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Domain filtering local consistencies, such as inverse consistencies, that only delete values and do not
add new constraints are particularly useful in Constraint Programming. Although many such consisten-
cies for binary constraints have been proposed and evaluated, the situation with non-binary constraints
is quite different. Only very recently have domain filtering consistencies stronger than GAC started to
attract interest. Following this line of research, we define a number of strong domain filtering consis-
tencies for non-binary constraints and theoretically compare their pruning power. We prove that three
of these consistencies are equivalent to maxRPC in binary CSPs while another is equivalent to PIC.
We also describe a generic algorithm for domain filtering consistencies in non-binary CSPs. We show
how this algorithm can be instantiated to enforce some of the proposed consistencies and analyze the
worst-case complexities of the resulting algorithms. Finally, we make a preliminary empirical study.

1. Introduction

One of the great strengths of Constraint Programming is the exploitation of local consis-
tency techniques to prune inconsistent values from the domains of variables and thus avoid
fruitless exploration of the search tree. The most widely studied and used local consistency
is generalized arc consistency (GAC). It is widely accepted that “relation filtering” consis-
tencies which alter the structure of the constraint graph or the constraints’ relations (e.g.
path consistency) tend to be less practical than “domain filtering” consistencies which only
remove values from the domains of the variables. As a result, many strong domain filter-
ing consistencies for binary constraints have been proposed and evaluated. For example,
inverse and singleton consistencies8,5,16. In contrast, little work had been done on such
consistencies for non-binary constraints until very recently, whereas a number of consis-
tencies that are stronger than GAC, but not domain filtering, have been developed. For
example, pairwise consistency10, hyper-m-consistency12, relational consistency15, and
ω-consistency13. However, these consistencies are rarely used in practice, mainly because
they have a high space complexity.

Very recently, three domain filtering consistencies for non-binary CSPs were introduced
and evaluated theoretically and empirically. These are relational path inverse consistency
(rPIC), restricted pairwise consistency (RPWC), and max restricted pairwise consistency
(maxRPWC)a 14,3. All these are stronger than GAC and display promising performance on
certain non-binary problems with maxRPWC being the most efficient of the three.

amaxRPWC was called pairwise inverse consistency in14.
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Continuing along the same lines of work, we propose a number of strong domain fil-
tering consistencies for non-binary constraints and study them theoretically and empiri-
cally. These new consistencies are the following: max restricted 3-wise consistency and
the parametrized max restrictedk-wise consistency, relational neighborhood inverse con-
sistency, inverseω-consistency and extended inverseω-consistency. To derive these con-
sistencies we are mainly inspired by known relation-filtering consistencies for non-binary
problems. In our theoretical study we compare the pruning power of these consistencies,
most of which are stronger than maxRPWC, and show what they correspond to when re-
stricted to binary constraints. We prove that three of these consistencies are equivalent to
max restricted path consistency (maxRPC) in binary CSPs while another is equivalent to
path inverse consistency (PIC). We also describe a generic algorithm that can be used to ap-
ply any of the proposed domain filtering consistencies. We show how this algorithm can be
instantiated to enforce some of these consistencies and analyze the worst-case complexities
of the resulting algorithms. Finally, we give some preliminary experimental results.

2. Background

A Constraint Satisfaction Problem(CSP) P is defined as a tuple(X,D, C) where:
X = {x1, . . . , xn} is a finite set ofn variables,D = {D(x1), . . . , D(xn)} is a set of
domains, andC = {c1, . . . , ce} is a set ofe constraints. For each variablexi ∈ X, D(xi)
is the finite domain of its possible values. Each constraintci ∈ C is defined as a pair
(var(ci), rel(ci)), wherevar(ci) = {xj1 , . . . , xjk

} is an ordered subset ofX called the
scopeof ci, andrel(ci) is a subset of theCartesianproductD(xj1)x . . . xD(xjk

) that spec-
ifies the allowed combinations of values for the variables invar(ci). Each tupleτ ∈ rel(ci)
is an ordered list of values(a1, . . . , ak). A tuple isvalid iff none of the values in the tuple
has been removed from the domain of the corresponding variable. A constraintci can be
either definedextensionallyby explicitly giving relationrel(ci), or (usually)intensionally
by implicitly specifyingrel(ci) through a predicate or arithmetic function. For any two
constraintsci andcj , the set of variables that are involved in both constraints is denoted
by var(ci) ∩ var(cj). If this set is not empty, the constraintsintersect. We denote byp
the maximum number of variables involved in two constraints that intersect. Also, for all
triangles of constraints (i.e. sets of three constraints such that any of the three intersects
with any other) we denote byp′ the maximum number of variables that are involved in one
constraint but are not involved in any of the other two.

A binary CSP can be represented by a graph (called constraint graph) where nodes
correspond to variables and edges correspond to constraints. A non-binary CSP can be
represented by a constraint hypergraph where the constraints correspond to hyperedges
connecting two or more nodes.

The assignment of valuea to variable xi is denoted by (xi, a). Any tu-
ple τ = (a1, . . . , ak) can be viewed as a set of value to variable assignments
{(x1, a1), . . . , (xk, ak)}. In this way, an assignment of values to a set of variablesX ′ ⊆ X

is a tuple overX ′. The set of variables over which a tupleτ is defined isvar(τ). For any
subsetvar′ of var(τ), τ [var′] is the sub-tuple ofτ that includes only assignments to the
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variables invar′. Any two tuplesτ andτ ′ of rel(ci) can be ordered by the lexicographic
ordering<l. In this ordering,τ <l τ ′ iff there a exists a subset{x1, . . . , xj} of ci such that
τ [x1, . . . , xj ] = τ ′[x1, . . . , xj ] andτ [xj+1] <l τ ′[xj+1]. A tuple τ is consistent, iff it is
valid and for all constraintsci, wherevar(ci) ⊆ var(τ), τ [var(ci)] ∈ rel(ci). A solution
to a CSP(X,D, C) is a consistent tuple assigning all variables inX.

A value a ∈ D(xi) is consistent with a constraintcj , wherexi ∈ var(cj), iff ∃τ ∈
rel(cj) such thatτ [xi] = a andτ is valid. In this case, we say thatτ is a GAC-support
of (xi, a) in cj . A constraintcj is Generalized Arc Consistent(GAC) iff ∀ xi ∈ var(cj),
∀ a ∈ D(xi), there exists a GAC-support fora in cj . A problem is GAC iff there is no
empty domain inD and all the constraints inC are GAC. In binary CSPs, GAC is referred
to asarc consistency(AC).

Since the allowed tuples of constraints are defined as relations, standard relational op-
erators can be used. TheprojectionΠvar′τ of a tupleτ ∈ rel(ci) on var′ is the subtuple
τ [var′]. Accordingly, the projection of a constraintci on a set of variablesvar′, where
var′ ⊆ var(ci) is a new constraintc′ wherevar(c′) = var′ andrel(c′) = Πvar′rel(ci).
The join of two constraintsci and cj is a new constraint, denoted byci 1 cj , where
var(ci 1 cj) = var(ci) ∪ var(cj) andrel(ci 1 cj) = rel(ci) 1 rel(cj). Accordingly,
the join of two tuplesτ ∈ rel(ci) andτ ′ ∈ rel(cj), denoted byτ 1 τ ′, is a tuple such that
(τ 1 τ ′)[var(ci)] = τ and(τ 1 τ ′)[var(cj)] = τ ′.

2.1. Local Consistencies

We now briefly review the most common local consistencies for binary and non-binary
CSPs. We assume that any given CSP isnormalized. That is, multiple constraints on the
same variables are combined into one.

2.1.1. Binary Constraints

A binary problem is(i, j) consistentiff it has non-empty domains and any consistent in-
stantiation ofi variables can be extended to a consistent instantiation involvingj addi-
tional variables7. A problem isstrong (i, j)-consistentiff it is (k, j) consistent for all
k ≤ i. Following the definition of(i, j)-consistency, arc consistency is equivalent to(1, 1)-
consistency. A problem ispath consistent(PC) iff it is (2, 1)-consistent. A problem isk-
consistentiff it is (k, 1)-consistent. A problem ispath inverse consistent(PIC) iff it is
(1, 2)-consistent8. A problem ismax restricted path consistent(maxRPC) iff it is (1,1)-
consistent and for each value(xi, a) and variablexj constrained withxi, there exists a
valueb ∈ D(xj) that is an AC-support of(xi, a) and this pair of values is path consis-
tent (i.e. it can be consistently extended to any third variable)4. A problem isinversem-
consistentiff it is (1,m) consistent. A problem isneighborhood inverse consistent(NIC)
iff any consistent instantiation of a variablexi can be extended to a consistent instantiation
of all the variables inxi’s neighborhoodb 8. A problemP is singleton arc consistent(SAC)

bThe neighborhood of a variable consists of all variables that are constrained with it.
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5 iff it has non-empty domains and for any instantiation(xi, a) of a variablexi ∈ X, the
resulting subproblem can be made AC.

2.1.2. Non-Binary Constraints

Some local consistencies for binary CSPs can be easily extended to non-binary prob-
lems. For example, SAC has been extended to SGAC. However, for other consisten-
cies (e.g. PIC and maxRPC) this extension is not straightforward. In the case of NIC
there are two alternative extensions to non-binary constraints. To determine if a value
a ∈ D(xi) is NIC, we can consider the subproblem consisting of the set of variables
neigh(xi) = {xi1 , . . . , xim

} involved in a constraint withxi and the constraints that only
include variables fromneigh(xi). Alternatively, we can consider the subproblem consist-
ing of variablesneigh(xi) and all the constraints that include any of these variables (and
possibly other variables as well). In the rest of this paper we follow the first definition of
NIC for non-binary constraints.

A problem isrelationally arc consistent(rel AC) iff any consistent instantiation for all
but one of the variables in a constraint can be extended to the final variable so as to sat-
isfy the constraint15,6. A problem isrelationally path-consistent(rel PC) iff any consistent
instantiation for all but one of the variables in a pair of constraints can be extended to the
final variable so as to satisfy both constraints. A problem isrelationally m-consistentiff
any consistent instantiation for all but one of the variables in a set ofm distinct constraints
can be extended to the final variable so as to satisfy allm constraints. A problem isrela-
tionally (i,m)-consistentiff any consistent instantiation fori of the variables in a set ofm
constraints can be extended to all the variables in the set. A problem isstrongly relationally
(i,m)-consistentiff is relationally (j, m)-consistent for everyj ≤ i.

A non-binary problem ispairwise consistent(PWC) 12) iff it has non-empty relations
and any consistent tuple in a constraintci can be consistently extended to any other con-
straint10. As shown in10, applying PWC in a non-binary CSP is equivalent to applying
AC in the dual encoding of the problem. PWC has been generalized tok-wise consistency
9,11 andhyper-m-consistency12. A problem isk-wise consistent iff any consistent tuple
for a constraint can be consistently extended to anyk − 1 other constraints. A problem
is hyper-m-consistent iff any consistent combination of tuples form-1 constraints can be
consistently extended to anymth constraint. As noted in12, hyper-m-consistency on a
non-binary problem is equivalent tom-consistency on the dual encoding of the problem.

A problem isω-consistentiff any tuple in a constraintci can be consistently extended to
any other constraintcj and to all constraintsck such thatvar(ck) ⊆ var(ci) ∪ var(cj) 13.
A problem isgeneralized dual arc consistent(GDAC) iff any tuple in a constraintci can be
consistently extended to any other constraintcj and at the same time satisfy all constraints
ck such thatvar(ck) ∩ (var(ci) ∪ var(cj)) 6= ∅ 13.

Following 5, we call a consistency propertyA stronger thanB iff in any problem in
which A holds thenB holds, and strictly stronger (writtenA → B) iff it is stronger and
there is at least one problem in whichB holds butA does not. We call a local consistency
propertyA incomparable withB (written A ⊗ B) iff A is not stronger thanB nor vice
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versa. Finally, we call a local consistency propertyA equivalent toB (writtenA ↔ B) iff
A is stronger thanB and vice versa. Note that relationships→ and↔ are transitive.

3. Strong Domain Filtering Consistencies

In practice, most of the strong local consistency techniques discussed in the previous sec-
tion have prohibitive space and time complexities. Freuder proposed inverse consistencies
as a way to overcome the space problem8. Such consistencies require limited space as they
only prune domains. When an inverse local consistency is enforced, it removes from the
domain of a variable the values that cannot be consistently extended to some additional
variables. For example, when enforcing PIC we remove values that cannot be consistently
extended to any set of two other variables.

Until the very recent introduction of rPIC, RPWC, and maxRPWC, the study of domain
filtering consistencies had been restricted to binary constraints, with the exception of GAC.
Experimental results demonstrated that maxRPWC, which is the strongest, is also the most
efficient among these three consistencies14,3. We will now define a number of new domain
filtering consistencies for non-binary problems. These are all strictly stronger than GAC.
That is, if applied, they will remove any value that is not GAC. Also, each consistency may
remove some additional values according to the property it enforces. For any consistency
IC , we say that a variablexi is IC iff any valuea ∈ D(xi) is IC . A CSP isIC iff there is
no empty domain and all variables areIC . The following definitions specify when a value
is IC for a number of different domain filtering consistencies. We first recall the definitions
of rPIC and maxRPWC.

Definition 3.1. 15,14 A value a ∈ D(xi) is relational Path Inverse Consistent(rPIC) iff
∀cj ∈ C, wherexi ∈ var(cj), and for eachck ∈ C, there exists a GAC-supportτ of (xi, a)
in rel(cj) and a valid tupleτ ′ ∈ rel(ck) such thatτ [var(cj) ∩ var(ck)] = τ ′[var(cj) ∩
var(ck)].

If rPIC is applied on a variablexi it will remove any valuea ∈ D(xi) such that for some
constraintcj wherexi participates, no GAC-support of(xi, a) can be extended to a valid
tuple in some other constraintck that intersects withcj . Note that if the two constraints do
not intersect then any valid tuple inrel(cj) can be extended to any valid tuple inrel(ck).
Apart from rPIC we can consider other, stronger, inverse relational consistencies such as
relational(1, 3)-consistency and relational NIC which are defined further below.

Definition 3.2. 3 A valuea ∈ D(xi) is max Restricted Pairwise Consistent(maxRPWC)
iff ∀cj ∈ C, wherexi ∈ var(cj), there exists a GAC-supportτ of (xi, a) in rel(cj) s.t.
∀ck ∈ C, there exists a PW-supportτ ′ of τ in rel(ck). A tuple τ ′ is a PW-support ofτ iff
it is valid andτ [var(cj) ∩ var(ck)] = τ ′[var(cj) ∩ var(ck)].

If maxRPWC is applied on a variablexi it will remove any valuea ∈ D(xi) such that
for some constraintcj wherexi participates, no GAC-support of(xi, a) can be extended to
a valid tuple in every other constraint (intersectingcj).
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3.1. Extending rPIC and maxRPWC

The definition of both rPIC and maxRPWC can be generalized to derive domain filtering
consistencies by considering the extensions of a constraintcj to sets of constraints of var-
ious size. To illustrate this we first define relational(1, 3) consistency, as proposed by van
Beek and Dechter, and the new consistency maxR3WC. Then we present two general pa-
rameterized definitions. The former is the definition of relational(1, k) consistency given
in 6 while the latter introduces a family of domain filtering consistencies for non-binary
constraints inspired by the concept ofk-wise consistency.

Definition 3.3. 15 A valuea ∈ D(xi) is relational(1, 3)-Consistent(r(1, 3)C) iff ∀cj ∈ C,
wherexi ∈ var(cj), and for each pair of constraintsck, cl ∈ C, there exists a GAC-
supportτ of (xi, a) in rel(cj) and valid tuplesτ ′ ∈ rel(ck), τ ′′ ∈ rel(cl) s.t.τ [var(cj) ∩
var(ck)] = τ ′[var(cj) ∩ var(ck)], τ [var(cj) ∩ var(cl)] = τ ′′[var(cj) ∩ var(cl)],
τ ′[var(ck) ∩ var(cl)] = τ ′′[var(ck) ∩ var(cl)].

If r(1, 3)C is applied on a variablexi it will remove any valuea ∈ D(xi) such that
for some constraintcj wherexi participates, no GAC-support of(xi, a) can be extended to
valid tuples in some pair of extra constraints.

Definition 3.4. A value a ∈ D(xi) is max Restricted 3-wise Consistent(maxR3WC)
iff ∀cj ∈ C, wherexi ∈ var(cj), there exists a GAC-supportτ of (xi, a) in rel(cj)
s.t. ∀ck, cl ∈ C there exist valid tuplesτ ′ ∈ rel(ck), τ ′′ ∈ rel(cl) s.t. τ [var(cj) ∩
var(ck)] = τ ′[var(cj) ∩ var(ck)], τ [var(cj) ∩ var(cl)] = τ ′′[var(cj) ∩ var(cl)],
τ ′[var(ck) ∩ var(cl)] = τ ′′[var(ck) ∩ var(cl)].

If maxR3WC is applied on a variablexi it will remove any valuea ∈ D(xi) such that
for some constraintcj wherexi participates, no GAC-support of(xi, a) can be extended to
valid tuples in every pair of other constraints.

Definition 3.5. 15 A valuea ∈ D(xi) is relational (1, m)-Consistent(r(1, m)C) iff ∀cj ∈
C, wherexi ∈ var(cj), and for each set of additionalk− 1 constraintsc1, . . . , ck−1, there
exists a GAC-supportτ of (xi, a) in rel(cj) s.t.τ can be extended to a valid instantiation
on variables

⋃k−1
m=1 var(cm) that satisfies eachcm for m = 1, . . . , k − 1.

If r(1, k)C is applied on a variablexi it will remove any valuea ∈ D(xi) such that
for some constraintcj wherexi participates, no GAC-support of(xi, a) can be extended to
valid tuples in some set ofk − 1 extra constraints.

Definition 3.6. A valuea ∈ D(xi) is max Restrictedk-wise Consistent(maxRkWC) iff
∀cj ∈ C, wherexi ∈ var(cj), there exists a GAC-supportτ of (xi, a) in rel(cj) that is
k-wise consistent. That is, iff for any set of additionalk− 1 constraintsc1, . . . , ck−1, τ can
be extended to a valid instantiation on variables

⋃k−1
m=1 var(cm) that satisfies eachcm for

m = 1, . . . , k − 1.

If maxRkWC is applied on a variablexi it will remove any valuea ∈ D(xi) such that
for some constraintcj wherexi participates, no GAC-support of(xi, a) can be extended to



May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

7

valid tuples in every set ofk − 1 extra constraints.

3.2. Other Domain Filtering Consistencies

We now introduce three new domain filtering consistencies which are inspired by NIC and
ω-consistency.

Definition 3.7. A valuea ∈ D(xi) is relational Neighborhood Inverse Consistent(rNIC)
iff ∀cj ∈ C, wherexi ∈ var(cj), there exists a GAC-supportτ of (xi, a) in rel(cj)
that can be extended to a solution of the subproblem consisting of the set of variables
Xj = {var(cj) ∪ var(cj1) ∪ . . . ∪ var(cjm

)}, wherecj1 , . . . , cjm
are the constraints that

intersect withcj .

If rNIC is applied on a variablexi it will remove any valuea ∈ D(xi) such that for
some constraintcj wherexi participates, no GAC-support of(xi, a) can be extended to a
consistent instantiation of all variables involved in a constraint that intersects withcj so
that all constraints between these variables are satisfied.

Definition 3.8. A value a ∈ D(xi) is inverseω-consistent(IωC) iff ∀cj ∈ C, where
xi ∈ var(cj), there exists a GAC-supportτ of (xi, a) in rel(cj) s.t.∀ck ∈ C, there exists
anω-supportτ ′ of τ in rel(ck). A tupleτ ′ is anω-support ofτ iff it is a PW-support ofτ
and∀cl ∈ C, wherevar(cl) ⊆ var(cj) ∪ var(ck), (τ 1 τ ′)[var(cl)] ∈ rel(cl).

If I ωC is applied on a variablexi it will remove any valuea ∈ D(xi) such that for some
constraintcj wherexi participates, no GAC-support of(xi, a) can be extended to a valid tu-
ple in every constraintck that intersects withcj and, at the same time, satisfy all constraints
defined on variablesvar(cj) ∪ var(ck).

Definition 3.9. A valuea ∈ D(xi) is extended inverseω-consistent(EIωC) iff ∀cj ∈ C,
wherexi ∈ var(cj), there exists a GAC-supportτ of (xi, a) in rel(cj) s.t.∀ck ∈ C, there
exists an extendedω-supportτ ′ of τ in rel(ck). A tuple τ ′ is anextendedω-support of
τ iff it is a PW-support ofτ and∀cl ∈ C, wherevar(cj) ∩ var(cl) 6= ∅ andvar(ck) ∩
var(cl) 6= ∅, Πvar(cl)∩(var(cj)∪var(ck))(τ 1 τ ′) ∈ Πvar(cl)∩(var(cj)∪var(ck))rel(cl) and
can be extended to a valid tuple inrel(cl).

If EIωC is applied on a variablexi it will remove any valuea ∈ D(xi) such that for some
constraintcj wherexi participates, no GAC-support of(xi, a) can be extended to a valid
tuple in each constraintck that intersects withcj and, at the same time, satisfy all constraints
that intersect with bothcj andck. The difference between IωC and EIωC is that the former
considers a constraintcl only if it includes variables amongvar(cj) ∪ var(ck), while the
latter also considers some constraints that include variables amongvar(cj) ∪ var(ck) and
other variables as well.

4. Theoretical Study

To clarify the definitions of the above domain filtering consistencies, we we first give an
example that demonstrates which values are deleted by the application of these consisten-
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cies. We then compare the pruning power of the various consistencies. Finally, we consider
the special case where the problem consists of binary constraints.

Example 4.1.
Figure 1a shows a problem with 6 variables and 4 constraints with the given allowed

tuples. All domains are{0, 1} exceptD(x1) which is{0, 1, 2}. Assume that we are trying
to apply a given domain filtering consistency on variablex1. All values ofx1 are GAC as

a)

b)

c1 c2 c3

x1 x2 x3 x4 x5 x6

c1

c2

c3

x1x2x3x4

x5x6

c4

c1:x1,x2,x3
      0    0    0
      1    0    1
      1    1    0

c2:x2,x3,x4,x5
       0    0    0    0
       0    1    1    0
       1    0    0    1

c3:x4,x5,x6
        0   1   0
        1   0   0

c1:x1,x2,x3,x4
         0   0   0   0
         0   0   0   1
         1   1   0   0
         2   0   0   0

c2:x1,x2,x5
         0   1   0
         1   1   0
         2   0   1

c3:x3,x5,x6
         0   0   0
         1   1   0
         1   1   1

c4:x4,x5
        0   1
        1   0

Fig. 1. Applying domain filtering consistencies on non-binary problems.

they are GAC-supported in bothc1 andc2. Value 0 is not rPIC (and thus not maxRPWC)
as none of its GAC-supports inc1 can be consistently extended toc2. Values 1 and 2 are
maxRPWC as their GAC supports take the same values in the variables shared byc1 and
c2. But value 1 is not IωC as its GAC supports inc1 andc2 do not satisfy constraintc4.
Value 2 is IωC but it is not EIωC as its GAC-supports satisfyc4 but do not satisfy constraint
c3. No value ofx1 is rNIC as in this problem wherec1 intersects with all other constraints,
rNIC requires that these values participate in a solution.

Now consider the problem depicted in Figure 1b with five 0-1 variables and one variable
(x6) with domain{0}. Value 0 ofx1 has tuple(0, 0, 0) as GAC-support inc1. This tuple can
be extended to tuple(0, 0, 0, 0) in c2 and there are no constraints that intersect with bothc1

andc2. Therefore(x1, 0) is EIωC. However, the GAC support of 0 cannot be consistently
extended to the pair of constraintsc2, c3 since tuple(0, 0, 0, 0) of c2 has no PW-support in
c3. Hence,(x1, 0) is not maxR3WC (or r(1, 3)C).

Theorem 4.1. On problems with non-binary constraints the following relationships hold:
1) EIωC→ IωC→ maxRPWC→ rPIC→ GAC
2) maxR3WC→ maxRPWC and EIω ⊗ maxR3WC⊗ IωC
3) r(1, 3)C is incomparable to maxRPWC, IωC, EIωC, and maxR3WC→ r(1, 3)C→ rPIC
4) NIC is incomparable to rPIC, r(1, 3)C, maxRPWC, IωC, EIωC, maxR3WC and rNIC
→ NIC
5) rNIC→ EIωC and maxR3WC⊗ rNIC ⊗ r(1, 3)C
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Proof.
1) By definition, the “stronger than” relationship holds between EIωC, IωC, maxR-

PWC, and rPIC. To show EIωC → IωC → maxRPWC, consider the problems in Exam-
ple 4.1. The relationship between maxRPC, rPIC and GAC was proved in14.

2) By definition, maxR3WC is stronger than maxRPWC. For strictness consider the
problem in Example 4.1b which is maxRPWC but not maxR3WC. To show that maxR3WC
is incomparable to EIωC and IωC first consider the same problem which is EIωC (and
IωC). Now consider the problem of Figure 2a with 5 0-1 variables. This is maxR3WC but
not IωC.

3) To show that r(1, 3)C is incomparable to EIωC, IωC and maxRPWC, it suffices to
show that r(1, 3)C can be stronger than EIωC and weaker than maxRPWC. First consider
the second problem in Example 4.1. This problem is EIωC but it is not r(1, 3)C. Now con-
sider the problem in Figure 2b with 6 variables and 4 constraints intersecting on variables
x2 andx3. Value 0 ofx2 is r(1, 3)C but it is not maxRPWC. By definition, maxR3WC is

c1

c2
c3

c4

x1 x2 x3

x4

x5

c1:x1,x2,x3
         0   0   0
         0   1   1

c2:x1,x4,x5
         0   0   0
         0   1   1

c3:x2,x4
         0   0
         1   1

c4:x3,x5
        0   1
        1   0

c1:{x1,x2,x3}
       0    0    0
       0    0    1
       0    0    2

c2: {x2,x3,x4}
         0    0    0
         0    1    0

c3: {x2,x3,x5}
          0   0   0
          0   2   0

c4: {x2,x3,x6}
          0   1   0
          0   2   0

c1

c2

c3

x1 x2 x3

x4

x5

x6

c4

a)

b)

Fig. 2. A problem that is maxR3WC but not IωC (a). A problem that is r(1, 3)C but not maxRPWC (b).

stronger than r(1, 3)C. To show strictness consider the example of Figure 2b where value 0
of x2 is r(1, 3)C but it is not maxR3WC. By definition, r(1, 3)C is stronger than rPIC. To
show strictness consider the second problem in Example 4.1. This problem is rPIC but it is
not r(1, 3)C.

4) To prove that NIC is incomparable to rPIC, r(1, 3)C, maxRPWC, IωC, EIωC,
and maxR3WC it suffices to show that NIC can be weaker than rPIC and stronger
than maxR3WC. To show the former, consider a problem with two constraintsc1, c2,
wherevar(c1) = {x1, x2, x3} andrel(c1) = {(0, 0, 0), (1, 1, 0), (0, 1, 1)}, var(c2) =
{x1, x2, x4} andrel(c2) = {(0, 0, 0), (1, 1, 0), (1, 0, 1)}. This problem is NIC but it is not
rPIC. To show the latter, consider a clique of six variables where all constraints are binary
6= constraints and all domains are{0, . . . , 4}. This problem is maxR3WC but not NIC.
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To prove that rNIC→ NIC consider a problem that is rNIC. Any assignment of a vari-
ablexi has a GAC-supportτ in each constraintcj which involvesxi that can be consistently
extended to all variables involved in constraints intersecting withcj . Therefore,τ can be
consistently extended to all variables involved in a constraint withxi, as these constraints
intersect (on at leastxi) with cj . Hence, the problem is NIC. To show strictness, consider
the previous example with the two constraintsc1 andc2. This is NIC but not rNIC.

5) To prove that rNIC is incomparable to maxR3WC and r(1, 3)C first consider again
the binary problem with a clique of six variables. This is maxR3WC but not rNIC. Now
consider the second problem in Example 4.1. This is rNIC but not r(1, 3)C.

To prove rNIC→ EIωC consider a problem that is rNIC. Any assignment of a variable
xi has a GAC-supportτ in each constraintcj which involvesxi that can be consistently
extended to all variables involved in constraints intersecting withcj . Therefore,τ can be
extended to any constraintck intersecting withcj s.t. all constraints that intersect with both
cj andck are satisfied. Hence, the problem is EIωC. To show strictness, consider again the
binary problem with a clique of six variables. This is EIωC but not rNIC.2

Figure 3 summarizes the relationships between the various consistencies. For clarity of
presentation, the relationships between r(1, 3)C and NIC, rNIC are not shown.

rPICmaxRPWC

r(1,3)C

IwCEIwC

maxR3WC

NICrNIC

Fig. 3. Relationships between domain filtering consistencies for non-binary CSPs.

4.1. Binary Constraints

A natural question is what the aforementioned domain filtering consistencies correspond to
in binary CSPs. In14 it was shown that rPIC and maxRPWC are equivalent to GAC when all
constraints intersect on at most one variable. Since we deal with normalized constraints, as
it is usually assumed, then this is the case with binary constraints. Therefore, in normalized
binary problems rPIC and maxRPWC reduce to AC. We now show that when restricted to
normalized binary constraints, maxR3WC, IωC and EIωC are equivalent to maxRPC while
r(1, 3)C is equivalent to PIC.

Theorem 4.2. On binary CSPs we have maxR3WC↔ EIωC ↔ IωC ↔ maxRPC and
r(1, 3)C↔ PIC.
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Proof. To show IωC↔ maxRPC it suffices to show that if a value is deleted by maxRPC
then it is also deleted by IωC, and vice versa. Consider a valuea ∈ D(xi) that is removed
by maxRPC. Valuea is removed because it is either not AC or because there exists a
variablexj constrained withxi for which there is no valueb ∈ D(xj) such that the pair
< a, b > is path consistent. In the former case,a will be removed by IωC since IωC
is stronger than GAC (i.e. AC in binary CSPs). In the latter case, take any AC-support
b ∈ D(xj) of (xi, a). Since the pair< a, b > is not path consistent there must be a variable
xl such that no value inD(xl) is compatible with both(xi, a) and(xj , b). Assume thatc
is the constraint betweenxi andxj andc′ is the constraint betweenxi andxl. We cannot
find AC-supports fora in D(xj) andD(xl) so that these supports satisfy the constraints on
var(c) ∪ var(c′), i.e. the constraint betweenxj andxl. Hence, valuea is not IωC.

Now consider a valuea ∈ D(xi) that is deleted by IωC. If a is deleted because it
is not AC then maxRPC will obviously delete it. Otherwise, there must be a constraintc

involving xi and a variablexj such that no AC-support of(xi, a) in D(xj) can be con-
sistently extended to any constraintc′ that intersects withc so that the constraints on
var(c) ∪ var(c′) are satisfied. Take such a constraintc′ and, without loss of generality,
assume thatvar(c′) = {xj , xl}. As we only have binary constraints, the only other con-
straint that can exist among variablesvar(c)∪ var(c′) is the one betweenxi andxl. Value
(xi, a) cannot be be consistently extended toxj andxl so that all constraints between the
three variables are satisfied. Hence,a is not maxRPC.

We now show that in binary problems EIωC and maxR3WC are equivalent to IωC.
Assume that a binary problem is IωC. Then any assignment(xi, a) can be consistently
extended to any constraintc that includesxi and any other constraintc′ that intersects
with c so that all constraints between variablesvar(c) ∪ var(c′) are satisfied. Since there
is no constraint that intersects with bothc andc′ and includes additional variables (as all
constraints are binary),(xi, a) is also EIωC. Now consider any third constraintc′′. If this
intersects with bothc andc′ then, since(xi, a) is IωC, there exists an AC-support of(xi, a)
in c that can be consistently extended to bothc′ andc′′. If c′′ intersects only with one of
c,c′ (sayc′) then any valid tuple ofc′ can be consistently extended toc′′ since the problem
is IωC, and hence AC. Therefore, in any case,(xi, a) is maxR3WC.

We now show that r(1, 3)C is equivalent to PIC. Consider a valuea ∈ D(xi) that is
removed by PIC. It is removed either because it is not AC or because it cannot be extended
to some pair of variablesxj andxl so that the constraints between all three variables are
satisfied. In the former case,a will be removed by r(1, 3)C since r(1, 3)C is stronger than
GAC. In the latter case no AC-support ofa in D(xj) can be consistently extended to a value
in D(xl) so that the constraint betweenxi andxl is satisfied. Hence, valuea is not r(1, 3)C.
Now consider a valuea ∈ D(xi) that is deleted by r(1, 3)C. There must be a constraint
c involving xi and some other variablexj such that no AC-support ofa in D(xj) can be
consistently extended to some pair of constraintsc′ andc′′. There are two cases depending
on whether the three constraints form a triangle (i.e. they are the three constraints involving
xi, xj and a third variablexl). If they do not form a triangle thena is removed because
it is not AC, in which case PIC will also remove it. If the constraints form a triangle then
a cannot be be consistently extended toxj and a third variablexl so that all constraints
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between the three variables are satisfied. Hence,a is not PIC.2

5. An Algorithm for Domain Filtering Consistencies

A generic AC-7 based algorithm for inverse local consistencies in binary CSPs was pro-
posed in16. This algorithm can be relatively easily adapted to apply certain domain filtering
consistencies in non-binary problems (e.g. rPIC), but for other consistencies (e.g. maxR-
PWC) this is much more involved. A generic GAC-3 based algorithm for domain filtering
consistencies in non-binary CSPs was given in14 and3. Also, instantiations of this algo-
rithm that can be used to apply maxRPWC, rPIC and RPWC were presented. Here we
recall the generic algorithm using a slightly different description (Figure 4) and show how
it can be instantiated to apply maxRPWC, IωC, EIωC, and maxR3WC. Similar algorithms
can be used to apply rPIC (see3) and r(1, 3)C. Algorithms for NIC and rNIC in general
require search, as the neighborhood of a variable or a constraint can be very large.

function DFCons(P,DFC)
1: put all constraints inQ;
2: while Q is not empty
3: pop constraintcj from Q;
4: for each variablexi ∈ var(cj)
5: if Revise( xi, cj ,DFC) > 0 then
6: if D(xi) is emptythen return INCONSISTENCY;
8: Enqueue (xi, cj );
10: return CONSISTENCY;

function Revise (xi,cj ,DFC)
1: for each valuea ∈ D(xi)
2: PW← FALSE;
3: for each validτ(∈ rel(cj)) ≥l lastGACxi,a,cj , s.t.τ [xi] = a
4: if Seek Support (xi,cj ,τ ,DFC) then
5: lastGACxi,a,cj ← τ ;
6: PW← TRUE; break;
7: if ¬PW then removea from D(xi);
8: return number of deleted values;

procedureEnqueue (xj , ci)
1: for eachcm such thatxj ∈ var(cm)
2: put inQ eachcl (6= ci) such that|var(cl) ∩ var(cm)| > 1;
3: if cm 6= ci put cm in Q;

Fig. 4. A generic algorithm for domain filtering consistencies.

Algorithm DFCons takes as input a (non-binary) CSPP and a specified domain filter-
ing consistencyDFC, and enforcesDFConP. DFCons uses a listQ of constraints to prop-
agate value deletions, and works as follows. Initially, all constraints are added toQ. Then
constraints are sequentially removed fromQ and the domains of the variables involved in
these constraints are revised. For each such constraintcj and variablexi, the revision is
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performed using functionRevise( xi, cj ,DFC) . If after the revision the domain ofxi

becomes empty then the algorithm detects the inconsistency and terminates. Otherwise, if
the domain ofxi is pruned then each constraintck involving xi and each constraint in-
tersecting withck will be put in Q. Note that in the case of maxRPWC the intersection
must be on more than one variable. IfQ becomes empty, the algorithm terminates having
successfully enforcedDFConP.

In function Revise , for each valuea in D(xi), we first look for a GAC-support in
rel(cj) (line 3). Following GAC2001/3.12, for each constraintcj and eacha ∈ D(xi),
wherexi ∈ var(cj), we keep a pointerlastGACxi,a,cj (initialized to the first tuple in
rel(cj)). This is now the most recently discovered tuple inrel(cj) that GAC-supports
(xi, a) and, depending onDFC, has some extra property. For instance, ifDFC is maxR-
PWC (resp. IωC) thenlastGACxi,a,cj must have PW-supports (resp.ω-supports) in all
constraints that intersect withcj . If lastGACxi,a,cj is valid then we know thata is GAC-
supported. Otherwise, we look for a new GAC-support starting from the tuple immediately
afterlastGACxi,a,cj in the lexicographic order. IflastGACxi,a,cj is valid or a new GAC-
support is found then functionSeek Support is called to check if this GAC-support
(tupleτ ) satisfies the extra property ofDFC.

5.1. maxRPWC, IωC, EIωC

The implementation ofSeek Support depends on the consistency being enforced. For
maxRPWC (Figure 5), IωC (Figure 6), and EIωC (Figure 7),Seek Support iterates
over each constraintck that intersects withcj

c. For each such constraint it searches for a
tuple τ ′ that is a PW-support, IωC-support, or extended IωC-support, respectively, ofτ .
This is explained in more detail below. If such tuples are found for all intersecting con-
straints thenSeek Support returns TRUE andlastGACxi,a,cj is updated. If noDFC-
supportτ ′ is found on some intersecting constraint, indicated byτ ′ becomingNIL, then
Seek Support returns FALSE and the algorithm looks for a new GAC-support in func-
tion Revise . If no GAC-support that satisfies the property ofDFCis found,a is removed
from D(xi).

function Seek Support (xi,cj ,τ ,maxRPWC)
1: for eachck ∈ C s.t.|var(cj) ∩ var(ck)| > 1
2: for eachτ ′(∈ rel(ck))
3: if τ ′ is valid and τ [var(cj) ∩ var(ck)] = τ ′[var(cj) ∩ var(ck)]
4: then break;
5: if τ ′ = NIL then return FALSE;
6: return TRUE;

Fig. 5. FunctionSeek Support for maxRPWC.

cIn the case of maxRPWC only constraints intersecting on more than one variable are considered, since for
constraints intersecting on one variable maxRPWC offers no more pruning than GAC.
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function Seek Support (xi,cj ,τ ,IωC)
1: for eachck ∈ C s.t.|var(cj) ∩ var(ck)| > 0
2: for eachτ ′(∈ rel(ck))
3: if τ ′ is valid and τ [var(cj) ∩ var(ck)] = τ ′[var(cj) ∩ var(ck)]
4: ωC← TRUE;
5: for eachcl ∈ C, s.t.var(cl) ⊆ var(cj) ∪ var(ck)
6: if (τ 1 τ ′)[var(cl)] /∈ rel(cl)
7: then ωC← FALSE; break;
8: if ωC then break;
9: if τ ′ = NIL then return FALSE;
10: return TRUE;

Fig. 6. FunctionSeek Support for IωC.

The implementation of line 6 for IωC involves three operations:

• A join of the two tuplesτ andτ ′.
• A projection of the joined tuple over the variables invar(cl).
• And a constraint check to determine if the derived tuple satisfies constraintcl.

function Seek Support (xi,cj ,τ ,EIωC)
1: for eachck ∈ C s.t.|var(cj) ∩ var(ck)| > 0
2: for eachτ ′(∈ rel(ck))
3: if τ ′ is valid and τ [var(cj) ∩ var(ck)] = τ ′[var(cj) ∩ var(ck)]
4: EωC← TRUE;
5: for eachcl ∈ C, s.t.var(cj) ∩ var(cl) 6= ∅ ∧ var(ck) ∩ var(cl) 6= ∅
6: if Πvar(cl)∩(var(cj)∪var(ck))(τ 1 τ ′)

cannot be extended to a valid tuple inrel(cl)
7: then EωC← FALSE; break;
8: if EωC then break;
9: if τ ′ = NIL then return FALSE;
10: return TRUE;

Fig. 7. FunctionSeek Support for EIωC.

In contrast, the implementation of line 6 for EIωC is more complex and expensive as it
involves searching inrel(cl). To be precise, the following operations take place:

• A join of the two tuplesτ andτ ′.
• A projection over the variables invar(cj) ∪ var(ck) that also appear invar(cl).
• A search inrel(cl) to determine if the derived sub-tuple can be extended to a valid

tuple.
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5.2. maxR3WC

In the case of maxR3WC (Figure 8),Seek Support iterates over each constraintck that
intersects withcj and searches for a PW-support ofτ in rel(ck). If such a tupleτ ′ is found,
the algorithm iterates over each constraintcl that intersects withcj or ck (or both) and
searches for a tupleτ ′′ ∈ rel(cl) that is a PW-support of bothτ andτ ′. This is explained in
more detail below. In casecl does not intersect withcj (resp.ck) then obviously any valid
τ ′′ ∈ rel(cl) is a PW-support ofτ (resp.τ ′). If such a pair of tuples is found for all pairs of
constraintsck andcl thenSeek Support returns TRUE andlastGACxi,a,cj is updated.
OtherwiseSeek Support returns FALSE and a new GAC-support is seeked in function
Revise .

function Seek Support (xi,cj ,τ ,maxR3WC)
1: for eachck ∈ C s.t.|var(cj) ∩ var(ck)| > 0
2: for each validτ ′(∈ rel(ck))

s.t.τ [var(cj) ∩ var(ck)] = τ ′[var(cj) ∩ var(ck)]
3: 3W← TRUE;
4: for eachcl ∈ C, s.t.|var(cj) ∩ var(cl)| > 0 ∨ |var(ck) ∩ var(cl)| > 0
5: if @ valid τ ′′(∈ rel(cl)) such that

τ [var(cj) ∩ var(cl)] = τ ′′[var(cj) ∩ var(cl)] and
τ ′[var(ck) ∩ var(cl)] = τ ′′[var(ck) ∩ var(cl)]

6: then
7: if |var(ck) ∩ var(cl)| = 0 then return FALSE;
8: else3W← FALSE; break;
9: if 3W then break;
10: if τ ′ = NIL then return FALSE;
11: return TRUE;

Fig. 8. FunctionSeek Support for maxR3WC.

Depending on how the three constraints intersect, the search for tupleτ ′′ (line 5) is
executed as follows:

• If cl intersects withcj but not with ck then we simply look for a PW-support
of τ in rel(cl) without considering constraintck. If no such support is found,
Seek Support returns FALSE (line 7) so that new GAC-support for(xi, a) in
rel(cj) is seeked inRevise . Note that in this case a constraintcl is considered
only if it intersects withcj on more than one variable since, for constraints in-
tersecting on one variable, the propagation achieved cannot be greater than that
achieved by GAC.

• If cl intersects withck but not withcj then we look for a PW-support ofτ ′′ in
rel(cl) without considering constraintcj . If no such support is found, then the
algorithm immediately (line 8) moves to look for a new PW-supportτ ′ of τ in
rel(ck). As in the previous case, a constraintcl is considered only if it intersects
with ck on more than one variable.

• Finally, if cl intersects with bothcj andck then we look for a tupleτ ′′ in rel(cl)
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that is a PW-support of bothτ andτ ′. This is done as inSeek Support for IωC
or EIωC, depending on whether all variables invar(cl) appear also invar(cj) ∪
var(ck) or not. If no such support is found, then the algorithm moves to look for
a new PW-supportτ ′ of τ in rel(ck).

5.3. Complexities

We now analyze the worst-case time and space complexity of algorithmDFCons when in-
stantiated to apply IωC, EIωC, and maxR3WC. The worst-case complexity of an algorithm
for rNIC is exponential inn as any constraint may intersect with all other constraints. In
such an extreme case applying rNIC is essentially at least as hard as solving the problem.

First, we recall the complexities ofDFCons when instantiated to apply maxRPWC
or rPIC. The resulting algorithms are called maxRPWC-1 and rPIC-1 in3. Following this
naming convention, we denote algorithmDFCons(P,DFC) asDFC-1.

Proposition 5.1. 3 The worst-case time complexity of algorithmsmaxRPWC-1and
rPIC-1 is O(e2k2dp), wherep is the maximum number of variables involved in two con-
straints that share at least two variables.

As discussed in3, the space complexity ofmaxRPWC-1is O(ekd) for extensional con-
straints andO(ek2d) for intensional ones. Accordingly, the space complexity ofrPIC-1
is O(e2kd) for extensional constraints andO(e2k2d) for intensional ones.

Proposition 5.2. The worst-case time complexity of algorithmI ωC-1 is O(e3k3dp).

Proof. Let us denote bykj the number of variables involved incj and bypjk the total
number of variables involved in the two constraintscj andck. The complexity is determined
by the number of constraint checks performed in total, in all calls to functionRevise and
Seek Support .

We first analyze the cost ofSeek Support (xi,cj ,τ ,IωC). The inner loop of
Seek Support (lines 5-7) iterates through the, at moste−2, constraintscl, s.t.var(cl) ⊆
var(cj) ∪ var(ck). For any such constraint it verifies if the projection overvar(cl) of the
join of tuplesτ andτ ′ satisfies constraintcl. This costsO(k), assuming that the cost of a
constraint check is linear to the arity of the constraint. Therefore the cost of the inner loop
is O(ek). In the outer loop ofSeek Support the algorithm iterates through the con-
straints that intersectcj . For each such constraintck, the second loop searches for a tuple
τ ′ that is anω-support oflastGACxi,a,cj (i.e. τ ). There are at mostdpkj−kj tuples to be
searched, i.e. those that take the same values in variablesvar(cj) ∩ var(ck) as inτ . The
cost of each such check isO(k). If a tupleτ ′ that is valid and takes the same values asτ

on the intersecting constraints is found then the inner loop is executed to verify ifτ ′ is an
ω-support ofτ . Therefore, the cost of the second loop isO(k×dpkj−kj × ek). As there are
at moste− 1 constraints intersectingcj , the cost ofSeek Support is bounded above by
Kija =

∑
ck∈C\{cj} ek2dpjk−kj .

Now let us consider the number of calls toSeek Support in function Revise .
Given a variablexi and a constraintcj , Seek Support is called for each valuea ∈ D(xi)
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each time functionRevise (xi, cj , IωC) is called or each time anew GAC-support
lastGACxi,a,cj

is found (line 3 ofRevise ). Revise (xj , ci, IωC) can be called at most
nd times. This is because every one of then variables may either belong tovar(cj) or par-
ticipate in a constraint that intersects withcj . In this case every deletion of a value from a
variable will forceEnqueue to addcj to Q and subsequently cause a call toRevise .
lastGACxi,a,cj

cannot change more thandkj−1 times because IωC-1 only checks the
tuples that contain the assignment(xi, a) and it only checks tuples that have not been
checked before. So,Seek Support is called at mostLija = nd + dkj−1 times for
each variablexi, value a, and constraintcj . Lija is also the number of times a tuple
can be checked as GAC-support for(xi, a) on cj at a costO(k) (line 3 of Revise ).
Thus, for a variablexj , valuea, and constraintci, the complexity is bounded above by
Mjia = Lija × (k + Kija) = (nd + dkj−1)× (k +

∑
ck∈C\{cj} ek2dpjk−kj ). Assuming

thatdk−1 > nd, this gives a complexity inO(e2k2dp−1). Since there are at mostd values
in D(xi), k variables invar(cj), ande constraints inC, the total complexity is bounded
above byekd× e2k2dp−1. This gives a time complexity inO(e3k3dp). 2

The space complexity of IωC-1 is determined by the space required for thelastGAC

data structure. If the constraints are given in extension, in which case we can use pointers
of constant size, then the size oflastGAC is O(ekd). If the constraints are intensionally
specified then the size oflastGAC is O(ek2d), since in this case each pointer is of sizek.

Proposition 5.3. The worst-case time complexity of algorithmEI ωC-1 is O(e3k3dp+p′).

Proof. The proof is similar to that for IωC-1 given above. Note that the two algorithms
only differ in the implementation of the inner loop in functionSeek Support . The inner
loop of Seek Support for EI ωC-1 iterates through the, at moste − 2, constraintscl,
s.t.var(cj) ∩ var(cl) 6= ∅ andvar(ck) ∩ var(cl) 6= ∅. Let us denote bypljk the number
of variables involved incl but not incj or ck. For each constraintcl the algorithm searches
for a valid tuple inrel(cl) that takes the same values asτ on variablesvar(cj) ∩ var(cl)
and the same values asτ ′ on variablesvar(ck) ∩ var(cl). There are at mostdpljk such
tuples to be searched and the cost of each check is inO(k). Therefore, the cost of the inner
loop is bounded above byKjk =

∑
cl∈C\{cj ,ck} kdpljk . As the rest of algorithmEI ωC-1

is identical toI ωC-1 , following the analysis of Proposition 5.2 we can conclude that the
the cost ofSeek Support is bounded above byKija =

∑
ck∈C\{cj}(kdpjk−kj ×Kjk).

Therefore, for a variablexj , valuea, and constraintci, the complexity is bounded above
by (nd + dkj−1) × (k +

∑
ck∈C\{cj}(kdpjk−kj ×∑

cl∈C\{cj ,ck} kdpljk). Assuming that

dk−1 > nd, this gives a complexity inO(dkj−1 × ekdp−kj × ekdp′) = O(e2k2dp+p′−1)
Therefore, the complexity ofEI ωC-1 is in O(e3k3dp+p′). 2

The space complexity ofEI ωC-1 is the same asI ωC-1 since they use the same data
structures (i.e.lastGAC).

Proposition 5.4. The worst-case time complexity of algorithmmaxR3WC-1 is
O(e3k3dp+p′).

Proof. The proof is similar to that for IωC-1 and EIωC-1. Note that maxR3WC-1 only
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differs from the other two algorithms in the implementation of the inner loop in function
Seek Support . The inner loop ofSeek Support for maxR3WC-1iterates through
the, at moste − 2, constraintscl that intersect withcj or ck. For each constraintcl the
algorithm searches for a valid tuple inrel(cl) that takes the same values asτ on variables
var(cj)∩ var(cl) and the same values asτ ′ on variablesvar(ck)∩ var(cl). As discussed,
there are three cases depending on whethercl intersects only withcj , only with ck, or with
both. The first two are similar in terms of their effect on the cost. Therefore, to simplify
the analysis we combine these cases into one and assume thatcl intersects withck when
intersecting with only one of the two. Let us denote byrk the number of variables involved
in ck and bypkl the total number of variables involved in the two constraintsck andcl.
In this case there are at mostdpkl−rk tuples to be searched, i.e. those that take the same
values in variablesvar(ck) ∩ var(cl) as in τ ′, with costO(k) for each one. Now ifcl

intersects with bothcj andck then let us denote bypljk the number of variables involved
in cl but not in cj or ck. In this case there are at mostdpljk tuples to be searched with
costO(k) for each one. Putting things together, the cost of a single iteration of the inner
loop isO(k×max(dpkl−rk , dpljk)) = O(kdpljk)d. Therefore, the cost of the inner loop is
bounded above byKjk =

∑
cl∈C\{cj ,ck} kdpljk .

As the rest of algorithmEI ωC-1 is similar to I ωC-1 and EI ωC-1 , following the
analysis of Propositions 5.2 and 5.3 we can conclude that the the cost ofSeek Support
is bounded above byKija =

∑
ck∈C\{cj}(kdpjk−kj × Kjk). Therefore, for a variable

xj , valuea, and constraintci, the complexity is bounded above by(nd + dkj−1) × (k +∑
ck∈C\{cj}(kdpjk−kj × ∑

cl∈C\{cj ,ck} kdpljk). Assuming thatdk−1 > nd, this gives a

complexity inO(dkj−1×ekdp−kj ×ekdp′) = O(e2k2dp+p′−1) Therefore, the complexity
of EI ωC-1 is in O(e3k3dp+p′). 2

The space complexity ofmaxR3WC-1is the same asI ωC-1 andEI ωC-1 since they
all use the same data structures (i.e.lastGAC).

6. Experimental Results

We compared IωC and EIωC to maxRPWC on random problems generated using the ex-
tendedmodel B1. According to this model, a random non-binary CSP is defined by the
input parameters<n, d, k, p(e), q>, wheren is the number of variables,d the uniform do-
main size,k the uniform arity of the constraints,p the density of the problem (i.e. the ratio
between thee constraints in the problem and the number of possible constraints involvingk

variables), andq the uniform looseness of the constraints. The constraints and the allowed
tuples were generated following a uniform distribution. We made sure that the generated
graphs were connected. All algorithms were implemented in C and the experiments were
run on a 3.06 GHz Pentium PC with 1 GB RAM.

We first compare the pruning power of the three consistencies and their effect as pre-
processing tools. Results show that EIωC and, on denser problems, IωC can achieve con-
siderably more pruning than maxRPWC and thus are useful for preprocessing. Then we

dAsymptoticallydpkl−rk is in O(dpljk ) and vice versa.



May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

19

compare algorithms that maintain the consistencies throughout search. Results show that
IωC, and especially EIωC, can be too expensive to maintain on soluble instances, but they
can offer speed-ups on insoluble instances.

Figure 9 (left) shows average CPU times for the three consistencies on 100 instances of
class<30, 20, 4, 0.001(27), q>. We show both the time needed to enforce the consistencies
and the time required to solve the instances with an algorithm that maintains maxRPC
during search after they have been preprocessed by each of the three consistencies (suffix
s). The right figure shows the average percentage of instances proved to be inconsistent by
the three consistencies. The value ofq is varied along the x-axis.
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Fig. 9. Cpu times (left) and percentage of inconsistent problems detected (right).

IωC displays similar performance to maxRPWC in cpu times and inconsistency detec-
tion. This is not surprising given that this is a sparse class where all constraints are 4-ary.
As a result, for any pair of intersecting constraintscj , ck there is seldom the case that
some other constraint exists which only involves variables fromvar(cj) ∪ var(ck). Note
that EIωC detects many more inconsistent problems, and deletes a higher percentage of
values, (forq >0.004) than IωC and maxRPWC, albeit with a higher cost. However, this
preprocessing cost is negligible compared to the cost of search, and as a result, the search
algorithm that uses EIωC preprocessing is more efficient than the others up to the value of
q where EIωC achieves a notable number of value deletions.

Table 1 gives results from problems belonging to classes<50, 10, 4, 0.001(230), q>
(class 1) and<100, 10, 4, 0.0001(392), q> (class 2). In each line we give the number of
inconsistent instances detected, the average percentage of value deletions, and the cpu time
(in msecs) when each consistency is enforced for preprocessing. The first three lines in the
table refer to class 1 and correspond to parameter settings such that maxRPWC determines
as inconsistent almost all, around half and only a few of the instances. Accordingly for class
2 in the next three lines. EIωC proves the inconsistency of all instances and in some cases
it runs up to one order of magnitude faster than the other consistencies as it quickly wipes
out some domain. IωC proves the inconsistency of many more instances than maxRPWC
(especially in class 1) in competitive run times.

Figure 10 gives results from problems belonging to classes< 15, 20, 4, 0.02(27), q >
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class maxRPWC IωC EIωC
inc %del time inc %del time inc %del time

1 96 28 583 99 26 275 100 7 48
1 45 15 561 90 27 441 100 10 90
1 8 3 295 53 17 470 100 13 231
2 95 24 888 95 23 813 100 10 70
2 48 14 1488 54 16 1251100 13 302
2 9 3 412 18 5 535 100 15 674

and< 20, 8, 4, 0.008(38), q >. For each data point we generated 50 instances and mea-
sured the average node visits and cpu time of algorithms that maintain maxRPWC, IωC
and EIωC throughout search. These algorithms are simply denoted by the local consistency
they apply. Results show that in both classes, and especially the first one, EIωC significantly
reduces the size of the explored search tree (i.e. node visits) but at a high cost. IωC out-
performs maxRPWC on the first class while it is competitive but not faster on the second
class. Both of the strong consistencies are more efficient on insoluble instances compared
to soluble ones.
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Fig. 10. Cpu times and node visits for classes< 15, 20, 4, 0.02(27), q > (top) and< 20, 8, 4, 0.008(38), q >
(bottom).

In general, these preliminary experiments indicate that IωC is better suited to denser



May 30, 2008 14:18 WSPC/INSTRUCTION FILE InvCons

21

problems with large domains where there are many intersections between constraints. On
such problems it can outperform maxRPWC as it detects more inconsistencies with little
extra cost. EIωC cannot be maintained throughout search in practice, but it can be used
for preprocessing and perhaps it can be conservatively applied during search (e.g. on spe-
cific constraints). Of course, further experimentation is required to validate or refute these
conjectures.

7. Conclusion

Although domain filtering local consistencies tend to be more practical than consistencies
that change the constraint relations and the constraint graph, only few such consistencies
have been proposed for non-binary constraints. In this paper, we performed a detailed study
of several strong domain filtering consistencies for non-binary constraints. All these con-
sistencies are stronger than GAC, the consistency that is predominantly used by current
constraint solvers, and most are stronger than maxRPWC, a recently introduced domain
filtering consistency for non-binary constraints. We proved that three of the new consisten-
cies are equivalent to maxRPC when restricted to normalized binary CSPs while another
is equivalent to PIC. We also described a generic algorithm for domain filtering consisten-
cies in non-binary CSPs, showed how this algorithm can be instantiated to enforce some
of the proposed consistencies, and analyzed the worst-case complexities of the resulting
algorithms.
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2. C. Bessìere, J. Ŕegin, R. Yap, and Y. Zhang. An Optimal Coarse-grained Arc Consistency Algo-
rithm. Artificial Intelligence, 165(2):165–185, 2005.
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