj cannot locate any non-gateway agent with the necessary resources and capabilities, or if
the PTN formed cannot solve the DCOP, then Aj forwards the request to its gateway neighbour
with the highest priority. In case there is no gateway neighbour with higher priority than Aj, then Aj
propagates the request to all of its gateway neighbours. Since requests propagate through many
different gateways, it is possible that there will be more than one agent that can serve a request. In
such a case, all these agents inform the request originator about their availability, and the
originator decides to whom the task shall be allocated (for example, based on their workload).

The execution of method A is summarized as a flowchart in the following figure.

Figure 8. Flowchart for Method A

6.1.2 Method B

As an alternative to the approach described above, we introduce a method that is based on a
more elaborate initialization process between neighbouring gateway agents. While the main course
of action is the one described in the previous paragraph when the gateway agent Aj cannot
accommodate a task in its immediate neighbourhood (i.e. in the one-hop away non-gateway
agents), the procedure thereafter is different. Recall that through the use of routing indices, a
gateway agent is fully aware not only of its own resources but of the resources and capabilities that
are available via its neighbours: Therefore a gateway agent is aware of (a) its own resources and
capabilities at any given time, (b) the resources and capabilities of all non-gateway agents that

16

exist in its neighbourhood and (c) the resources and capabilities of the agents that can be reached
by the gateway agents and have lower priority while existing at a one hop distance.

Consequently, if Aj can not satisfy the requirements for resources or capabilities upon receiving
a request, it tries to form a group with the “eligible” subtask recipients in order to satisfy the task.
Eligible candidates are all neighbouring non-gateway agents and lower priority gateway agents.
However, the gateway agent’s view of its neighbours is not always accurate. This is because
gateway agents have no way of knowing what task requests the other agents process at any
moment, since routing indices are not updated immediately after each change in the availability of
the agents. For instance, if an agent is in the process of using constraint solving techniques to
decide if a previously submitted task or subtask can be accommodated by it, we may have a
situation in which its own accurate view pertaining to its own resources is not in accordance with
the (out of date) view that neighbouring gateway agents have.

Consequently, in method B the gateway agent Aj consults its neighbouring agents in order to
decide whether a certain part of the task is going to be forwarded to one of them. Before doing this
the gateway agent checks its routing indices to decide which agent seems most capable for
receiving one or more subtasks. These remote agents are contacted and the final decision is made
by each one of them after they have checked their own accurate view of their resources’
availability. The first agent that answers positive to a request concerning a specific subtask is the
one that receives it. The procedure for resolving the constraints involved cannot begin before the
allocation procedure for the particular task has ended.

The major difference between Methods A and B is the gateway’s ‘view’ during the allocation
process. In Method A the gateway allocates each subtask based merely on its routing indices. On
the contrary, in Method B the gateway consults its neighbours to acquire a clearer up-to-date view
of their resources. The routing indices act as a first lead but the procedure continues and the
gateway asks for an accurate snapshot of the potential recipients’ timeline. Another point of
difference is that in Method A the gateway searches for potential candidates in its immediate
neighbourhood only. In method B the request may propagate through gateway agents with lower
priority. Therefore, in Method B a subtask can be allocated to an agent that resides several hops
away.

At this point the status of the recipient agent (being gateway or not) can lead to alternative ways
in order to accomplish the assignment process:

• If the recipient is a non-gateway agent it can respond to a request by simply checking its
own view. Therefore, the answer is plainly positive or negative.

• If the remote agent is a gateway agent (note that its priority is always lower than the one of
the agent that initiated the assignment procedure) and this agent cannot handle the subtask
or subtasks in question, an additional step is involved before the final answer. The lower
priority gateway agent starts a similar procedure to the one already started by the
requesting gateway node, trying to forward the requests in discussion to its own
neighbourhood. If unsuccessful, the higher priority gateway is notified that the lower
priority gateway agent cannot satisfy the request. Otherwise, the lower priority agent sends
the agents’ ids that can possibly satisfy each subtask. Due to gateway priorities, it is
impossible for a given subtask to circle in the agent network during the allocation process.
In case an agent cannot be assigned the subtask requested by the gateway, the next
neighbouring agent that seems capable to accommodate the specific fraction of the initial
request is consulted.

Consecutive negative answers from all neighbouring agents result in sending the task to a
higher priority one-hop-away gateway agent. Since lower priority gateway agents do not have
information about resource availability of their higher priority gateway agents, the decision is
based on a simple request over the amount of total resources and capabilities that the higher
priority gateways have in their view. This means that if a gateway agent cannot accommodate a
task, and consequently must send it to a higher priority gateway agent, it only asks for the
resources (time units) available via its one-hop-away gateways. The actual recipient is the one
among them that possesses the highest number of available time units in its view.

The execution of method B is summarized as a flowchart in the following figure.

17

Figure 9. Flowchart for Method B

Comparing the two methods for searching and task allocation we can say that Method A uses

simple (and fast) means for propagating the requests to those directions where it seems that there is
a high possibility to locate the appropriate agents. In contrast, Method B uses a slightly more
sophisticated (and hence slower) approach by first contacting neighbouring agents and acquiring a
more accurate view of their availability. Therefore, Method B helps gateways in having more
options during the task allocation process and increases the possibility of directing requests
towards parts of the network where it is more likely that the requested task will be successfully
allocated and scheduled.

6.1.3 Discussion

Analyzing the complexity of designing organizations Horling [12] has shown that the
complexity of constructing an organization template and allocating agents to organizational roles
is NEXP-Complete. This agrees with complexity results by Nair, Tambe and Marsella [20].
Knowledgeable and heuristic methods [24] may prune the search space for constructing
suboptimal organizations. Our approach does not deal with designing organizational templates:
Given a set of complex tasks and the network of acquaintances, agents need to be assigned to
specific atomic tasks with respect to the required and own resources and capabilities. Therefore,
the organizational structures are quite simple with respect to the roles agents need to play (i.e. the
tasks to perform) and the network has to be clustered in specific teams of agents that can jointly
perform the requested tasks. In this setting, each agent may be assigned multiple atomic tasks (i.e.
participate in multiple teams), which need to be scheduled consistently to the atomic and team
constraints. According to this, given a specific overlay network of gateways, the complexity of our
approach lies mostly to the searching and constraint problem solving tasks. The searching task

18

aims at reducing the complexity of allocating agents to specific tasks by exploiting indices of
agents’ resources and capabilities. Searching is bounded by the number of gateways and the
maximum number of immediate acquaintances of each gateway agent. The decision of which
agents to participate in a team is distributed among the agents and it is subject to their joint ability
to resolve the constraints: In such a case a simple method (e.g. a contract net protocol) would not
be suitable for decision making given that each agent needs to satisfy jointly with its potential
teammates the constraints of a task, in conjunction to all the constraints imposed by the other
teams in which it aims to participate. According to the above, our approach is mostly suitable in
cases where the gateway agents are proportionally less than the number of agents in the
acquaintance network, and in cases where there are complex tasks that need to be jointly
performed by teams of agents.

7 Experiments and Results
The experiments we carried out aimed at evaluating two important aspects of our methods.

More specifically, we evaluated the two methods for DCOP solving described in Section 5.2 and
the various combinations of methods for searching and task allocation put forward in Section 6.1.
We first discuss the way test problems were generated and then we present the experimental
results.

7.1 Problem Generation

We experimented with two models for the generation of the agent network. The first one
generates networks of randomly deployed agents, assuming that the geographical distance among
agents determines the topology of the system. Each node A establishes connections with all nodes
that exist in a specific distance from it, according to a given radius r. That is, all nodes located in a
cycle with center A and radius r are neighbors of A. Networks are constructed by distributing
randomly |N| agents in an n×n area, each with a “visibility” ratio equal to r. The acquaintances of
an agent are those that are “visible” to the agent and those from which the agent is visible (since
edges in the acquaintance network are bidirectional). Although this method of generation, which
we will call geographic henceforth, distributes agents randomly in an area, the “visibility” ratio
ensures that only agents that are “close by” can communicate directly. Hence, some kind of
structure is introduced. The experiments in Sections 7.2 and 7.3 concern networks AN=(N,E), with
|N|=500 nodes, randomly placed in a 250x250 grid. The radius parameter r was set to 25 and only
connected networks were considered in the experiments. Note that since the area of placement is
large and r is small, these settings tend to create relatively sparse networks where a message
originating at some agent may need to travel through many edges in order to reach distant agents.
In Section 7.4 we discuss an alternative random generation method that constructs the agent
network in a way that allows for messages to reach any other agent by traveling through fewer
edges on average.

We assume that each agent Ai possesses an amount of Si time units. Agents are simultaneously
requested to jointly fulfil a set of tasks T={t1,t2, … ,tn}, where ti=<ai, starti, endi,Capi> such that

| |

1 1

Nn

i
i i

a
= =

=∑ ∑ iS : This is a worst-case scenario where the system has to simultaneously fulfil the
maximum number of tasks that fit its resource capacity. In the experiments below, Si was
uniformly set to 10 for all agents. Therefore, the total available and required capacity was
500x10=5000 time units.

For simplicity we assume that the cardinality of each Capi is 1, which means that a unique type
of capability is sufficient for ti’s satisfaction. We assume that each Ai∈N is also attributed with a

unique type of capability, such that i i

i i

t A
t T A N

Cap Cap Cap
∀ ∈ ∀ ∈

= =U U AN . We divided our experiments into
three sets in terms of the capabilities that agents have and that tasks require. The first set includes
experiments where all agents have the same capability type (i.e. Capi =1) and all tasks require an
agent with Capi =1. In the second set there are two possible values for Capi, simply denoted by 1
and 2. Hence, every agent has Capi =1 or Capi =2 and accordingly, each atomic task either requires
one agent with Capi =1 or one with Capi =2. Finally, in the last set of experiments there are three
possible values for Capi (1, 2, and 3).

The complex tasks in the set of task requests T are generated sequentially in a way such that the
total duration of all subtasks does not exceed the network’s total capacity. In the experiments

19

presented below each complex task consists of, at maximum, 3 or 7 subtasks. The TTL of all tasks
was set to 10. The actual number of subtasks for each complex task is chosen randomly with a
uniform distribution. The next step in the generation of a complex task involves deciding the
duration of its subtasks. This is done by randomly setting the duration of each subtask so that their
total duration is at most Si, i.e. at most equal to the uniform capacity of the agents. To be more
specific, assuming a complex task with 3 subtasks, this is generated as follows. We first pick a
subtask tj and randomly set its duration dj to a number between 1 and Si. We then select another
subtask tk and randomly set its duration dk to a number between 1 and Si - dj. Finally, the duration
of the remaining subtask is randomly set to a number between 1 and Si - dj - dk. If at some point
during this process there is no available choice for the duration of a subtask, because of previously
set durations of other subtasks, then the process is restarted.

We then generate the set of constraints between the subtasks. Given X subtasks in a complex
task, this is done by first selecting randomly y% of the possible constraints between the subtasks
(i.e. ⎣(y/100) × X × (X-1)/2⎦ constraints). For example, when y=50 in a complex task with 7
subtasks we generate randomly ⎣0.5×(7×6)/2⎦ =10 constraints between the subtasks. For all the
experiments presented below, y was set to 50. This value resulted in creating complex tasks that
are relatively hard while at the same time rarely being over-constrained. Then for each constraint
we choose a random label among the following set: {>, <, =, ≥, ≤)}. For instance, if the chosen
label is ‘>’ it means that the start time of the second subtask participating in the constraint must be
greater than the end time of the first participator. For example, if the first subtask’s duration is 2
and its start time is 1, the second subtask’s start time must be greater than 3.

As a final step, we use ADOPT to check if the generated complex task is actually satisfiable. If
it happens to be over-constrained then it is dropped and a new complex task is generated. In all
experiments all complex tasks enter the agent system through a randomly chosen agent at the start
of the system run.

In the reported experiments we report averages over 10 experiments for each individual case of

parameter settings. Throughout the following sections we compute and compare three basic
measures:

1. Benefit: The percentage of complex tasks scheduled over the complex tasks requested
to be scheduled.

2. Messages: This is the total number of messages exchanged between any two agents
throughout the task allocation and scheduling process

3. Message Gain: The ratio of the benefit over the total number of exchanged messages.
In some cases we also report additional useful information such the number of gateway agents

created and the numbers of PTNs formed during the task allocation process.

7.2 Adopt vs Local Search for solving DCOPs

Experiments here compare the two methods described in Section 5.2 for solving the DCOPs
derived from the temporal interdependencies of tasks. That is, we evaluate the performance of the
system’s scheduling component when either Local Search or Adopt is used to solve the DCOPs.
For a fair comparison, experiments for both algorithms ran in a system that uses the same method
for searching and task allocation (Method A with active non-gateways). Therefore, the
experiments presented here illustrate the contrast between a complete (Adopt) and an incomplete
(Local Search) algorithm for solving DCOPs generated from complex tasks. As we detail below,
results show that Adopt, compared to Local Search, improves the efficiency without considerably
increasing the cost in terms of exchanged messages.

The parameters of the generated geographic networks are as follows:
• 500 nodes
• n=250, r=25
• 1 or 2 or 3 distinct capability types
• 3 or 7 subtasks per task at maximum

Note that with the above settings for n, r, and 500 nodes, the average density of the generated

networks is around 1.95%. The average number of nodes that obtained gateway status was 227.
Figures 10 and 11 give the benefit and message gain of the compared methods when complex

tasks include at maximum 3 subtasks. Accordingly, Figures 12 and 13 give the same information
when complex tasks consist of 7 subtasks at maximum. As displayed in Figures 10 and 11, when
Capi is 1, both Adopt and Local Search achieve a very high benefit while Local Search displays

20

higher message gain because of the increased message exchange that Adopt incurs. However, as
the number of available capabilities increases and the problems become harder, Adopt achieves a
much higher benefit and also outperforms Local Search in terms of message gain. This is because
Adopt is able to solve more DCOPs and hence successfully schedule more complex tasks than
Local Search. This success outweighs Adopt’s extra message cost and results in higher message
gain.

As displayed in Figures 12 and 13, when the complexity of the task requests increases, Adopt is
constantly better than Local Search both in terms of benefit and message gain for all values of
Capi. It is notable that when there are 3 types of capabilities (which is the hardest case) a system
that uses Adopt can achieve nearly three times the benefit achieved by Local Search.

Complex Tasks - 3 Subtasks - Benefit

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

|CapsG| = 1 |CapsG| = 2 |CapsG| = 3

Caps

Be
ne

fit Local Search
Adopt

Figure 10. Benefit achieved by Adopt and Local Search when there are at most 3 subtasks per

complex task.

Complex Tasks - 3 Subtasks - Message Gain

0.000000000

0.000002000

0.000004000

0.000006000

0.000008000

0.000010000

0.000012000

0.000014000

0.000016000

|CapsG| = 1 |CapsG| = 2 |CapsG| = 3

Caps

M
es

sa
ge

 G
ai

n

Local Search
Adopt

Figure 11. Message gain achieved by Adopt and Local Search when there are at most 3

subtasks per complex task.

To summarize, the use of Adopt displayed increased efficacy as far as the obtained benefit is
concerned. Furthermore, the number or exchanged messages did not increase considerably
compared to Local Search. As a result, Adopt demonstrated a better message gain than Local
Search. Therefore, we can safely conclude that, on hard problems, the method that applies Adopt
for scheduling is more efficient than the one that applies Local Search.

21

Complex Tasks - 7 Subtasks - Benefit

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

|CapsG| = 1 |CapsG| = 2 |CapsG| = 3

Caps

Be
ne

fit Local Search
Adopt

Figure 12. Benefit achieved by Adopt and Local Search when there are at most 7 subtasks per

complex task.

Comlpex Tasks - 7 Subtasks - Message Gain

0.000000000

0.000001000

0.000002000

0.000003000

0.000004000

0.000005000

0.000006000

0.000007000

|CapsG| = 1 |CapsG| = 2 |CapsG| = 3

Caps

M
es

sa
ge

 G
ai

n

Local Search
Adopt

Figure 13. Message gain achieved by Adopt and Local Search when there are at most 7 subtasks

per complex task.

7.3 Evaluating different approaches to searching and task allocation

Having established that Adopt offers considerable advantages in terms of the system’s benefit,
we now evaluate the different approaches to searching and task allocation using the same networks
as in Section 7.2 (i.e. |N|=500, r=25, n=250). For all the experiments presented hereafter in the
paper we have used Adopt for scheduling despite the relative increase in the number of exchanged
messages that it sometimes occurs compared to Local Search. We evaluated the following methods
outlined in Section 6.1:

1. Method A with active non-gateways
2. Method A with inactive non-gateways
3. Method B with active non-gateways
4. Method B with inactive non-gateways

Considering the two methods (A and B) for performing task allocation and scheduling, recall

that as discussed in Paragraph 6.1.2, Method B seems to be more flexible in finding agents with

22

free resources and consequently in forming PTNs. Indeed, experiments verified this as Method B
consistently demonstrated better results than Method A in each single experiment (10 experiments
for each parameter setting). Both variations of Method B performed better than any variation of
Method A in terms of the total number of satisfied complex tasks. A small downside is that
Method B produced more messages. However, Method A produced an average message gain of
0.5984×10-5 when each complex task has at most 3 subtasks, while for Method B the message gain
was 0.6271×10-5. The average difference of 0.0287×10-5 in favor of Method B amounts to 4.79%
of Method A’s message gain. In the case of 7 subtasks the average message gain was 0.2759×10-5
for Method A and 0.2853×10-5 for Method B. Therefore, the average difference in favor of Method
B was 0.0094×10-5 (3.41% of Method A’s message gain). These are the average variations in
message gain between Methods A and B with either active or inactive non-gateway agents and
capability types 1,2 or 3. Method A achieved a slightly better average message gain only in the
(simple) case of complex tasks with at most 3 subtasks and 1 type of capability. Therefore, in the
rest of Section 7.3 we opt to present results from the two variations of Method B (active and
inactive non-gateways) only. Section 7.4.1 presents a detailed statistical analysis comparing
Method A to Method B. We now first present some information regarding the generated sets of
tasks, and then we give results from the two variants of Method B.

Average Complex Tasks - 3 Subtasks

0

200

400

600

800

1000

1200

1400

1600

1800

Average Complex Tasks Average No. of CTs with 1
subtask

Average No. of CTs with 2
subtasks

Average No. of CTs with 3
subtasks

Figure 14. Average number of complex tasks for 3 subtasks at maximum and average number

of complex tasks with exactly 1,2 and 3 subtasks respectively.

Average Complex Tasks - 7 Subtasks

0
100
200
300
400
500
600
700
800
900

1000

Average
Complex

Tasks

Average No.
of CTs with
1 subtask

Average No.
of CTs with
2 subtasks

Average No.
of CTs with
3 subtasks

Average No.
of CTs with
4 subtasks

Average No.
of CTs with
5 subtasks

Average No.
of CTs with
6 subtasks

Average No.
of CTs with
7 subtasks

Figure 15. Average number of complex tasks for 7 subtasks at maximum and average number

of complex tasks with exactly 1,2,…,7 subtasks respectively.

23

In the first column of Figures 14 and 15 we show the average number of complex tasks created
in a set of task requests T when the maximum number of subtasks per complex task is 3 and 7
respectively. We also give the average number of complex tasks with exactly 1,2,3 subtasks for
the first case and 1,2,…,7 subtasks for the second case. We can see that although the number of
subtasks per complex task was uniformly selected, complex tasks with few subtasks appeared
more often than ones with many subtasks. This is due to the fact that preprocessing with Adopt
detected unsatisfiability for many of the latter complex tasks, and therefore they were not included
in the generated set T.

Figures 16 and 17 present the average duration of the complex tasks in a set of tasks T for the
two cases (3 or 7 subtasks at maximum). In these figures, we also give the average duration of the
complex tasks broken down to the number of subtasks. As expected, in the first case shorter tasks
are generated, meaning that their allocation and scheduling is more likely to succeed as they can
often be assigned to a single agent. In contrast, complex tasks with many subtasks have an
average total duration closer to the capacity of the agents which means that most likely a PTN with
several agents needs to be formed in order to serve them, especially in the cases where 3 distinct
capability types exist.

Average Duration - 3 Subtasks

0

0.5

1

1.5

2

2.5

3

3.5

4

Average Complex Task
Duration

Average Duration of
CTs with 1 subtask

Average Duration of
CTs with 2 subtasks

Average Duration of
CTs with 3 subtasks

Figure 16. Average duration of complex tasks of 3 subtasks at maximum and average duration

of complex tasks with exactly 1,2 and 3 subtasks respectively.

Average Duration - 7 Subtasks

0
1
2
3
4
5
6
7
8
9

Average
Complex

Task
Duration

Average
Duration of
CTs with 1
subtask

Average
Duration of
CTs with 2
subtasks

 Average
Duration of
CTs with 3
subtasks

 Average
Duration of
CTs with 4
subtasks

 Average
Duration of
CTs with 5
subtasks

 Average
Duration of
CTs with 6
subtasks

 Average
Duration of
CTs with 7
subtasks

Figure 17. Average duration of complex tasks of 7 subtasks at maximum and average duration

of complex tasks with exactly 1,2 … 6 and 7 subtasks respectively.

Figures 18 and 19 report the number of PTNs formed while trying to resolve a complex task,

the number of attempts that succeeded in finding resources for a complex task, and the number of
attempts failed(and thus required reconsideration/reformation of the unsuccessful PTN). In Figure

24

18 we give these measurements for the case of 3 subtasks at maximum, while Figure 19 contains
this data for 7 subtasks at maximum. Note that in both cases there are two methods (the two
versions of Method B) and three different types of existing capabilities.

3 Subtasks - PTNs

0

1000

2000

3000

4000

5000

6000

7000

8000

Total PTNs Successful PTNs Unsuccessful PTNs

1. Method B Active Non-GWs |CapsG| = 1 2. Method B Inactive-Non-GWs |CapsG| = 1
3. Method B Active Non-GWs |CapsG| = 2 4. Method B Inactive-Non-GWs |CapsG| = 2
5. Method B Active Non-GWs |CapsG| = 3 6. Method B Inactive-Non-GWs |CapsG| = 3

Figure 18. Number of total PTNs formed for each case of problems concerning complex tasks

with maximum 3 subtasks, followed by the number of those that were successful and unsuccessful.

Both figures demonstrate that the inactive non-gateways method forms a larger number of

PTNs on average. Although the number of successful PTNs does not vary much between the two
methods, the number of unsuccessful PTNs is visibly higher for the inactive non-gateways variant
of Method B. The number (over all values of capability types) of unsuccessful PTNs for each
successful PTN (or for each successfully allocated task) ranges from 0.44 when there are at most 3
subtasks within any complex task up to 17.01 unsuccessful PTNs for each successful one when
there are at most 7 subtasks. These numbers are approximately 2.98% higher on average for the
inactive non-gateways method compared to the active non-gateways method. For the active non-
gateways method we have an average of 6.56 unsuccessful PTNs for each successful one (this
average number takes into account all this paragraph’s experiments of Method B following the
active non-gateways model). This number becomes 6.75 for the inactive non-gateways method.
The active gateways method forms fewer PTNs because in some cases a task that enters the system
through a non-gateway node can be directly accommodated by this node. In contrast, in the non-
active gateways method the task will be immediately forwarded to a gateway agent and therefore
the process of searching for a PTN to accommodate the task will begin. Despite this, and as results
below demonstrate, the non-active gateways method provides greater flexibility to the system
since non-gateways that receive incoming tasks do not engage their resources immediately, and in
this way fill up their timeline, but allow for gateway agents that a have a more accurate view of the
system’s available resources to forward the task to agents that may have better availability to serve
it.

25

7 Subtasks - PTNs

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Total PTNs Successful PTNs Unsuccessful PTNs

1. Method B Active Non-GWs |CapsG| = 1 2. Method B Inactive-Non-GWs |CapsG| = 1
3. Method B Active Non-GWs |CapsG| = 2 4. Method B Inactive-Non-GWs |CapsG| = 2
5. Method B Active Non-GWs |CapsG| = 3 6. Method B Inactive-Non-GWs |CapsG| = 3

Figure 19. Number of total PTNs formed for each case of problems concerning complex tasks

with maximum 7 subtasks, followed by the number of those that were successful and unsuccessful.

Concluding this section we give the average benefit and message gain for the two alternatives

of Method B. Figures 20 and 21 depict the benefit for the cases of 3 and 7 maximum subtasks per
complex task respectively, while Figures 22 and 23 depict the message gain for the two cases. In
each figure we give the average numbers for problems with 1, 2, and 3 possible capabilities.

Complex Tasks - 3 Subtasks - Benefit

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

|CapsG| = 1 |CapsG| = 2 |CapsG| = 3

Caps

B
en

ef
it

Method B Active Non-GWs Method B Inactive-Non-GWs

Figure 20. Benefit achieved when there are 3 subtasks per complex task.

As displayed, the inactive non-gateways method achieves slightly better performance compared

to the active non-gateways method, especially in the case of 7 subtasks. Despite the fact that the
inactive non-gateway method forms more PTNs on average, the increase in the number of
messages exchanged incurred is not important enough to affect the message gain factor
considerably. Hence, the inactive non-gateways method also obtains a higher message gain.
However, the difference in the message gain obtained is reduced as the number of subtasks in each
complex task increases. This is to be expected as a higher number of subtasks within each complex
task decreases the potential of each active non-gateway agent to serve a request, resulting in more
messages being exchanged while searching for PTNs to serve the tasks.

Relating these results to the discussion on Figures 14-17, it is interesting to note that the decline
in benefit achieved when moving from fewer to more subtasks per complex task is not significant
(see the first two bars in Figures 20 and 21) in the case of a single capability for all agents.

26

However, the decline is rapid as the number of capabilities increases as it becomes increasingly
difficult to locate the appropriate agents and successfully form PTNs.

Complex Tasks - 7 Subtasks - Benefit

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

|CapsG| = 1 |CapsG| = 2 |CapsG| = 3

Caps

B
en

ef
it

Method B Active Non-GWs Method B Inactive-Non-GWs

Figure 21. Benefit achieved when there are 7 subtasks per complex task.

Complex Tasks - 3 Subtasks - Message Gain

0.000000000

0.000005000

0.000010000

0.000015000

0.000020000

0.000025000

|CapsG| = 1 |CapsG| = 2 |CapsG| = 3

Caps

M
es

sa
ge

 G
ai

n

Method B Active Non-GWs Method B Inactive-Non-GWs

Figure 22. Message Gain when there are 3 subtasks per complex task.

Complex Tasks - 7 Subtasks - Message Gain

0.000000000

0.000002000

0.000004000

0.000006000

0.000008000

0.000010000

0.000012000

0.000014000

|CapsG| = 1 |CapsG| = 2 |CapsG| = 3

Caps

M
es

sa
ge

 G
ai

n

Method B Active Non-GWs Method B Inactive-Non-GWs

Figure 23. Message Gain when there are 7 subtasks per complex task.

27

7.4 Evaluating different approaches to searching and task allocation networks with
random connections

In this section we study the performance of the proposed methods in different agent network
settings aiming to investigate whether and to what extent the topology of the network influences
the performance of our proposed techniques.

The networks in this set of experiments were generated in a way such that connections can be
created between any two nodes in the network, discarding the radius parameter. Hence, we call
this the random_connections generation method. The generator takes a parameter n denoting the
maximum number of edges that can be attached to any node in the agent network. That is, the
maximum number of agents each agent can have in its immediate neighborhood. For each agent,
the actual number m of its neighbors is selected randomly between 1 and n. The generation process
starts by randomly selecting an agent Ai and a number m, m>0. Then, we randomly select m agents
to connect to Ai and the corresponding edges are added to the network. This process continues
until the connections of all agents have been determined. When determining the connections of an
agent we take into account the connections it may have already acquired through previous steps in
the process. We ensure that the resulting network is connected by randomly adding edges between
any disconnected components. For the experiments presented here n varied from 3 to 15 with an
increasing step of 2.

The average number of complex tasks generated for the experiments of this section was 1637
for the case of 3 subtasks and 933 for the case of 7 subtasks. Note that the generation of complex
tasks is not influenced by the underlying network’s topology and therefore their characteristics are
very close to the ones shown in Figures 14 and 15. The average graph density of the graphs
generated for n= 3, 5, 7,…, 15 is shown below (Figure 24).

AVERAGE GRAPH DENSITY

0.000%

0.500%

1.000%

1.500%

2.000%

2.500%

3.000%

n=3 n=5 n=7 n=9 n=11 n=13 n=15

Figure 24. Average graph density for n= 3, 5, …, 15

Note that the generated graphs are sparse as the average graph density ranges from 0.48% for

n=3 to 2.52% for n=15. After each agent network is generated and each agent acquires knowledge
of its neighbors we decide which ones will be assigned the gateway status using the algorithm
given in Section 4.1 [2]. Information on this is presented in Figure 25 where we give the average
number of agents that opted for gateway status over the maximum number of connections for each
agent. As expected, as the density of the network increases, the number of gateways decreases.

28

AVERAGE NUMBER OF GATEWAYS

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

n=3 n=5 n=7 n=9 n=11 n=13 n=15

Figure 25. Average number of gateway agents for n maximum possible immediate neighbors.

We have performed a detailed evaluation the proposed searching and allocation methods (the

variants of Method A and Method B) on the problems generated with the random connections
generation method whose characteristics are explained in Figures 24 and 25. Before presenting the
results of our most competitive methods (the two variants of Method B) in Section 7.4.2, we first
give a statistical analysis confirming the (slight) advantage of Method B over Method A.

7.4.1 Method A vs. Method B

As it is also reported in Section 7.3, Method B is generally slightly better than Method A. We
now give results from a statistical analysis, performed using non-parametric Wilcoxon signed-rank
tests that verify this. The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test
for the case of two related samples or repeated measurements on a single sample. The test is based
on the magnitude of the difference between the pairs of observations. The Wilcoxon signed-ranks
tests assume a continuous value distribution. It can be used as an alternative to the paired Student's
t-test when the population cannot be assumed to be normally distributed. Table 2 compares
Method B with active non-gateways to Method A with active non-gateways, while Table 3 gives
similar results for the case of inactive non-gateways. We give the mean and standard deviation of
the difference in benefit and the difference in the number of messages sent by the compared
methods. We also give the Z-value and the p-value for each combination of Capability types/Max.
subtasks. If the computed p-value is equal or less to 0.05, then the two methods can be said to
differ significantly. Otherwise, no statistically significant difference can be assumed between the
two methods.

29

Benefit_B_a - Benefit_A_a Messages_B_a - Messages_A_a Capa-
bility
types /
Max.
Sub-
tasks

Mean SD Z-value p-value Mean SD Z-value p-value

1/3 -0.11 1.40 -0.296(b) 0.767 3398 4080 -2.090(a) 0.037

2/3 1.66 1.90 -2.191(a) 0.028 3751 4339 -2.090(a) 0.037

3/3 1.74 1.97 -2.701(a) 0.007 6394 4720 -2.599(a) 0.009

1/7 1.97 2.22 -2.191(b) 0.028 6663 5341 -2.803(b) 0.005

2/7 2.48 3.00 -2.191(a) 0.028 1115 5701 -0.255(a) 0.799

3/7 1.48 3.07 -1.362(a) 0.173 14584 6865 -2.803(a) 0.005

Table 2. Statistical results comparing Method B with active non-gateways (denoted by B_a) to
Method A with active non-gateways (denoted by A_a). Column 1 gives the number of capability
types and the maximum number of subtasks per complex task. Columns 2-5 give statistics
regarding the difference in achieved benefit. Columns 6-9 give statistics regarding the difference
in sent messages. P-values and Z-values that indicate statistical significance are underlined. A
sample of 10 instances was used for each combination of values for the capabilities and the
maximum subtasks per complex task.

Results from Tables 2 and 3 show that in all cases, except in the case of 1 capability and 3

subtasks per task in Table 2, Method B achieves a higher benefit on average than Method A.
Moreover, in most cases the difference is statistically significant as the p-values indicate. In
contrast, in all cases Method B has a higher average cost than Method A, measured by the
messages sent. Also, in most cases the difference in the number of messages is statistically
significant. Having established that Method B achieves a higher benefit than Method A, in the rest
of Section 7.4 we only present results from the two variants of Method B.

30

Benefit_B_i - Benefit_A_i Messages_B_i - Messages_A_i Caps /
Max.
Sub-
tasks

Mean SD Z-value p-value Mean SD Z-value p-value

1/3 0.36 1.65 -0.663(a) 0.508 8494 4492 -2.803(a) 0.005

2/3 1.95 1.83 -2.395(a) 0.017 1504 3338 -1.274(a) 0.203

3/3 3.01 2.94 -2.395(a) 0.017 6574 6685 -2.701(a) 0.007

1/7 6.39 2.12 -2.803(b) 0.005 5387 6903 -2.090(b) 0.037

2/7 2.51 1.89 -2.599(a) 0.009 2127 6358 -0.968(a) 0.333

3/7 1.98 1.91 -2.293(a) 0.022 11861 8850 -2.599(a) 0.009

Table 3. Statistical results comparing Method B with inactive non-gateways (denoted by B_i) to
Method A with inactive non-gateways (denoted by A_i). Column 1 gives the number of
capabilities and the maximum number of subtasks per complex task. Columns 2-5 give statistics
regarding the difference in achieved benefit. Columns 6-9 give statistics regarding the difference
in sent messages. P-values and Z-values that indicate statistical significance are underlined. A
sample of 10 instances was used for each combination of values for the capabilities and the
maximum subtasks per complex task.

7.4.2 Active vs. Inactive Non-Gateways

In Figures 26 and 27 we compare the benefit achieved by the two variations of Method B in
problems with complex tasks consisting of at most 3 and 7 subtasks respectively, while in Figures
28 and 29 we show the message gain for the same classes of problems. The numbers given are
averages for all values of the maximum number of agents’ neighbors n (3 up to 15). We do not
present separate results for the different values of n because changes in the graph’s density in the
range of 0.48 to 2.52 did not have a significant impact on the system’s benefit. Of course, for
much denser networks this may not be true and we intend to investigate this in more detail in the
future. While the average density for networks with n=3 was substantially lower than the one for
networks with n=15 (around 5 times lower), the system’s benefit throughout all sets of
experiments had a variation of only 1.5% between the highest and the lowest benefit obtained for
networks of any density, noting that slightly higher benefit was achieved as the density was
increased. Hence, it seems that the proposed method is quite robust regarding the network’s
density, at least for the random_connections generation method.

31

Complex Tasks - 3 Subtasks - Benefit

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

|CapsG| = 1 |CapsG| = 2 |CapsG| = 3

Caps

B
en

ef
it

Method B Active Non-GWs Method B Inactive-Non-GWs

Figure 26. Benefit achieved when there are at most 3 subtasks per complex task.

Complex Tasks - 7 Subtasks - Benefit

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

|CapsG| = 1 |CapsG| = 2 |CapsG| = 3

Caps

B
en

ef
it

Method B Active Non-GWs Method B Inactive-Non-GWs

Figure 27. Benefit achieved when there are at most 7 subtasks per complex task.

Results show that the system’s benefit remains high independent of the allocation method

selected. The second method (method B with inactive non-gateways “non-GWs”) performs
slightly better compared to the other one in terms benefit but it incurs more exchanged messages,
as in Section 7.3. Hence, the active non-gateways method achieves slightly better message gain in
the case of 3 subtasks per complex task. However, in the case of 7 subtasks this is reversed due to
the higher difference in benefit in favor of the inactive non-gateways method.

To obtain a better understanding of the difference in performance between the two variants of
Method B, we performed a statistical analysis similar to the one presented in Section 7.4.1. Table 4
presents the results of this analysis that confirm that the inactive non-gateways variation always
achieves a higher benefit on average compared to the active gateways variation. However there is
only a small difference which is not always statistically significant. On the other hand, the inactive
non-gateways method incurs a slight increase in the number of exchanges messages, but this
increase is very small and rarely has a statistical significance.

32

Benefit_B_i - Benefit_B_a Messages_B_i - Messages_B_a Caps /
Max.
Sub-
tasks

Mean SD Z-value p-value Mean SD Z-value p-value

1/3 0.63 1.47 -1.073(a) 0.283 5473 5792 -2.395(a) 0.017

2/3 0.88 2.21 -0.866(a) 0.386 442 3440 -0.153(b) 0.878

3/3 2.66 2.00 -2.803(a) 0.005 1981 4899 -1.274(a) 0.203

1/7 3.98 2.20 -2.803(b) 0.005 1913 5169 -0.866(b) 0.386

2/7 0.32 2.30 -0.255(b) 0.799 2244 6860 -1.070(a) 0.285

3/7 2.22 2.23 -2.090(a) 0.037 1504 6635 -0.866(a) 0.386

Table 4. Statistical results comparing Method B with active non-gateways (denoted by B_a) to
Method B with inactive non-gateways (denoted by B_i). Column 1 gives the number of capability
types and the maximum number of subtasks per complex task. Columns 2-5 give statistics
regarding the difference in achieved benefit. Columns 6-9 give statistics regarding the difference
in sent messages. P-values and Z-values that indicate statistical significance are underlined. A
sample of 10 instances was used for each combination of values for the capabilities and the
maximum subtasks per complex task.

Comparing the results of Section 7.4 with the ones presented in Section 7.3 we can conclude

that the proposed method for allocation and scheduling is quite robust with respect to the problem
generation method (at least for geographical and random_connections networks). That is, the
benefit achieved does not vary considerably between the two generation methods. Specifically, the
variation between the results of paragraphs 7.3 and 7.4 with respect to the system’s benefit was
1.9% on average, with maximum value of 3.85%, for the case of 3 subtasks per complex task. In
the case of 7 subtasks the variation was 2.6% on average and the maximum difference was 3.14%.
In all cases the benefit achieved on the networks generated with the random_connections method
is higher.

33

Complex Tasks - 3 Subtasks - Message Gain

0.000002000
0.000003000
0.000004000
0.000005000
0.000006000
0.000007000
0.000008000
0.000009000
0.000010000
0.000011000
0.000012000

|CapsG| = 1 |CapsG| = 2 |CapsG| = 3

Caps

M
es

sa
ge

 G
ai

n

Method B Active Non-GWs Method B Inactive-Non-GWs

Figure 28. Message Gain when there are 3 subtasks per complex task.

Complex Tasks - 7 Subtasks - Message Gain

0.000001000

0.000002000

0.000003000

0.000004000

0.000005000

0.000006000

0.000007000

|CapsG| = 1 |CapsG| = 2 |CapsG| = 3

Caps

M
es

sa
ge

 G
ai

n

Method B Active Non-GWs Method B Inactive-Non-GWs

Figure 29. Message Gain when there are 7 subtasks per complex task.

Comparing the results from the geographical and random_connections types of networks that

have the same average density (i.e. around 1.95%) the average benefit variation is roughly 1%,
again in favor of the random_connections generation method. Although this is not significant
statistically, we conjecture that on the random_connections networks the higher benefit may be
due to th that a message can reach any node in the network in fewer hops (on average) than in
geographical networks. This means that a task request that enters through a specific agent Ai in a
geographical network, and requires resource availability and capabilities offered by distant agents
only, may not be served because its TTL may expire before the appropriate agents are located and
the corresponding PTN is formed. In contrast, in random_connections networks the appropriate
agents could be reached faster (because of the random shortcuts), within the TTL, and the request
might therefore be served. Of course, this conjecture requires further and more detailed
experimental evidence.

7.4.3 Changing the distribution of capabilities

Up to this point capabilities have been assigned to agents using a uniform distribution. In
practice though, many systems tend to behave in a different way as certain agent capability types
are frequent and others are scarce. Hence, we also experimented with problem sets where
capabilities are distributed in a different way. To be precise, the agent networks here were
randomly generated using the random_connections method and capabilities of 3 distinct types
were assigned to the agents following the Zipfean distribution. In this case, the number of agents

34

having capability type 1 was much higher than the one of agents having capability type 2. In turn,
agents with capability type 2 are more than ones with capability type 3. The performance of the
system is shown in Figures 30 (benefit) and 31 (message gain). As can be seen, there is a sharp
drop in the benefit achieved compared to Figures 26 and 27, especially in the case of 3 subtasks.
For example, in this case, the benefit of the non-active gateways method drops from approx. 60%
down to just over 30%. Similar results hold with relevance to the message gain obtained.

These results are not unexpected since the system has increasing difficulty in finding agents
capable of serving atomic tasks that require capabilities 2 or 3. Hence most of the complex tasks
that include subtasks requiring these capabilities will not be served, resulting in reduced benefit. In
addition, the difficulty to locate appropriate agents results in a larger volume of messages
exchanged. On the other hand, if all the subtasks in a complex task require agents with capability
type 1, it will be very easy to locate them, form a PTN and subsequently successfully schedule the
task. However, this is not a very common case. Note that we did not use the Zipfean distribution to
assign required capabilities to subtasks, but rather the uniform one. If we had used the Zipfean
distribution for the subtasks then the distribution of capabilities to agents would follow that of
capabilities to subtasks, resulting in easier problems.

Zipf Distribution - Benefit

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

|CapsG| = 3

Caps

B
en

ef
it

1. Method B Active Non-GWs 3 Subtasks 2. Method B Inactive-Non-GWs 3 Subtasks
3. Method B Active Non-GWs 7 Subtasks 4. Method B Inactive-Non-GWs 7 Subtasks

Figure 30. Benefit for networks with possible capability values 1, 2 or 3 following the Zipfean

distribution.

Zipf Distribution - Message Gain

0.000000200

0.000000700

0.000001200

0.000001700

0.000002200

0.000002700

0.000003200

|CapsG| = 3

Caps

M
es

sa
ge

 G
ai

n

1. Method B Active Non-GWs 3 Subtasks 2. Method B Inactive-Non-GWs 3 Subtasks
3. Method B Active Non-GWs 7 Subtasks 4. Method B Inactive-Non-GWs 7 Subtasks

Figure 31. Message Gain for networks with possible capability values 1, 2 or 3 following the

Zipfean distribution.

To conclude the experimental evaluation, viewing the task allocation and scheduling as a two
step process we can note that different approaches to each step have different repercussions on the

35

system’s efficiency. As demonstrated in Subsection 7.2, different approaches to the scheduling
step can lead to significant variance in the amount of successfully scheduled tasks (benefit). Hence
moving from local search to a sophisticated complete DCOP algorithm like Adopt is indeed very
beneficial. On the contrary, in this and the previous subsections we have shown that trying to
improve the task allocation process through more elaborate mechanisms does not have a similarly
significant impact on the system’s benefit since the use of the gateway/routing indices
infrastructure is by itself very effective. However, it remains to be seen if even more intricate task
allocation processes can have a significant impact on the system’s benefit for complex problems.

7.5 Discussion

The experimental results given in Sections 7.3 and 7.4 demonstrate that the benefit achieved by
our method sharply declines as the problems become harder by increasing the number of available
capabilities, especially when the number of subtasks per complex task is large. A natural question
that follows is whether this is due to some inherent deficiency of our approach or to the extreme
hardness of the generated instances. One way to answer this question is to measure the distance
between the optimal benefit that can be achieved in the generated instances and the benefit
achieved by our method. However, this is far from easy to do in practice since the problems we
deal with are highly combinatorial and hence very hard. In practice, finding the optimal benefit in
large enough random instances would require collecting all the generated tasks in a single agent
and solving the resulting problem in a centralized way through some elaborate branch & bound
search algorithm. Developing such an algorithm requires extensive research and is outside the
scope of this paper. Therefore, measuring the optimal benefit in our randomly generated instances
is beyond our reach at the moment.

To obtain an indication of our method’s ability to approach the optimal benefit, we have run
experiments with an alternative task generation method which guarantees that all generated tasks
are satisfiable, not only on their own, but also considered collectively. Recall that the generation
methods detailed above ensure that each task is satisfiable when considered individually but do not
guarantee that all tasks are satisfiable when considered together. This alternative generation
method proceeds as follows.

At first the agents' timelines are processed one by one and broken into smaller fragments. Each
fragment's duration is determined randomly and is between 1 and 5 time units (half of the agent's
full capacity). Then, the complex tasks are constructed. Assuming a task with x subtasks is
required, we randomly choose x time fragments from the previously broken down timelines. Each
individual fragment of every timeline is chosen only once. For instance, when generating a
complex task with 3 subtasks, we randomly select 3 timeline fragments from 3 agents (which are
not necessarily different). Each fragment becomes an individual subtask within the complex
task. Constraints are then posted between the subtasks making sure that they are satisfied. For
example, assuming two subtasks (timeline fragments) t1=[1, 3] and t2=[5, 8], a constraint S1+3<S2
may be posted. After a complex has been created, the corresponding timeline fragments are
removed from the respective agents’ timelines and the process is repeated until no more satisfiable
complex tasks can be created. Any remaining timeline fragments are considered as atomic tasks.

This generation method guarantees that all tasks are satisfiable. This is because, ideally, any
subtask of a given task can be allocated to the agent where the corresponding timeline fragment,
from which it was created, belongs. Then this agent can schedule this subtask in exactly the
“correct” timeline fragment. Therefore, the optimal benefit under this generation method is 100%.

We ran experiments with Method B in combination with inactive non-gateways on randomly
generated problems with 200 agents where the total capacity required by the generated tasks is
equal to the total capacity of the agents. The results are given in Table 5. The first column gives
the number of capabilities and the maximum number of subtask per complex task. Columns 2 to 4
give the average performance of our method measured in the metrics used across all our
experiments. Column 5 gives the average % coverage of the total capacity of the agents (i.e. the
aggregation of their timelines) once the scheduling of the tasks has been completed. For instance,
96.78% coverage in the case of one capability and 3 subtasks per task at maximum means that
once the allocation and scheduling of the tasks was completed, the 3.22% of the total capacity was
free (i.e. not allocated to any task). Column 6 gives the uniform TTL of the generated tasks.

Capabilities –
Max. Subtasks Benefit Messages Ben/Mess

%Timeline
Covered TTL

1 - 3 97.38% 102368 0.000009513 96.78% 10
1 - 7 95.17% 157422 0.000006046 94.83% 10

36

3 - 3 63.27% 167347 0.000003781 62.76% 30
3 - 7 39.83% 198563 0.000002006 39.21% 30
3 - 3 67.49% 173168 0.000003897 68.15% 50
3 - 7 43.84% 203722 0.000002152 42.87% 50

Table 5. Average performance of Method B with inactive non-gateways on problems where all
tasks are guaranteed to be satisfiable.

Table 5 demonstrates that as the TTL of the tasks increases the benefit achieved also increases.

Recall that the TTL in all experiments presented above was set to 10, which is relatively low. This
explains, to some extend, the drop in the achieved benefit as the tasks get harder. However, even
with TTL=50, the benefit of the system is still under 50% in the case of 3 capabilities and 7
subtasks per complex task. This is of course very far from the optimal 100% benefit but we must
note that it is considerably higher than the benefit achieved under the previously used task
generation methods. This is evident if we compare the results of the last line in Table 5 with those
given in Figures 21 and 27.

Concluding the above, we believe that these results do not demonstrate a deficiency in our
approach but they rather show that the problems we tackle are very hard. As explained, the
generation method we try here guarantees that all tasks can be satisfied, but in practice it will be
nearly impossible for any heuristic method to locate the appropriate agents and schedule the
subtasks to the “correct” timeline fragments for all the generated tasks.

8 Conclusions
We proposed a novel method for allocating atomic and complex tasks in large-scale networks

of homogeneous or heterogeneous cooperative agents. In contrast to prior work, we treat
searching, task allocation and scheduling as a single problem and propose a decentralized method
for all these tasks where no accumulated or centralized knowledge or coordination is necessary.
Efficient searching for agent groups that can facilitate task requests is accomplished through the
use of a dynamic overlay structure of gateway agents and the exploitation of routing indices. The
task allocation and scheduling of complex tasks is accomplished by combining dynamic
reorganization of agent groups and distributed constraint optimization methods. Experimental
results displayed the efficiency of the proposed method.

In the immediate future we plan to perform a more in-depth experimental investigation of the
effect that the various parameters have on the system’s performance. Specifically, we are referring
to the way networks are generated, their density (as dictated by n and r for geographical networks
for example), the size of the complex tasks in terms of subtasks they include, the density of the
constraint graph for each complex task, and the number of available capabilities.

Further work targets investigating in more detail the trade-off between DCOP solving and
dynamic reorganization of PTNs during the scheduling process. First we intend to clarify through
extensive experimentation the contribution that the DCOP algorithm has to the resolution of
complex tasks compared to the dynamic reorganization of PTNs. That is, we will measure the
percentage of complex tasks that are successfully allocated without reorganization and the extent
of reorganization that occurs on average. This investigation will hopefully lead to the development
of efficient heuristic methods for choosing whether to continue employing sophisticated DCOP
algorithms or simply reorganize the PTN once conflicts are encountered during the scheduling
process.

Other, more general, directions for future work include extending our framework to consider
other types of resources and tasks with uncertain durations as, as well as to situations where the
agents have preferences on the tasks they can serve. Also, it would be interesting to study the use
of alternative DCOP algorithms within our method, such as DPOP and its extensions.

Finally, a direction we aim to pursue is the extension of our approach so that changes to agent
commitments can be made as tasks arrive dynamically so that a better overall allocation can be
achieved. This requires modifying the scheduling and allocation methods involved in our
approach, and will most likely increase their run times, but may well result in higher system
benefit being obtained.

37

Acknowledgements
We would like to thank the anonymous reviewers of an earlier version of this paper for their

insightful comments that helped improve this paper.

References
[1] Atlas J., Decker K., “A complete distributed constraint optimization method for non-traditional

pseudotree arrangements”. In Proc. of AAMAS 2007: 111, 2007.
[2] M. Boddy, B. Horling, J. Phelps, R. Goldman, R. Vincent, A. C. Long, R. Kohout, and R. Maheswaran.

C-TAEMS language spec. v. 2.02, 2006.
[3] Carle J., Simplot-Ryl D., “Energy-Efficient Area Monitoring for Sensor Networks”, Ad-Hoc Networks,

IEEE Computer Society, pp. 40-46, 2004.
[4] Crespo, A., Garcia-Molina, H. Routing indices for peer-to-peer systems, in Proc. of the 28th Conference

on Distributed Computing Systems, July 2002.
[5] Dai F., and Wu J.,. “Distributed Dominant Pruning in Ad Hoc Networks”, In Proc. IEEE 2003 Int’l

Conf. Communications (ICC 2003), pp.353-357, 2003.
[6] Davin J., Modi P.J., “Hierarchical variable ordering for distributed constraint optimization”. In Proc. of

AAMAS 2006: 1433-1435, 2006.
[7] K. Decker. “TAEMS: A Framework for Environment Centered Analysis & Design of Coordination

Mechanisms”. In Foundations of Distributed Artificial Intelligence, Chapter 16, pages 429–448. G.
O’Hare and N. Jennings (eds.), Wiley Inter-Science, January 1996.

[8] Fitzpatrick S. and Meertens L., “An experimental assessment of a stochastic, anytime, decentralized, soft
colourer for sparse graphs”, in: Proc. of the 1st Symp. on Stochastic Algorithms: Foundations and
Applications, pp. 49–64, 2001.

[9] Goldman, C., and Zilberstein, S. “Decentralized Control of Cooperative Systems: Categoriation and
Complexity Analysis”. JAIR 22:143-174, 2004.

[10] Goldman, C., and Zilberstein, S. “Optimizing Information Exchange in Cooperative Multi-agent
Systems”. In Proc. Proc. of AAMAS 2003, ACM Press, July 2003.

[11] Hirayama K. and Yokoo M., “The distributed breakout algorithms”. Artificial Intelligence, 161:89-115,
2005.

[12] B.Horling, “Quantitative Organizational Modelling and Design for Multi-Agent Systems”, PhD
Dissertation, Univ. of Massachusetts Amherst, 2006.

[13] Koes, M., Nourbakhsh, I., and Sycara K. “Heterogeneous Multirobot Coordination with Spatial and
Temporal Constraints”. In Proc. of AAAI 2005, 1292—1297, 2005.

[14] R. T. Maheswaran, P. Szekely, M. Becker, S. Fitzpatrick, G. Gati, J. Jin, R. Neches, N. Noori, C.
Rogers, R. Sanchez, K. Smyth, and C. VanBuskirk. “Predictability & criticality metrics for coordination
in complex environments”. In Proceedings of the 7th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS-2008):647-654, 2008.

[15] Mailler, R. and Lesser, V. “A Cooperative Mediation-Based Protocol for Dynamic, Distributed Resource
Allocation”. IEEE Transaction on Systems, Man, and Cybernetics, Part C, Special Issue on Game-
theoretic Analysis and Stochastic Simulation of Negotiation Agents, 36(1):80-91, 2006.

[16] Mailler, R. “Using Prior Knowledge to Improve Distributed Hill Climbing”. In Proc. of the 2006
International Conference on Intelligent Agent Technology (IAT), 2006.

[17] Minton S., Johnston M.D., A.B. Philips, and P. Laird, “Minimizing conflicts: a heuristic repair method
for constraint satisfaction and scheduling problems”, Artificial Intelligence 58 (1–3) 161–205, 1992.

[18] Modi P.J., Shen W.M., Tambe M., and Yokoo M., “Adopt: Asynchronous Distributed Constraint
Optimization with Quality Guarantees”, Artificial Intelligence, 161:149-180, 2005.

[19] D. J. Musliner, E. H. Durfee, J. Wu, D. A. Dolgov, R. P. Goldman, and M. S. Boddy. “Coordinated plan
management using multiagent MDPs”. In Proceedings of the 2006 AAAI Spring Symposium on
Distributed Plan and Schedule Management, March 2006.

[20] R. Nair, M. Tambe, and S. Marsella. “Role allocation and reallocation in multiagent teams: Towards a
practical analysis”. In Proceedings of Second International Joint Conference on Autonomous Agents
and Multi-agent Systems (AAMAS-03), pages 552–559, 2003.

[21] Petcu A. and Faltings B., “A Scalable Method for Multiagent Constraint Optimization”. In Proc. of
IJCAI 2005, 266-271, 2005.

[22] Pynadath, D.V., Tambe, M. “Multiagent Teamwork: Analyzing the Optimality and Complexity of Key
Theories and Models”. In Proc. of AAMAS 02, 873-880, 2002.

[23] Scerri, P., Farinelli, A., Okamoto, S., Tambe, M. “Allocating Tasks in Extreme Teams”. In Proc. Of
AAMAS 05, 2005.

38

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Atlas:James.html
http://www.sigmod.org/dblp/db/indices/a-tree/d/Davin:John.html
http://mas.cs.umass.edu/paper/360
http://mas.cs.umass.edu/paper/360
http://www.ai.sri.com/~mailler/publications/mailler-dpp.pdf

[24] Sims, M., Corkill, D., and Lesser V. “Knowledgeable Automated Organization Design for Multi-Agent
Systems”, Autonomous Agents and Multi-Agent Systems, Volume 16, Issue 2 (April 2008), pp 151 –
185, 2008.

[25] S. Smith, A. T. Gallagher, T. L. Zimmerman, L. Barbulescu, and Z. Rubinstein. “Distributed
management of flexible times schedules”. In Proceedings of the Sixth International Joint Conference on
Autonomous Agents and Multiagent System (AAMAS-2007):74, 2007.

[26] Sultanik E., Modi P.J., Regli W., “On Modeling Multiagent Task Scheduling as a Distributed Constraint
Optimization Problem”. In Proc. of IJCAI 2007, 1531-1536, 2007.

[27] Theoharopoulou C., Partsakoulakis I., Vouros G., Stergiou K. “Overlay Networls for Task Allocation
and Coordination in Large-Scale Networks of Cooperative Agents”. In Proc. of AAMAS-2007, 55, 2007.

[28] Xu, Y., Scerri, P., Yu, B., Lewis, M., and Sycara, K. “A POMDP Approach to Token-Based Team
Coordination”. In Proc of AAMAS’05, (July 25-29, Utrecht) ACM Press, 2005.

[29] Xu, Y., Scerri, P., Yu, B., Okamoto, S., Lewis, M., and Sycara, K. “An Integrated Token Based
Algorithm for Scalable Coordination”. In Proc. of AAMAS’05, 407-414, 2005.

[30] Xuan, P., Lesser, V., Zilberstein, S. “Communication Decisions in Multi-agent Cooperation: Model and
Experiments”. In Proc of AGENTS’01, 2001, 616-623, 2001.

[31] Yen, J., Yin, J., Ioeger, T.R., Miller, M.S., Xu, D. and Volz, R. CAST: Collaborative Agents for
Simulating Teamwork. In Proc. of IJCAI 2001, 1135-1144, 2001.

[32] Yeoh W., Felner A., Koenig S., “BnB-ADOPT: an asynchronous branch-and-bound DCOP algorithm”.
In Proc. of AAMAS (2) 2008: 591-598, 2008.

[33] Yokoo M., Durfee E.H., Ishida T., and Kuwabara K., “Distributed Constraint Satisfaction Problem:
Formalization and Algorithms”, IEEE Trans. on Knowledge and Data Engineering, 10:673-685, 1998.

[34] Zhang, Y., Volz, R., Ioeger, T.R., Yen, J. “A Decision Theoretic Approach for Designing Proactive
Communication in Multi-Agent Teamwork”. In Proc of SAC’04, 64-71, 2004.

[35] Zhang, W., Wang, G., Xing, Z., and Wittenburg, L. “Distributed stochastic search and distributed
breakout: properties, comparison and applications to constraint optimization problems in sensor
networks”. Artificial Intelligence, 161:55-87, 2005.

39

http://www.sigmod.org/dblp/db/indices/a-tree/s/Sultanik:Evan.html
http://www.sigmod.org/dblp/db/indices/a-tree/r/Regli:William_C=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Yeoh:William.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Felner:Ariel.html

