May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

STRONG DOMAIN FILTERING CONSISTENCIES FOR NON-BINARY
CONSTRAINT SATISFACTION PROBLEMS

Kostas Stergiou
Department of Information and Communication Systems Engineering
University of the Aegean, Samos, Greece

email: konsterg@aegean.gr

Domain filtering local consistencies, such as inverse consistencies, that only delete values and do not
add new constraints are particularly useful in Constraint Programming. Although many such consisten-
cies for binary constraints have been proposed and evaluated, the situation with non-binary constraints
is quite different. Only very recently have domain filtering consistencies stronger than GAC started to
attract interest. Following this line of research, we define a number of strong domain filtering consis-
tencies for non-binary constraints and theoretically compare their pruning power. We prove that three
of these consistencies are equivalent to maxRPC in binary CSPs while another is equivalent to PIC.
We also describe a generic algorithm for domain filtering consistencies in non-binary CSPs. We show
how this algorithm can be instantiated to enforce some of the proposed consistencies and analyze the
worst-case complexities of the resulting algorithms. Finally, we make a preliminary empirical study.

1. Introduction

One of the great strengths of Constraint Programming is the exploitation of local consis-
tency techniques to prune inconsistent values from the domains of variables and thus avoid
fruitless exploration of the search tree. The most widely studied and used local consistency
is generalized arc consistency (GAC). It is widely accepted that “relation filtering” consis-
tencies which alter the structure of the constraint graph or the constraints’ relations (e.g.
path consistency) tend to be less practical than “domain filtering” consistencies which only
remove values from the domains of the variables. As a result, many strong domain filter-
ing consistencies for binary constraints have been proposed and evaluated. For example,
inverse and singleton consistencies'6. In contrast, little work had been done on such
consistencies for non-binary constraints until very recently, whereas a number of consis-
tencies that are stronger than GAC, but not domain filtering, have been developed. For
example, pairwise consistenéy, hyperm-consistency2, relational consistency?, and
w-consistency?. However, these consistencies are rarely used in practice, mainly because
they have a high space complexity.

Very recently, three domain filtering consistencies for non-binary CSPs were introduced
and evaluated theoretically and empirically. These are relational path inverse consistency
(rPIC), restricted pairwise consistency (RPWC), and max restricted pairwise consistency
(maxRPWC} 143, All these are stronger than GAC and display promising performance on
certain non-binary problems with maxRPWC being the most efficient of the three.

a2maxRPWC was called pairwise inverse consistencytin

May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

Continuing along the same lines of work, we propose a number of strong domain fil-
tering consistencies for non-binary constraints and study them theoretically and empiri-
cally. These new consistencies are the following: max restricted 3-wise consistency and
the parametrized max restrictéewise consistency, relational neighborhood inverse con-
sistency, inverse-consistency and extended invertseonsistency. To derive these con-
sistencies we are mainly inspired by known relation-filtering consistencies for non-binary
problems. In our theoretical study we compare the pruning power of these consistencies,
most of which are stronger than maxRPWC, and show what they correspond to when re-
stricted to binary constraints. We prove that three of these consistencies are equivalent to
max restricted path consistency (maxRPC) in binary CSPs while another is equivalent to
path inverse consistency (PIC). We also describe a generic algorithm that can be used to ap-
ply any of the proposed domain filtering consistencies. We show how this algorithm can be
instantiated to enforce some of these consistencies and analyze the worst-case complexities
of the resulting algorithms. Finally, we give some preliminary experimental results.

2. Background

A Constraint Satisfaction ProbleriCSP) P is defined as a tupléX, D,C) where:

X = {x1,...,z,} is a finite set ofn variables,D = {D(x1),...,D(z,)} is a set of
domains, and’ = {cy,...,c.} is a set ofe constraints. For each variahlg € X, D(z;)

is the finite domain of its possible values. Each constrajingE C is defined as a pair
(var(c;),rel(c;)), wherevar(c;) = {zj,,...,z;,} is an ordered subset &f called the
scopeof ¢;, andrel(c;) is a subset of th€artesianproductD(z,)X . . . xD(x;,) that spec-

ifies the allowed combinations of values for the variablesin(c;). Each tupler € rel(c;)

is an ordered list of value@:, . . ., ax). A tuple isvalid iff none of the values in the tuple
has been removed from the domain of the corresponding variable. A constraart be
either definedextensionallyy explicitly giving relationrel(c;), or (usually)intensionally

by implicitly specifyingrel(c;) through a predicate or arithmetic function. For any two
constraints; andc;, the set of variables that are involved in both constraints is denoted
by var(c;) Nwar(c;). If this set is not empty, the constrairitdersect We denote by

the maximum number of variables involved in two constraints that intersect. Also, for all
triangles of constraints (i.e. sets of three constraints such that any of the three intersects
with any other) we denote kpy the maximum number of variables that are involved in one
constraint but are not involved in any of the other two.

A binary CSP can be represented by a graph (called constraint graph) where nodes
correspond to variables and edges correspond to constraints. A non-binary CSP can be
represented by a constraint hypergraph where the constraints correspond to hyperedges
connecting two or more nodes.

The assignment of value: to variable z; is denoted by (z;,a). Any tu-
ple r = (a1,...,a;) can be viewed as a set of value to variable assignments
{(z1,a1),. .., (zk,ar)}. In this way, an assignment of values to a set of varialles. X
is a tuple overX’. The set of variables over which a tuptds defined isvar(7). For any
subsewar’ of var(r), T[var’] is the sub-tuple of that includes only assignments to the

May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

variables invar’. Any two tuplesr andr’ of rel(c;) can be ordered by the lexicographic
ordering<;. In this orderings <; 7’ iff there a exists a subsét, . .., x; } of ¢; such that
Tlx1, .. x] = 7'[z1, ..., x;] @andT[xj41] <; 7'[z;41]. A tuple T is consistentiff it is
valid and for all constraints;, wherevar(c;) C var(7), T[var(c;)] € rel(c;). A solution
toa CSP(X, D, () is a consistent tuple assigning all variablestin

Avaluea € D(x;) is consistent with a constrainf, wherex; € var(c;), iff 37 €
rel(c;) such thatr[z;] = a andr is valid. In this case, we say thatis a GAC-support
of (z;,a) in ¢;. A constraintc; is Generalized Arc Consiste(BAC) iff V x; € var(c;),

V a € D(z;), there exists a GAC-support farin ¢;. A problem is GAC iff there is no
empty domain inD and all the constraints i@ are GAC. In binary CSPs, GAC is referred
to asarc consistencyAC).

Since the allowed tuples of constraints are defined as relations, standard relational op-
erators can be used. TipeojectionIl,,, 7 of a tupler € rel(c¢;) onwvar’ is the subtuple
7[var']. Accordingly, the projection of a constraint on a set of variablesar’, where
var’ C var(c;) is a new constraint’ wherevar(¢’) = var’ andrel(c’) = yqrrel(c;).
The join of two constraintsc; and c; is a new constraint, denoted lay X c;, where
var(c; M ¢;) = var(c;) Uwvar(c;) andrel(c; M ¢;) = rel(c;) X rel(c;). Accordingly,
thejoin of two tuplesr € rel(c;) andr’ € rel(c;), denoted by- X 7/, is a tuple such that
(1 X 7")[var(c;)] = 7 and(r X 1) [var(c;)] = 7'

2.1. Local Consistencies

We now briefly review the most common local consistencies for binary and non-binary
CSPs. We assume that any given CSRasmalized That is, multiple constraints on the
same variables are combined into one.

2.1.1. Binary Constraints

A binary problem is(i, j) consistentiff it has non-empty domains and any consistent in-
stantiation of; variables can be extended to a consistent instantiation involyviaddi-
tional variables’. A problem isstrong (i, j)-consistentff it is (k,j) consistent for all

k < 1. Following the definition of+, j)-consistency, arc consistency is equivalertitd)-
consistency. A problem ipath consistenfPC) iff it is (2, 1)-consistent. A problem i%-
consistentff it is (k, 1)-consistent. A problem ipath inverse consisterfPIC) iff it is
(1,2)-consistent’. A problem ismax restricted path consisteaxRPC) iff it is (1,1)-
consistent and for each valie;,a) and variabler; constrained withz;, there exists a
valueb € D(z;) that is an AC-support ofz;,a) and this pair of values is path consis-
tent (i.e. it can be consistently extended to any third varighlé) problem isinversem-
consisteniff it is (1, m) consistent. A problem iseighborhood inverse consisteiNIC)

iff any consistent instantiation of a variahtg can be extended to a consistent instantiation
of all the variables in:;’s neighborhooll 8. A problemP is singleton arc consisterfSAC)

bThe neighborhood of a variable consists of all variables that are constrained with it.

May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

5 iff it has non-empty domains and for any instantiatian, a) of a variabler; € X, the
resulting subproblem can be made AC.

2.1.2. Non-Binary Constraints

Some local consistencies for binary CSPs can be easily extended to non-binary prob-
lems. For example, SAC has been extended to SGAC. However, for other consisten-
cies (e.g. PIC and maxRPC) this extension is not straightforward. In the case of NIC
there are two alternative extensions to non-binary constraints. To determine if a value
a € D(x;) is NIC, we can consider the subproblem consisting of the set of variables
neigh(z;) = {x;,,...,x;, } involved in a constraint witl:; and the constraints that only
include variables fromeigh(z;). Alternatively, we can consider the subproblem consist-
ing of variablesneigh(x;) and all the constraints that include any of these variables (and
possibly other variables as well). In the rest of this paper we follow the first definition of
NIC for non-binary constraints.

A problem isrelationally arc consistenfrel AC) iff any consistent instantiation for all
but one of the variables in a constraint can be extended to the final variable so as to sat-
isfy the constraint®-%. A problem isrelationally path-consister(tel PC) iff any consistent
instantiation for all but one of the variables in a pair of constraints can be extended to the
final variable so as to satisfy both constraints. A problemelationally m-consistentff
any consistent instantiation for all but one of the variables in a set distinct constraints
can be extended to the final variable so as to satisfynatbnstraints. A problem igela-
tionally (i, m)-consistentff any consistent instantiation farof the variables in a set of.
constraints can be extended to all the variables in the set. A problemigly relationally
(i, m)-consistentff is relationally (j, m)-consistent for every < i.

A non-binary problem ipairwise consistentPWC) '2) iff it has non-empty relations
and any consistent tuple in a constraiptan be consistently extended to any other con-
straint'%. As shown in'°, applying PWC in a non-binary CSP is equivalent to applying
AC in the dual encoding of the problem. PWC has been generalizedvise consistency
911 and hyperm-consistency2. A problem isk-wise consistent iff any consistent tuple
for a constraint can be consistently extended to fanry 1 other constraints. A problem
is hypersm-consistent iff any consistent combination of tuplessorl constraints can be
consistently extended to any'” constraint. As noted id?, hyperm-consistency on a
non-binary problem is equivalent ta-consistency on the dual encoding of the problem.

A problem isw-consistentff any tuple in a constraint; can be consistently extended to
any other constraint; and to all constraints;, such thawar(cx) C var(c;) Uvar(c;) 1.
A problem isgeneralized dual arc consistef@DAC) iff any tuple in a constraint; can be
consistently extended to any other constrajrand at the same time satisfy all constraints
¢, such thatar(ci) N (var(c;) Uvar(c;)) # 013,

Following ®, we call a consistency property stronger than3 iff in any problem in
which A holds thenB holds, and strictly stronger (writteA — B) iff it is stronger and
there is at least one problem in whighholds butA does not. We call a local consistency
property A incomparable withB (written A ® B) iff A is not stronger thatB nor vice

May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

versa. Finally, we call a local consistency propedtgquivalent toB (written A — B) iff
A is stronger tharB and vice versa. Note that relationshipsand« are transitive.

3. Strong Domain Filtering Consistencies

In practice, most of the strong local consistency techniques discussed in the previous sec-
tion have prohibitive space and time complexities. Freuder proposed inverse consistencies
as a way to overcome the space probferBuch consistencies require limited space as they
only prune domains. When an inverse local consistency is enforced, it removes from the
domain of a variable the values that cannot be consistently extended to some additional
variables. For example, when enforcing PIC we remove values that cannot be consistently
extended to any set of two other variables.

Until the very recent introduction of rPIC, RPWC, and maxRPWC, the study of domain
filtering consistencies had been restricted to binary constraints, with the exception of GAC.
Experimental results demonstrated that maxRPWC, which is the strongest, is also the most
efficient among these three consistenéies We will now define a number of new domain
filtering consistencies for non-binary problems. These are all strictly stronger than GAC.
That s, if applied, they will remove any value that is not GAC. Also, each consistency may
remove some additional values according to the property it enforces. For any consistency
IC, we say that a variable; is IC iff any valuea € D(z;) isIC. A CSP isIC iff there is
no empty domain and all variables d€&. The following definitions specify when a value
isIC for a number of different domain filtering consistencies. We first recall the definitions
of rPIC and maxRPWC.

Definition 3.1. 1514 A valuea € D(x;) is relational Path Inverse Consiste(tPIC) iff
Ve; € C,wherex; € var(c;), and for eacly, € C, there exists a GAC-suppariof (z;, a)
in rel(c;) and a valid tupler’ € rel(cy) such thatr[var(c;) Nvar(cg)] = 7'[var(c;) N
var(cg)]-

If rPIC is applied on a variable; it will remove any value: € D(z;) such that for some
constraintc; wherex; participates, no GAC-support ¢f;, a) can be extended to a valid
tuple in some other constraiag that intersects witla;. Note that if the two constraints do
not intersect then any valid tuple irl(c;) can be extended to any valid tuplesiel(cy).

Apart from rPIC we can consider other, stronger, inverse relational consistencies such as
relational(1, 3)-consistency and relational NIC which are defined further below.

Definition 3.2. 3 A valuea € D(z;) is max Restricted Pairwise ConsistgntaxRPWC)
iff Ve; € C, wherex; € var(c;), there exists a GAC-supportof (z;,a) in rel(c;) S.t.
Veg € C, there exists a PW-suppart of 7 in rel(cx). A tuple 7’ is a PW-support of iff

it is valid andr[var(c;) Nvar(ck)] = 7'[var(c;) Nvar(cy)].

If maxRPWC is applied on a variable it will remove any valuex € D(z;) such that
for some constraint; wherex; participates, no GAC-support @f;, a) can be extended to
a valid tuple in every other constraint (intersectiny

May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

3.1. Extending rPIC and maxRPWC

The definition of both rPIC and maxRPWC can be generalized to derive domain filtering
consistencies by considering the extensions of a constratotsets of constraints of var-

ious size. To illustrate this we first define relatio(al3) consistency, as proposed by van
Beek and Dechter, and the new consistency maxR3WC. Then we present two general pa-
rameterized definitions. The former is the definition of relatiqdak) consistency given

in ¢ while the latter introduces a family of domain filtering consistencies for non-binary
constraints inspired by the conceptiefvise consistency.

Definition 3.3. '® Avaluea € D(z;) isrelational (1, 3)-Consistenr(1, 3)C) iff Vc; € C,
wherez; € wvar(c;), and for each pair of constraintg,¢; € C, there exists a GAC-
supportr of (z;,a) in rel(c;) and valid tuples”’ € rel(c), 7" € rel(c;) s.t.t[var(c;) N
var(cy)] = 7'[var(c;) N var(cy)], Tlvar(c;) N wvar(e)] = 7"war(c;) N var(e)],
7' [var(cx) Nwvar(e)] = 7" [var(ci) Nvar(e)).

If r(1,3)C is applied on a variable; it will remove any valuen € D(z;) such that
for some constraint; wherez; participates, no GAC-support ¢f;, a) can be extended to
valid tuples in some pair of extra constraints.

Definition 3.4. A value a € D(z;) is max Restricted 3-wise ConsistgimaxR3WC)
iff Ve, € C, wherex; € var(c;), there exists a GAC-support of (x;,a) in rel(c;)
S.t. Ve, ¢ € C there exist valid tuples’ € rel(cy), 7" € rel(c) s.t. Tjvar(c;) N
var(cg)] = 7'lvar(c;) N var(ck)], Tlvar(c;) Nwvar(e)] = 7"war(c;) N var(e)],
7' war(ck) Nvar(c)] = 7" war(ck) Nvar(c)].

If maxR3WC is applied on a variable it will remove any value: € D(x;) such that
for some constraint; wherez; participates, no GAC-support ¢f;, a) can be extended to
valid tuples in every pair of other constraints.

Definition 3.5. 15 Avaluea € D(z;) is relational (1, m)-Consisten{r(1,m)C) iff Vc; €

C, wherez; € var(c;), and for each set of additional— 1 constraints:, . . ., cx—1, there
exists a GAC-support of (x;,a) in rel(c;) s.t.7 can be extended to a valid instantiation
on variablest\ij;l1 var(cy,) that satisfies each), form =1,...,k — 1.

If r(1,%)C is applied on a variable; it will remove any valuex € D(x;) such that
for some constraint; wherez; participates, no GAC-support ¢f;, a) can be extended to
valid tuples in some set @&f — 1 extra constraints.

Definition 3.6. A valuea € D(z;) is max Restricted-wise ConsistentmaxRkWC) iff
Ve; € C, wherex; € var(c;), there exists a GAC-supportof (z;,a) in rel(c;) that is
k-wise consistent. That is, iff for any set of additiohal 1 constraints:,...,cx_1, 7 can
be extended to a valid instantiation on variatj\lgﬁ;l1 var(cy,) that satisfies each,, for
m=1,...,k—1.

If maxRkWC is applied on a variable; it will remove any valuex € D(z;) such that
for some constraint; wherex; participates, no GAC-support @f;, a) can be extended to

May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

valid tuples in every set of — 1 extra constraints.

3.2. Other Domain Filtering Consistencies

We now introduce three new domain filtering consistencies which are inspired by NIC and
w-consistency.

Definition 3.7. A valuea € D(z;) is relational Neighborhood Inverse ConsistértlIC)

iff Ve, € C, wherex; € var(c;), there exists a GAC-support of (x;,a) in rel(c;)

that can be extended to a solution of the subproblem consisting of the set of variables
X; = {var(c;) Uvar(cj,) U ... Uvar(c;,,)}, wheree;,, ..., c;,, are the constraints that
intersect withe;.

If rNIC is applied on a variable:; it will remove any valuea € D(x;) such that for
some constraint; wherez; participates, no GAC-support ¢f;, a) can be extended to a
consistent instantiation of all variables involved in a constraint that intersectscyvith
that all constraints between these variables are satisfied.

Definition 3.8. A valuea € D(x;) is inversew-consistent(lwC) iff Ve¢; € C, where
x; € var(c;), there exists a GAC-supportof (x;, a) in rel(c;) s.t.Ve, € C, there exists
anw-supportr’ of 7 in rel(ci). A tuple 7’ is anw-support ofr iff it is a PW-support ofr
andve; € C, wherevar(c;) C var(cj) Uvar(cg), (T X 17/)[var(c)] € rel(c).

If lwC is applied on a variable; it will remove any valuex € D(z;) such that for some
constraint; wherez, participates, no GAC-support ¢f;, o) can be extended to a valid tu-
ple in every constraint;, that intersects witle; and, at the same time, satisfy all constraints
defined on variablesar(c;) U var(c).

Definition 3.9. A valuea € D(z;) is extended inversg-consisten{ElwC) iff Ve; € C,
wherez; € var(c;), there exists a GAC-supportof (z;,a) in rel(c;) s.t.Ve, € C, there
exists an extended-supportr’ of 7 in rel(cg). A tuple 7’ is anextendedv-support of
7 iff it is a PW-support ofr andV¢; € C, wherevar(c;) Nwvar(c;) # 0 andvar(ci) N
var(cy) # 0, Wyar(e))n(war(e;)uvar(en)) (T X 7)€ Myar(e)n(war(e;)uvar(en)) el () and
can be extended to a valid tuplesinl(c;).

If EIwC is applied on a variable; it will remove any value: € D(z;) such that for some
constraintc; wherex; participates, no GAC-support ¢f;, a) can be extended to a valid
tuple in each constrainf, that intersects with; and, at the same time, satisfy all constraints
that intersect with both; andc,. The difference betweewC and ElC is that the former
considers a constraint only if it includes variables amongur(c;) U var(ci), while the
latter also considers some constraints that include variables amae(g) U var(ci) and
other variables as well.

4. Theoretical Study

To clarify the definitions of the above domain filtering consistencies, we we first give an
example that demonstrates which values are deleted by the application of these consisten-

May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

cies. We then compare the pruning power of the various consistencies. Finally, we consider
the special case where the problem consists of binary constraints.

Example 4.1.

Figure 1la shows a problem with 6 variables and 4 constraints with the given allowed
tuples. All domains arg0, 1} exceptD(z;) which is{0, 1,2}. Assume that we are trying
to apply a given domain filtering consistency on variabje All values ofx; are GAC as

cl
| cl:x1,x2,x3,x4 c2: x1,x2,x5 c3: x3,x5,x6 c4: x4,x5
@@@ 0000 010 000 01
o4 0001 110 110 10
1100 201 111
WQ 2000
3 E)
cl: x1,x2,x3 c2: X2,X3,x4,X5 c3: x4,X5,x6
000 0000 010
101 0110 100
cl © c3 110 1001
b)

Fig. 1. Applying domain filtering consistencies on non-binary problems.

they are GAC-supported in both andc,. Value 0 is not rPIC (and thus not maxRPWC)
as none of its GAC-supports iy can be consistently extendedds Values 1 and 2 are
maxRPWC as their GAC supports take the same values in the variables sharedriuly
co. But value 1 is notd'C as its GAC supports in; andc, do not satisfy constraint;.
Value 2 is wC but it is not EWC as its GAC-supports satisfy but do not satisfy constraint
c3. No value ofz; is rNIC as in this problem wherg intersects with all other constraints,
rNIC requires that these values participate in a solution.

Now consider the problem depicted in Figure 1b with five 0-1 variables and one variable
(x¢) with domain{0}. Value 0 ofz, has tuplg0, 0, 0) as GAC-support i@, . This tuple can
be extended to tupl@, 0, 0, 0) in ¢, and there are no constraints that intersect with beth
andcs. Therefore(z, 0) is ElwC. However, the GAC support of 0 cannot be consistently
extended to the pair of constraints c3 since tupleg(0, 0, 0,0) of ¢ has no PW-support in
¢s. Hence (x4, 0) is not maxR3WC (or(f, 3)C).

Theorem 4.1. On problems with non-binary constraints the following relationships hold:
1) ElwC — lwC — maxRPWC— rPIC — GAC

2) maxR3WC— maxRPWC and k} ® maxR3WC® lwC

3) r(1, 3)C is incomparable to maxRPWGC,C, ElwC, and maxR3WG- r(1,3)C — rPIC

4) NIC is incomparable to rPIC(t, 3)C, maxRPWC, 4C, ElwC, maxR3WC and rNIC
— NIC

5) INIC — ElwC and maxR3W rNIC ® r(1, 3)C

May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

Proof.

1) By definition, the “stronger than” relationship holds betweewa&|llwC, maxR-
PWC, and rPIC. To show EIC — 1wC — maxRPWC, consider the problems in Exam-
ple 4.1. The relationship between maxRPC, rPIC and GAC was provéd in

2) By definition, maxR3WC is stronger than maxRPWC. For strictness consider the
problem in Example 4.1b which is maxRPWC but not maxR3WC. To show that maxR3WC
is incomparable to BEIC and WC first consider the same problem which isvEl (and
lwC). Now consider the problem of Figure 2a with 5 0-1 variables. This is maxR3WC but
not lwC.

3) To show that (1, 3)C is incomparable to EIC, lwC and maxRPWC, it suffices to
show that (1, 3)C can be stronger than &C and weaker than maxRPWC. First consider
the second problem in Example 4.1. This problem is€but it is not 1, 3)C. Now con-
sider the problem in Figure 2b with 6 variables and 4 constraints intersecting on variables
x9 andxs. Value 0 ofz, is r(1, 3)C but it is not maxRPWC. By definition, maxR3WC is

@ Cs4
2 cl:xIx2,x3 c2:x1x4x5 c3:x2,x4 c4:x3,x5
Mg 000 000 00 01
011 011 11 10
A®/ ® ®
) C1 a)
cl:{ x1,x2,x3} c2:{ x2,x3,x4}
00O 000
001 010
00 2
c3:{ x2,x3,x5} c4: { x2,x3,x6}
000 010
h) o020 020

Fig. 2. A problem that is maxR3WC but netC (a). A problem that is(fi, 3)C but not maxRPWC (b).

stronger than(il, 3)C. To show strictness consider the example of Figure 2b where value 0
of 2 is 1(1,3)C but it is not maxR3WC. By definition(t, 3)C is stronger than rPIC. To
show strictness consider the second problem in Example 4.1. This problem is rPIC but it is
not r(1, 3)C.

4) To prove that NIC is incomparable to rPIG,1r3)C, maxRPWC, 4C, ElC,
and maxR3WC it suffices to show that NIC can be weaker than rPIC and stronger
than maxR3WC. To show the former, consider a problem with two constraints,,
wherevar(cy;) = {x1,x2,23} andrel(c;) = {(0,0,0),(1,1,0), (0,1,1)}, var(cz) =
{z1, 22,24} @andrel(ce) = {(0,0,0),(1,1,0),(1,0,1)}. This problem is NIC but it is not
rPIC. To show the latter, consider a clique of six variables where all constraints are binary
constraints and all domains af@, . .. ,4}. This problem is maxR3WC but not NIC.

May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

10

To prove that rNIC— NIC consider a problem that is rNIC. Any assignment of a vari-
ablez; has a GAC-suppottin each constraint; which involvesr; that can be consistently
extended to all variables involved in constraints intersecting witiTherefore,;r can be
consistently extended to all variables involved in a constraint wjttas these constraints
intersect (on at least;) with ¢;. Hence, the problem is NIC. To show strictness, consider
the previous example with the two constraiatsandc,. This is NIC but not rNIC.

5) To prove that rNIC is incomparable to maxR3WC af 8)C first consider again
the binary problem with a clique of six variables. This is maxR3WC but not rNIC. Now
consider the second problem in Example 4.1. This is rNIC but({1o8)C.

To prove rNIC— ElwC consider a problem that is rNIC. Any assignment of a variable
x; has a GAC-support in each constraint; which involvesz; that can be consistently
extended to all variables involved in constraints intersecting witfTherefore,r can be
extended to any constraiat intersecting witte; s.t. all constraints that intersect with both
c¢; andcy, are satisfied. Hence, the problem issEl To show strictness, consider again the
binary problem with a clique of six variables. This is&l but not rNIC.O

Figure 3 summarizes the relationships between the various consistencies. For clarity of
presentation, the relationships betwegh 3)C and NIC, rNIC are not shown.

Fig. 3. Relationships between domain filtering consistencies for non-binary CSPs.

4.1. Binary Constraints

A natural question is what the aforementioned domain filtering consistencies correspond to
in binary CSPs. In* it was shown that rPIC and maxRPWC are equivalent to GAC when alll
constraints intersect on at most one variable. Since we deal with normalized constraints, as
it is usually assumed, then this is the case with binary constraints. Therefore, in normalized
binary problems rPIC and maxRPWC reduce to AC. We now show that when restricted to
normalized binary constraints, maxR3WGQ and ELC are equivalent to maxRPC while
r(1,3)C is equivalent to PIC.

Theorem 4.2. On binary CSPs we have maxR3WE ElwC < lwC <~ maxRPC and
r(1,3)C < PIC.

May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

11

Proof. To show C «— maxRPC it suffices to show that if a value is deleted by maxRPC
then it is also deleted byIC, and vice versa. Consider a value D(x;) that is removed

by maxRPC. Value: is removed because it is either not AC or because there exists a
variablez; constrained withe; for which there is no valué € D(x;) such that the pair

< a,b > is path consistent. In the former casewill be removed by &C since WC

is stronger than GAC (i.e. AC in binary CSPs). In the latter case, take any AC-support
b € D(x;) of (x;, a). Since the paik a,b > is not path consistent there must be a variable
x; such that no value itb(x;) is compatible with boti{z;, a) and(x;, b). Assume that:

is the constraint betweery andz; andc¢’ is the constraint betweery andz;. We cannot

find AC-supports for in D(z;) andD(z;) so that these supports satisfy the constraints on
var(c) Uvar(c'), i.e. the constraint betweery andz;. Hence, value: is not kC.

Now consider a value € D(x;) that is deleted bydC. If a is deleted because it
is not AC then maxRPC will obviously delete it. Otherwise, there must be a constraint
involving z; and a variabler; such that no AC-support dfz;, a) in D(x;) can be con-
sistently extended to any constrairitthat intersects withe so that the constraints on
var(c) Uwvar(c') are satisfied. Take such a constraihtand, without loss of generality,
assume thatar(c’) = {z;,z;}. As we only have binary constraints, the only other con-
straint that can exist among variables-(c) Uvar(c¢’) is the one between; andz;. Value
(x;,a) cannot be be consistently extendedrtoandz; so that all constraints between the
three variables are satisfied. Heneés not maxRPC.

We now show that in binary problems&T and maxR3WC are equivalent toC.
Assume that a binary problem isC. Then any assignmeit;,a) can be consistently
extended to any constraiatthat includesz; and any other constraint that intersects
with ¢ so that all constraints between variables (c) U var(c’) are satisfied. Since there
is no constraint that intersects with battand¢’ and includes additional variables (as all
constraints are binaryjz;, a) is also EC. Now consider any third constraiat. If this
intersects with botla andc’ then, sincéx;, a) is lwC, there exists an AC-support of;, a)
in ¢ that can be consistently extended to batlandc”. If ¢” intersects only with one of
c,c’ (sayc’) then any valid tuple of’ can be consistently extendedd6since the problem
is lwC, and hence AC. Therefore, in any cage, a) is maxR3WC.

We now show that(fl, 3)C is equivalent to PIC. Consider a valuec D(x;) that is
removed by PIC. It is removed either because it is not AC or because it cannot be extended
to some pair of variables; andx; so that the constraints between all three variables are
satisfied. In the former case will be removed by (1, 3)C since (1, 3)C is stronger than
GAC. In the latter case no AC-supportoin D(z;) can be consistently extended to a value
in D(x;) so that the constraint betweepandz; is satisfied. Hence, valueis not (1, 3)C.

Now consider a value € D(z;) that is deleted by(d, 3)C. There must be a constraint

c involving z; and some other variable; such that no AC-support af in D(z;) can be
consistently extended to some pair of constraihemdc”. There are two cases depending

on whether the three constraints form a triangle (i.e. they are the three constraints involving
x;, x; and a third variable;). If they do not form a triangle thea is removed because

it is not AC, in which case PIC will also remove it. If the constraints form a triangle then

a cannot be be consistently extendedrtoand a third variabler; so that all constraints

May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

12

between the three variables are satisfied. Hemcenot PIC.O

5. An Algorithm for Domain Filtering Consistencies

A generic AC-7 based algorithm for inverse local consistencies in binary CSPs was pro-
posed in'S. This algorithm can be relatively easily adapted to apply certain domain filtering
consistencies in hon-binary problems (e.g. rPIC), but for other consistencies (e.g. maxR-
PWC) this is much more involved. A generic GAC-3 based algorithm for domain filtering
consistencies in non-binary CSPs was giver‘imnd?. Also, instantiations of this algo-
rithm that can be used to apply maxRPWC, rPIC and RPWC were presented. Here we
recall the generic algorithm using a slightly different description (Figure 4) and show how
it can be instantiated to apply maxRPWG(, ElwC, and maxR3WC. Similar algorithms

can be used to apply rPIC (ségand 11, 3)C. Algorithms for NIC and rNIC in general
require search, as the neighborhood of a variable or a constraint can be very large.

function DFCons(P,DFC)

1: put all constraints in;

2: while Q is not empty

3. pop constraint; from Q;

4. for each variabler; € var(c;)

5: if Revise(x;, ¢;,DFC) > 0then

6 if D(x;) is emptythen return INCONSISTENCY;
8: Enqueue (z;, ¢;);

10:return CONSISTENCY;

function Revise (z;,c;,DFC)

1: for each valua: € D(x;)

2. PW+« FALSE;

3. for eachvalidr(€ rel(cj)) >; lastGACy; a,c;, SLT[x;] = a
4 if Seek _Support (z;,c;,7,DFC)then

5: lastGACzi,a,cj — T

6 PW— TRUE; break;

7: if =PWthenremovea from D(x;);

8: return number of deleted values;

procedure Enqueue (z;, c;)
1:for eachcy, such thate; € var(cm)
2: putin@ eachc; (# ¢;) such thafvar(c;) Nwvar(cm)| > 1;
3. ifem # ¢ putem InQ;
Fig. 4. A generic algorithm for domain filtering consistencies.

Algorithm DFCons takes as input a (non-binary) C&Rand a specified domain filter-
ing consistencYFC and enforce®FCon P. DFCons uses a list) of constraints to prop-
agate value deletions, and works as follows. Initially, all constraints are addgdTtben
constraints are sequentially removed frghand the domains of the variables involved in
these constraints are revised. For each such constraard variabler;, the revision is

May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

13

performed using functiofRevise(x;, ¢;,DFC) . If after the revision the domain af;
becomes empty then the algorithm detects the inconsistency and terminates. Otherwise, if
the domain ofx; is pruned then each constraif)t involving x; and each constraint in-
tersecting withc, will be put in Q. Note that in the case of maxRPWC the intersection
must be on more than one variable(Jfbecomes empty, the algorithm terminates having
successfully enforceDFCon P.

In function Revise , for each value: in D(z;), we first look for a GAC-support in
rel(c;) (line 3). Following GAC2001/3.2, for each constraint; and eachtu € D(x;),
wherez; € var(c;), we keep a pointetastGAC,, ..., (initialized to the first tuple in
rel(c;)). This is now the most recently discovered tuplerti(c;) that GAC-supports
(z;,a) and, depending oDFG has some extra property. For instanceDFCis maxR-
PWC (resp. 4C) thenlastGAC,, 4., must have PW-supports (resp-supports) in all
constraints that intersect with). If lastGAC,, 4., is valid then we know that is GAC-
supported. Otherwise, we look for a new GAC-support starting from the tuple immediately
afterlastGACy, 4., in the lexicographic order. lustGACy, ., is valid or a new GAC-
support is found then functioBeek _Support is called to check if this GAC-support
(tuple) satisfies the extra property BiFC

5.1. maxRPWC, C, ElwC

The implementation oSeek _Support depends on the consistency being enforced. For
maxRPWC (Figure 5),4C (Figure 6), and EC (Figure 7),Seek _Support iterates
over each constraing, that intersects with;©. For each such constraint it searches for a
tuple 7’ that is a PW-supportwIC-support, or extendedvC-support, respectively, af.

This is explained in more detail below. If such tuples are found for all intersecting con-
straints therSeek _Support returns TRUE andastGAC,, .., is updated. If ndDFG
supportr’ is found on some intersecting constraint, indicated-bigecomingNIL, then
Seek _Support returns FALSE and the algorithm looks for a new GAC-support in func-
tion Revise . If no GAC-support that satisfies the propertylfCis found,a is removed
from D(x;).

function Seek _Support (z;,c;,7,maxRPWC)
1:for eache, € C s.t.|var(c;) Nwar(cy)| > 1
for eachr’(€ rel(cy))
3 if 7" is validand r[var(c;) Nvar(cx)] = 7' [var(cj) Nvar(cy)]
4: then break;
5: if ¥/ = NIL then return FALSE;
6: return TRUE;

Fig. 5. FunctiorSeek _Support for maxRPWC.

¢In the case of maxRPWC only constraints intersecting on more than one variable are considered, since for
constraints intersecting on one variable maxRPWC offers no more pruning than GAC.

May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

14

function Seek _Support (z;,c;,7,lwC)

1:for eachey, € C s.t.|var(c;) Nvar(cg)| > 0

for eachr’(c rel(cy))

3 if 7/ is validand T[var(c;) Nwar(cg)] = 7' [var(c;) Nvar(cy)]
4 wC«+— TRUE;

5: for eache; € C, s.t.var(c;) C var(c;) Uvar(cy)

6: if (1 X1 var(q)] & rel(c)
7

8

9

1

then wC« FALSE; break;
if wC then break;
if 7/ = NIL then return FALSE;
O:return TRUE;

Fig. 6. FunctiorSeek _Support for lwC.

The implementation of line 6 forlC involves three operations:

e Ajoin of the two tuplesr and7’.
e A projection of the joined tuple over the variablesviar(¢;).
e And a constraint check to determine if the derived tuple satisfies constraint

function Seek _Support (z;,c;,7,ElwC)
1:for eache, € C s.t.|var(c;) Nwar(cy)| > 0
for eachr’(€ rel(cy))
if 7" is validand r[var(c;) Nvar(ck)] = 7' [var(cj) Nvar(cy)]
EwC— TRUE;
for eache; € C, s.t.var(c;) Nwar(c;) # O Avar(cg) Nvar(c) # 0
if Hvar(cl)ﬁ(var(c]-)Uvar(ck)) (T X T/)
cannot be extended to a valid tupleriei(c;)
then EwC« FALSE; break;
if EwC then break;
if 7/ = NIL then return FALSE;
O:return TRUE;

N

B oo

Fig. 7. FunctiorSeek _Support for ElwC.

In contrast, the implementation of line 6 fordT is more complex and expensive as it
involves searching imel(c;). To be precise, the following operations take place:

e A join of the two tuplesr andr’.

¢ A projection over the variables iwur(c;) U var(ci) that also appear inar(c;).

e Asearchinrel(c;) to determine if the derived sub-tuple can be extended to a valid
tuple.

May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

15

5.2. maxR3wWC

In the case of maxR3WC (Figure eek _Support iterates over each constraintthat
intersects with; and searches for a PW-supportrah rel(c). If such a tupler’ is found,

the algorithm iterates over each constrainthat intersects withe; or ¢, (or both) and
searches for a tuple’ € rel(c;) that is a PW-support of bothand7’. This is explained in
more detail below. In casg does not intersect with; (resp.c;) then obviously any valid

7" € rel(c) is a PW-support of (resp.7’). If such a pair of tuples is found for all pairs of
constraints;, andc; thenSeek _Support returns TRUE andastGAC,, 4 ; is updated.
OtherwiseSeek _Support returns FALSE and a new GAC-support is seeked in function
Revise .

function Seek _Support (z;,c;,7,maxR3WC)
1:for eache, € C s.t.|var(c;) Nwar(cg)| > 0
2: for each validr’ (€ rel(cy))
s.t.r[var(cj) Nvar(cy)] = 7' [var(c;) Nvar(cy)]

3: 3W«— TRUE;
4: for eache; € C, s.t.|var(c;) Nwar(cy)| > 0V |var(ck) Nvar(c)| > 0
5: if @ valid 7"/ (€ rel(c;)) such that
rlvar(cj) Nvar(e;)] = 7" [var(c;) Nvar(c)] and
7' [var(cy,) Nwar(c)] = 7" [var(ci) Nwvar(c)]
6: then
7: if lvar(c) Nwvar(e;)| = 0 then return FALSE;
8: else3W«— FALSE; break;

9: if 3W then break;
10: if 7’ = NIL then return FALSE;
11:return TRUE;
Fig. 8. FunctiorSeek _Support for maxR3WC.

Depending on how the three constraints intersect, the search foritliflee 5) is
executed as follows:

o If ¢; intersects withc; but not with ¢, then we simply look for a PW-support
of 7 in rel(¢;) without considering constraint;. If no such support is found,
Seek _Support returns FALSE (line 7) so that new GAC-support faf;, a) in
rel(c;) is seeked irRevise . Note that in this case a constraintis considered
only if it intersects withc; on more than one variable since, for constraints in-
tersecting on one variable, the propagation achieved cannot be greater than that
achieved by GAC.

e If ¢ intersects withy;, but not with¢; then we look for a PW-support of” in
rel(¢;) without considering constraint;. If no such support is found, then the
algorithm immediately (line 8) moves to look for a new PW-suppdrof 7 in
rel(ck). As in the previous case, a constrainis considered only if it intersects
with ¢;, on more than one variable.

e Finally, if ¢; intersects with botle; andc;, then we look for a tuple” in rel(c;)

May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

16

that is a PW-support of bothand7’. This is done as iseek _Support for lwC

or ElwC, depending on whether all variablesuiar(c;) appear also imar(c;) U
var(cg) or not. If no such support is found, then the algorithm moves to look for
a new PW-support’ of 7 in rel(cy).

5.3. Complexities

We now analyze the worst-case time and space complexity of algob#@ons when in-

stantiated to applydC, ElwC, and maxR3WC. The worst-case complexity of an algorithm

for rNIC is exponential imn as any constraint may intersect with all other constraints. In

such an extreme case applying rNIC is essentially at least as hard as solving the problem.
First, we recall the complexities @FCons when instantiated to apply maxRPWC

or rPIC. The resulting algorithms are called maxRPWC-1 and rPIC21 Following this

naming convention, we denote algoritidrCons(P,DFC) asDFC-1.

Proposition 5.1.2 The worst-case time complexity of algorithmsaxRPWC-1and
rPIC-1 is O(e%k?dP), wherep is the maximum number of variables involved in two con-
straints that share at least two variables.

As discussed if, the space complexity shaxRPWC-1is O(ekd) for extensional con-
straints andD(ek?d) for intensional ones. Accordingly, the space complexityRiC-1
is O(e%kd) for extensional constraints aii{ e>k2d) for intensional ones.

Proposition 5.2. The worst-case time complexity of algorithmC-1 is O(e3k3dP).

Proof. Let us denote by:; the number of variables involved ity and byp,; the total
number of variables involved in the two constraigt&ndc;,. The complexity is determined
by the number of constraint checks performed in total, in all calls to fun®evise and
Seek _Support .

We first analyze the cost ofSeek_Support (z;.c;,7,lwC). The inner loop of
Seek _Support (lines 5-7) iterates through the, at mest2, constraints;, s.t.var(¢;) C
var(c;) Uwvar(cg). For any such constraint it verifies if the projection over(c;) of the
join of tuplest and7’ satisfies constraint;. This costsO(k), assuming that the cost of a
constraint check is linear to the arity of the constraint. Therefore the cost of the inner loop
is O(ek). In the outer loop ofSeek _Support the algorithm iterates through the con-
straints that interseet;. For each such constraia, the second loop searches for a tuple
7' that is anw-support oflastGAC,, 4., (i.e.7). There are at most’=i ~%i tuples to be
searched, i.e. those that take the same values in variabi¢s;) N var(ci) as int. The
cost of each such check (k). If a tupler’ that is valid and takes the same values-as
on the intersecting constraints is found then the inner loop is executed to verifisifin
w-support ofr. Therefore, the cost of the second looig: x dP+ "3 x ek). As there are
at moste — 1 constraints intersecting;, the cost ofSeek_Support is bounded above by
Kija = Y opecnfe;) €k7dPE .

Now let us consider the number of calls $&ek _Support in function Revise .
Given a variable:; and a constraint;, Seek _Support is called for each value € D(x;)

May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

17

each time functiorRevise (z;, ¢;, lwC) is called or each time aew GAC-support
lastGACY, q.; is found (line 3 ofRevise). Revise (z;, ¢;, lwC) can be called at most
nd times. This is because every one of theariables may either belong tar(c;) or par-
ticipate in a constraint that intersects with In this case every deletion of a value from a
variable will forceEnqueue to addc; to @ and subsequently cause a callRevise .
lastGACY, q.; cannot change more thaifi —! times becausewC-1 only checks the
tuples that contain the assignmehnt;,) and it only checks tuples that have not been
checked before. ScGeek _Support is called at most.;;, = nd + d*~! times for
each variabler;, value a, and constraint;. L;;, is also the number of times a tuple
can be checked as GAC-support far;,a) on ¢; at a costO(k) (line 3 of Revise).
Thus, for a variabler;, valuea, and constraint;, the complexity is bounded above by
Mjia = Lija % (k+ Kija) = (nd + d" 1) x (k + 32, con g,y ekdPi=). Assuming
thatd*—! > nd, this gives a complexity i (e2k2dP~1). Since there are at mogtvalues
in D(z;), k variables invar(c;), ande constraints inC, the total complexity is bounded
above byekd x e?k%dP~1. This gives a time complexity i0)(e2k3dP). O

The space complexity ofJC-1 is determined by the space required for &G AC
data structure. If the constraints are given in extension, in which case we can use pointers
of constant size, then the sizelafstGAC is O(ekd). If the constraints are intensionally
specified then the size distGAC is O(ek?d), since in this case each pointer is of size

Proposition 5.3. The worst-case time complexity of algoritfhwC-1 is O(e3k3dp+?").

Proof. The proof is similar to that fordC-1 given above. Note that the two algorithms
only differ in the implementation of the inner loop in functi®eek _Support . The inner
loop of Seek _Support for El wC-1 iterates through the, at most— 2, constraints;,
s.t.var(cj) Nwvar(c) # 0 andvar(cg) Nvar(c;) # 0. Let us denote by, the number
of variables involved ir; but not inc; or ¢;,. For each constrainyj the algorithm searches
for a valid tuple inrel(c;) that takes the same values7aen variablesvar(c;) N var(c;)
and the same values &5 on variablesvar(c,) N var(c;). There are at mostPi+ such
tuples to be searched and the cost of each checldg/n. Therefore, the cost of the inner
loop is bounded above b, = Zczec\{cwk} kdPiik, As the rest of algorithnil wC-1
is identical tol wC-1, following the analysis of Proposition 5.2 we can conclude that the
the cost ofSeek _Support is bounded above bi;;, = cheo\{cj}(kdp”“_k’ x Kji).
Therefore, for a variable ;, valuea, and constraint;, the complexity is bounded above
by (nd +d*) x (k + 3, con (e, (KA T8 X 300 con ey 00y KAP*). Assuming that
dF=1 > nd, this gives a complexity it (d* ~! x ekdP~*i x ekd?') = O(e2k2dr+v' 1)
Therefore, the complexity &l wC-1 is in O(e3k3dP+7"). O

The space complexity dl wC-1 is the same aswC-1 since they use the same data
structures (i.elastGAC).

Proposition 5.4. The worst-case time complexity of algorithmaxR3WC-1 is
O(e3k3dr+e'y.

Proof. The proof is similar to that fordC-1 and ELC-1. Note that maxR3WC-1 only

May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

18

differs from the other two algorithms in the implementation of the inner loop in function
Seek _Support . The inner loop ofSeek _Support for maxR3WC-literates through
the, at most — 2, constraints;; that intersect withc; or ¢;. For each constraint; the
algorithm searches for a valid tuplesnl(¢;) that takes the same values7asn variables
var(c;) Nwvar(c;) and the same values ason variablesar(c,) Nvar(c;). As discussed,
there are three cases depending on whethietersects only with;, only with ¢, or with
both. The first two are similar in terms of their effect on the cost. Therefore, to simplify
the analysis we combine these cases into one and assume ithi&rsects withc;, when
intersecting with only one of the two. Let us denoterfythe number of variables involved
in ¢, and bypy,; the total number of variables involved in the two constraint@ndc;.
In this case there are at magt=~"* tuples to be searched, i.e. those that take the same
values in variablesar(c;) N var(¢) as in7’, with costO(k) for each one. Now it
intersects with botl; andc;, then let us denote by; ;. the number of variables involved
in ¢; but not inc; or ¢,. In this case there are at magts* tuples to be searched with
costO(k) for each one. Putting things together, the cost of a single iteration of the inner
loop isO(k x max(dPx ="+ dPik)) = O(kdPii*)d. Therefore, the cost of the inner loop is
bounded above b¥K;x = >, con (¢, e} KAPVE-

As the rest of algorithnEl wC-1 is similar tol wC-1 andEl wC-1, following the
analysis of Propositions 5.2 and 5.3 we can conclude that the the cesekf Support
is bounded above b¥;;, = Z%ec\{cj}(kdpjk—’%' x Kji). Therefore, for a variable
z;, valuea, and constraint;, the complexity is bounded above byd + d*i—1) x (k +
D erecn ;) RAPH TR 53T on (s oy KAPI*). Assuming thad"~! > nd, this gives a
complexity inO(d¥i =1 x ekdP~*i x ekd?") = O(e2k2dr*+?'~1) Therefore, the complexity
of El wC-1 isin O(e3k3dr+?"). O

The space complexity ghaxR3WC-1is the same abwC-1 andEl wC-1 since they
all use the same data structures (istGAC).

6. Experimental Results

We compareddC and EC to maxRPWC on random problems generated using the ex-
tendedmodel B!. According to this model, a random non-binary CSP is defined by the
input parametersin, d, k, p(e), ¢>, wheren is the number of variabled, the uniform do-
main size % the uniform arity of the constraintg,the density of the problem (i.e. the ratio
between the constraints in the problem and the number of possible constraints invélving
variables), and the uniform looseness of the constraints. The constraints and the allowed
tuples were generated following a uniform distribution. We made sure that the generated
graphs were connected. All algorithms were implemented in C and the experiments were
run on a 3.06 GHz Pentium PC with 1 GB RAM.

We first compare the pruning power of the three consistencies and their effect as pre-
processing tools. Results show thatEl and, on denser problems;C can achieve con-
siderably more pruning than maxRPWC and thus are useful for preprocessing. Then we

dAsymptoticallydP+t —"k is in O(dPLi*) and vice versa.

May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

19

compare algorithms that maintain the consistencies throughout search. Results show that
lwC, and especially EIC, can be too expensive to maintain on soluble instances, but they
can offer speed-ups on insoluble instances.

Figure 9 (left) shows average CPU times for the three consistencies on 100 instances of
class<30, 20,4, 0.001(27), ¢>. We show both the time needed to enforce the consistencies
and the time required to solve the instances with an algorithm that maintains maxRPC
during search after they have been preprocessed by each of the three consistencies (suffix
s). The right figure shows the average percentage of instances proved to be inconsistent by
the three consistencies. The valug;é$ varied along the x-axis.

1e+006 100

100000 | 80

10000 60 -

1000 + 40

cpu time (msecs)

100 + 20

% deleted values and inconsistent problems

10 Lol L L 0 L L N BN
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
constraint looseness (%) constraint looseness (%)

Fig. 9. Cpu times (left) and percentage of inconsistent problems detected (right).

lwC displays similar performance to maxRPWC in cpu times and inconsistency detec-
tion. This is not surprising given that this is a sparse class where all constraints are 4-ary.
As a result, for any pair of intersecting constrainjs c;, there is seldom the case that
some other constraint exists which only involves variables fran(c;) U var(cy). Note
that ELuC detects many more inconsistent problems, and deletes a higher percentage of
values, (forq >0.004) than &/'C and maxRPWC, albeit with a higher cost. However, this
preprocessing cost is negligible compared to the cost of search, and as a result, the search
algorithm that uses EIC preprocessing is more efficient than the others up to the value of
q where EWC achieves a notable number of value deletions.

Table 1 gives results from problems belonging to classgs, 10,4, 0.001(230), ¢>
(class 1) and100, 10,4,0.0001(392), ¢> (class 2). In each line we give the number of
inconsistent instances detected, the average percentage of value deletions, and the cpu time
(in msecs) when each consistency is enforced for preprocessing. The first three lines in the
table refer to class 1 and correspond to parameter settings such that maxRPWC determines
as inconsistent almost all, around half and only a few of the instances. Accordingly for class
2 in the next three lines. EIC proves the inconsistency of all instances and in some cases
it runs up to one order of magnitude faster than the other consistencies as it quickly wipes
out some domainwIC proves the inconsistency of many more instances than maxRPWC
(especially in class 1) in competitive run times.

Figure 10 gives results from problems belonging to classés, 20, 4, 0.02(27),q >

May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

20

class maxRPWC lwC ElwC

inc %del time inc %del timelinc %del time
1 96 28 583 99 26 275/100 7 48
1 45 15 561 90 27 441100 10 90
1 8 3 295 53 17 470|100 13 231
2 95 24 888 95 23 813/100 10 70
2 48 14 1488 54 16 1251100 13 302
2 9 3 412 18 5 535|100 15 674

and< 20,8,4,0.008(38),¢ >. For each data point we generated 50 instances and mea-
sured the average node visits and cpu time of algorithms that maintain maxRRM@C, |

and ElC throughout search. These algorithms are simply denoted by the local consistency
they apply. Results show that in both classes, and especially the first arf@skgnificantly
reduces the size of the explored search tree (i.e. node visits) but at a high.«stut-
performs maxRPWC on the first class while it is competitive but not faster on the second
class. Both of the strong consistencies are more efficient on insoluble instances compared
to soluble ones.

10000 T T T T T T T T T 100000

1000 ¢ 10000 |

100 ¢ 1000 ¢

cpu time
visited nodes

10 ¢ 100 |

10 ¢

Y
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
constraint looseness (%)

1000 T T T T T T 100000

100 10000

10 | 1000 ¢

cpu time

1t 100

visited nodes

0.1 10 ¢

0.01
005 01 015 02 025 03 035 04 005 01 015 02 025 03 035 04

constraint looseness (%) constraint looseness (%)

Fig. 10. Cpu times and node visits for classed5, 20, 4,0.02(27), ¢ > (top) and< 20, 8, 4,0.008(38), q >
(bottom).

In general, these preliminary experiments indicate th& Is better suited to denser

May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

21

problems with large domains where there are many intersections between constraints. On
such problems it can outperform maxRPWC as it detects more inconsistencies with little
extra cost. ELC cannot be maintained throughout search in practice, but it can be used
for preprocessing and perhaps it can be conservatively applied during search (e.g. on spe-
cific constraints). Of course, further experimentation is required to validate or refute these
conjectures.

7. Conclusion

Although domain filtering local consistencies tend to be more practical than consistencies
that change the constraint relations and the constraint graph, only few such consistencies
have been proposed for non-binary constraints. In this paper, we performed a detailed study
of several strong domain filtering consistencies for non-binary constraints. All these con-
sistencies are stronger than GAC, the consistency that is predominantly used by current
constraint solvers, and most are stronger than maxRPWC, a recently introduced domain
filtering consistency for non-binary constraints. We proved that three of the new consisten-
cies are equivalent to maxRPC when restricted to normalized binary CSPs while another
is equivalent to PIC. We also described a generic algorithm for domain filtering consisten-
cies in non-binary CSPs, showed how this algorithm can be instantiated to enforce some
of the proposed consistencies, and analyzed the worst-case complexities of the resulting
algorithms.

References

1. C. Bessere, P. Meseguer, E. Freuder, and J. Larrosa. On Forward Checking for Non-binary

Constrajnt SatisfactiorArtificial Intelliz%ence 141:205-224, 2002. . .
2. C.Besstre, J. Rgin, R. Yap, and Y. Zhang. An Optimal Coarse-grained Arc Consistency Algo-

rithm. Artificial Intelligence 165(%165—185, 2005. .) .
C. Bessére, K. Stergiou, and T. Walsh. Inverse Consistencies for Non-binary Constrsitits.

ficial Intelligence 172(8-%800—822, 2008.) .)
R. Debruyne and C. Begse. From restricted path consistency to max-restricted path consis-

tency. InProceedings of CP-QDbages 312-326, 1997.

R. Debruyne and C. Begse. Domain Filtering Consistenciekurnal of Artificial Intelligence
Research14:205-230, 2001.

R. Dechter and P. van Beek. Local and Global Relational Consist&hepretical Computer

Science173:283-308, 1997.
E. Freuder. A Sufficient Condition for Backtrack-bounded Seal8&M, 32(4);755-761, 1985.
E. Freuder and C. Elfe. Neighborhood Inverse Consistency PreprocessiRghdeedings of

AAAI'96, pages 202-208, 1996. . .
M. Gyssens. On the complexity of join dependenc®EM Trans. Database Sysfil(1):81—

108, 1986.) i N .
10. P. Janssen, Pegdou, B. Nouguier, and M. Vilarem. A filtering process for general constraint

satisfaction problems: Achieving pairwise consistency using an associated binary representation.

In Proceedings of IEEE Workshop on Taols for Artificial Intelligensaeges 420-427, 1989.
11. P. Egou.Contributiona I'etude des prokeimes de satisfaction de ‘contraintes: algorithmes de

propagation et de &solution; propagation de contraintes dans l&seaux dynamique®hD

thesis, CRIM, University Montpellier 11, 1991. in French. | . .
12. P. Bgou. On the Consistency of General Constraint Satisfaction Problerfso¢eedings of

AAAI'93, pages 114-119, 1993. . . .
13. S. Nagarajan, S. Goodwin, and A. Sattar. Extending Dual Arc Consistemesnational Journal

of Pattern Recognition and Atrtificial Intelligenc&7(5):781-815, 2003.

© N o g M W

May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

22

14. K. Stergiou and T. Walsh. Inverse Consistencies for Non-binary Constrairsoteedings of

ECAI-2006 pages 153-157, 2006. L)
15. P. van Beek and R. Dechter. On the Minimality and Global Consistency of Row-convex Con-

straint NetworksJACM 42(3):543-561, 1995.) .
16. G. Verfalllie, D. Martinez, and C. Bessmie. A Generic Customizable Framework for Inverse

Local Consistency. liProceedings of AAAI'9%ages 169-174, 1999.

