
Evaluating Simple Fully Automated Heuristics for
Adaptive Constraint Propagation

Anastasia Paparrizou and Kostas Stergiou
Department of Informatics and Telecommunications Engineering

University of Western Macedonia, Kozani, Greece
{apaparrizou, kstergiou}@uowm.gr

Abstract—Despite the advancements in constraint propagation
methods, most CP solvers still apply fixed predetermined prop-
agators on each constraint of the problem. However, selecting
the appropriate propagator for a constraint can be a difficult
task that requires expertise. One way to overcome this is
through the use of machine learning. A different approach uses
heuristics to dynamically adapt the propagation method during
search. The heuristics of this category proposed in [1] displayed
promising results, but their evaluation and application suffered
from two important drawbacks: They were only defined and
tested on binary constraints and they required calibration of
their input parameters. In this paper we follow this line of work
by describing and evaluating simple, fully automated heuristics
that are applicable on constraints of any arity. Experimental
results from various problems show that the proposed heuristics
can outperform a standard approach that applies a preselected
propagator on each constraint resulting in an efficient and robust
solver.

Index Terms—constraint programming; search; constraint
propagation;

I. INTRODUCTION

Despite the advances in Constraint Programming (CP), there
are still some important obstacles that prevent it from becom-
ing even more widely known and applied. One significant
such obstacle is the rigidness of CP solvers, in the sense
that decisions about algorithms and heuristics to be used on a
specific problem are taken prior to search during the modeling
process and cannot change during search.

Concerning constraint propagation in particular, which is
at the core of CP’s strength and the focus of this paper,
the decision on which algorithm to select for the different
constraints of the CP model is either predetermined or placed
on the shoulders of the user/modeler. For instance, the modeler
may select to propagate the alldifferent constraints in a prob-
lem using a domain consistency algorithm. However, during
search it may turn out that domain consistency achieves little
extra pruning compared to bounds consistency. Unfortunately,
standard CP solvers do not allow to change the decisions taken
prior to search “on the fly”. Hence, it will not be possible
to automatically switch to a bounds consistency propagator
during search.

This research has been co-financed by the European Union (European
Social Fund ESF) and Greek national funds through the Operational Program
”Education and Lifelong Learning” of the National Strategic Reference
Framework (NSRF) - Research Funding Program: Heracleitus II. Investing
in knowledge society through the European Social Fund.

To overcome these difficulties the CP research community
has followed various different approaches. The most common
one is the use of information such as the arity of the constraints
and the complexity of propagation algorithms to evaluate the
cost of the available propagators. Then these are typically
ordered in increasing cost (although other factors may also
play a part). This approach is analyzed, for example, in [2]
and it is followed by many state-of-the art solvers such as
Gecode and Choco. A drawback of this approach is that it
does not take into account the actual effects of propagation
during search.

Another approach concerns the use of machine learning
(ML) methods for the automatic selection of constraint prop-
agation methods (as well as tuning other parameters of a
CP solver). Although some ML-based methods for dynamic
parameter tuning during search do exist [3], most approaches
focus on the easier problem of static tuning prior to search
(e.g. [4], [5]). Hence, the use of ML may alleviate the burden
of user involvement in parameter tuning, and the selection
of propagation methods (propagator) in particular, but the
rigidness displayed by existing solvers still remains.

As an alternative to both of the above approaches, heuristic
methods for the automatic tuning of constraint propagation
have also been recently proposed [6], [1]. Their advantage is
twofold: they are inexpensive to apply, and they are perfectly
suited to a dynamic application because they exploit informa-
tion concerning the actual effects of propagation during search.
In this paper we are concerned with the heuristics proposed in
[1] for dynamically adapting the propagation method used on
the constraints of the given problem. Although this approach
displayed quite promising results, it suffered by important
limitations. First, the description as well as the evaluation of
the heuristics was limited to binary constraints. And second,
their successful application depended on user interference for
careful parameter tuning. The former limits the applicability
of the heuristics while the latter severely compromises their
autonomicity and puts burden on the shoulders of the users.

In this paper we confront and remedy both these problems.
First, we evaluate two simple heuristics for constraints of any
arity that allow to dynamically switch between two different
propagators on individual constraints in a fully automated
way. The first (resp. second) heuristic applies a standard
propagator on a constraint (e.g. domain consistency) until the
constraint causes a domain wipeout - DWO (resp. at least one



value deletion). Then, in the immediately following revision
of the constraint, a stronger local consistency (e.g. SAC) is
applied. For the following revision we revert back to the
standard propagator and this is repeated throughout search.
These heuristics allow to exploit the filtering power offered
by strong propagation methods without incurring severe cpu
time penalties since they invoke the strong propagator very
sparsely. And importantly, this is achieved without requiring
any user involvement.

We also propose and evaluate refinements of the above
heuristics that, while still being fully automated, achieve better
performance by targetting the use of the strong propagator on
variables that are more likely to be filtered. Also, we evaluate
the heuristics using different methods as the strong propagator.
Overall, our experimental results demonstrate that the simple
heuristics we employ outperform the rigid method that applies
a standard propagator throughout search, resulting in most
robust solvers.

II. BACKGROUND

A Constraint Satisfaction Problem (CSP) is defined as a
tuple (X ,D, C) where: X = {x1, . . . , xn} is a set of n
variables, D = {D(x1), . . . , D(xn)} is a set of finite domains,
one for each variable, with maximum cardinality d, and
C = {c1, . . . , ce} is a set of e constraints. Each constraint
c is a pair (var(c), rel(c)), where var(c) = {x1, . . . , xm} is
an ordered subset of X , and the relation rel(c) is a subset of
the Cartesian product D(x1)× . . .×D(xm) that specifies the
allowed combinations of values for the variables in var(c).

Local consistencies are properties that are enforced on the
constraints of a problem so that infeasible values are located
and pruned. The most commonly used local consistency is
generalized arc consistency (GAC) or domain consistency. A
value ai ∈ D(xi) is GAC iff for every constraint c s.t. xi ∈
var(c) there exists a valid tuple τ ∈ rel(c) that includes the
assignment of ai to xi. In this case τ is called a support of
ai. A variable is GAC iff all its values are GAC. A problem is
GAC iff there is no empty domain in D and all the variables
in X are GAC.

Numerous local consistencies that are stronger than GAC
have been proposed. Some of these have shown promise (e.g.
SAC and maxRPWC) but in general they are all too expensive
to apply throughout search. Therefore, an important question
is how to best exploit their filtering power without paying a
high cpu time penalty. This paper tries to answer this question.

A value ai ∈ D(xi) is singleton arc consistent (SAC) iff
the problem derived from assigning ai to xi is GAC [7]. A
problem is SAC iff every value of every variable is SAC.

When applied, GAC and its weaker variants, such as Bounds
Consistency (BC), focus on one constraint at a time. In
contrast, some strong local consistencies exploit the fact that
very often constraints have two or more variables in common,
to achieve stronger pruning. One of the most promising con-
sistencies of this type is max Restricted PairWise Consistency
(maxRPWC) [8].

A value ai ∈ D(xi) is maxRPWC iff ∀cj ∈ C, where
xi ∈ var(cj), a has a support τ ∈ rel(cj) s.t. ∀cl ∈ C

(cl 6= cj), s.t. var(cj) ∩ var(cl) 6= ∅,∃τ ′ ∈ rel(cl), s.t.
τ [var(cj) ∩ var(cl)] = τ ′[var(cj) ∩ var(cl)] and τ ′ is valid.
In this case we say that τ ′ is a PW-support of τ . A variable
is maxRPWC iff all values in its domain are maxRPWC. A
problem is maxRPWC iff there is no empty domain in D and
all variables are maxRPWC.

III. ADAPTIVE PROPAGATOR SELECTION

Modern CP solvers offer an impressive array of specialized
constraint propagation algorithms that typically achieve GAC
or BC on specific types of constraints. However, typically
solvers follow one of the following patterns:

1) The choice of propagation algorithm for a specific con-
straint is made during the modeling process and cannot
change during search.

2) All the available propagators for a constraint are used,
in increasing order of cost, unless there is a theoretical
guarantee that a propagator cannot achieve extra pruning
(as discussed in [9], [10]).

A drawback of the second approach, which is more sophis-
ticated, is that even if a propagator’s cost can be accurately
predicted (which is not always true), the prediction of a
propagator’s impact is not nearly as straightforward. Schulte
and Stuckey concluded that an obvious way to further speed
up constraint propagation is to consider the estimated impact
for a propagator and not only its cost [2].

Exploring ways to achieve this, [1] proposed heuristics for
dynamically switching between a weak (W ) and a strong
(S) propagator for individual constraints during search. The
motivation for these heuristics was based on the observation
that in structured problems propagation events (DWOs and
value deletions) caused by individual constraints are often
highly clustered. That is, they occur during consecutive or
very close revisions of the constraints. Hence, the intuition
behind the proposed heuristics is twofold. First to target the
application of the strong consistency on areas in the search
space where a constraint is highly active so that domain
pruning is maximized and dead-ends are encountered faster.
And second, to avoid using an expensive propagation method
when pruning is unlikely.

The following two heuristics generalize the main heuristics
of [1] to non-binary constraints in a straightforward and fully
automated way.
• Heuristic Hdwo monitors the revisions and DWOs caused

by the constraints in the problem. For any constraint c and
any variable xi ∈ var(c), each vi ∈ D(xi) is made W
unless the immediately preceding revision of c resulted in
the DWO of a variable in var(c). In this case the values
of D(xi) are made S.

• Heuristic Hdel monitors revisions and value deletions.
For any constraint c and any variable xi ∈ var(c), each
vi ∈ D(xi) is made W unless the immediately preceding
revision of c resulted in at least one value deletion from
the domain of a variable in var(c). In this case the values
of D(xi) are made S.



A significant difference between Hdwo and Hdel and their
corresponding versions for binary constraints, called H1 and
H2 in [1], is that the latter required the manual setting of a
parameter l to optimize their performance. For any constraint
c this parameter determined the number of revisions after the
latest revision of c that caused a DWO (resp. value deletion)
during which S will be applied. In contrast, Hdwo and Hdel do
not use this parameter and as a result they are fully automated.

As reported in [1], the disjunctive combination of the two
basic heuristics that applies S whenever the conditions of
either of the heuristics is met, achieves particularly good
performance being more robust than individual heuristics.
However, given the definitions of Hdwo and Hdel here, their
disjunctive combination is pointless since it is equivalent to
applying Hdel. Hence, we do not consider it.

IV. EXPERIMENTS

In our experimental evaluation of the heuristics we have
considered GAC as the standard propagator W , given that
it is the most commonly used local consisteny. Since we
are interested in non-binary problems, we have considered
two strong local consistencies as the S propagators. Namely,
maxRPWC and SAC. All methods used the dom/wdeg heuris-
tic for variable ordering and lexicographic value ordering
under a binary branching scheme. The propagation queue was
variable-oriented (i.e. the elements of the queue are variables)
and was ordered in a FIFO manner. A cpu time limit of 6 hours
was set for all instances. All the evaluated heuristic methods
used the S propagator on all constraints for preprocessing.

The classes of problems we have considered include both
structured and random problems, some of which are specified
extensionally and others intensionally. These classes, which
are taken from C.Lecoutre’s XCSP repository and are com-
monly used in the CSP Solver Competition, are: random
and forced random, positive table, BDD, aim, pret, dubois,
chessboard coloration, Schurr’s lemma, modified Renault.

In the case of extensionally specified constraints we have
used the efficient algorithm of [11] for the implementation of
GAC. This is also the basis for the implementation of SAC
and maxRPWC. For the former, the implementation is straight-
forward. For the latter, we have used a simplified version of
the algorithm presented in [12]. In the case of intensionally
specified constraints we have used the generic algorithms
GAC2001/3.1 [13] and maxRPWC1 [8]. GAC2001/3.1 was
also the basis for the implementation of SAC.

In the following, we first evaluate Hdwo and Hdel using
maxRPWC as the strong propagator. Then we analyze the
performance of the heuristics (Hdwo in particular) to explain
their success. Finally, we propose and evaluate refinements of
the heuristics and give results from the use of SAC as the
strong propagator.

A. Evaluating the heuristics

In Table I we show the mean performance of Hdwo and
Hdel on all tested classes, measured in cpu time and nodes
explored. To put these results into perspective, we also give

results from: 1) an algorithm that propagates all constraints
using GAC throughout search, 2) an algorithm that propagates
all constraints using maxRPWC throughout search, and 3) the
Hdel heuristic implemented as in [1], with parameter l set to
10 (i.e. maxRWPC is applied for the 10 revisions following
a revision that deleted at least one value). We also report the
mean percentage (%) of constraint revisions where the strong
consistency (maxRPWC) was applied.

TABLE I
MEAN CPU TIMES (T) IN SECS, NODES (N), AND THE PERCENTAGE OF

CONSTRAINT REVISIONS (S) CARRIED OUT USING MAXRWPC. CPU TIMES
IN BOLD DEMONSTRATE THE FASTEST METHOD. A DASH (-) INDICATES

THAT THE METHOD WAS UNABLE TO SOLVE ALL INSTANCES WITHIN THE
TIME LIMIT.

Class GAC maxRPWC Hdwo Hdel Hdel 10
t 182 233 229 202 195

Rand-fcd n 131,745 59,245 161,247 95,576 54,316
s 0 100 1.1 24.8 73.3
t 220 333 221 236 270

Random n 151,039 79,771 154,657 105,944 72,353
s 0 100 1.1 24.9 73
t 1,629 3,947 2,233 1,984 3,109

Positive n 47,073 15,142 45,108 26,425 14,747
table-8 s 0 100 3 26.5 77.5

t - 643 647 667 691
Positive n - 0 0 0 0
table-10 s - 100 100 100 100

t 9.5 2.4 3.9 2.8 1.6
Aim n 1,324,118 217,459 468,262 302,870 127,723

s 0 100 2.6 20.3 53.2
t 7,771 6.4 3.9 4.2 5.1

BDD n 36,804 10 10 10 10
s 0 100 24.5 56.9 69.2
t 4.6 37.7 5.5 8.2 12.8

Chess- n 57,024 43,644 66,177 65,609 59,826
board s 0 100 2.7 6 26.2

t 63 100 62 73 87.2
Schurr’s n 559,971 524,909 549,868 552,197 562,221
lemma s 0 100 1.4 17.1 59.8

t 934 878 925 1,282 912
Dubois n 175,325,461 144,632,439 161,619,009 225,836,708 163,285,042

s 0 100 1.9 41.7 98.35
t 46 46 48 50 47

Pret n 37,017,710 37,017,710 37,017,710 37,017,710 37,017,710
s 0 100 3.2 42.4 98.7
t 118 181 126 143 167

Renault n 801 334 521 413 328
s 0 100 12 25.5 83

The results given in Table I demonstrate the efficacy of
the studied fully automated heuristics. Although they do not
achieve the best mean results on any class (with the exception
of BDD), one or both of the heuristics achieve the best
performance on several individual instances. But more impor-
tantly, the heuristics succeed in striking a balance between
the performance of GAC and maxRPWC. Specifically, in
problems where GAC thrases (positive table-10 and BDD),
the heuristics follow maxRPWC in solving the problems with
little or no search. In problems where GAC is clearly better
than maxRPWC (chessboard coloration, positive table-8, and
random) the performance of the heuristics is closer to GAC
making them clearly superior to maxRPWC. In a case where
the opposite occurs, i.e. maxRWPC is better than GAC (aim),
the heuristics follow maxRPWC making them superior to
GAC. In other cases, where GAC and maxRWPC are closely
matched, the performance of the heuristics typically lies in
between GAC and maxRPWC.

Comparing Hdwo to Hdel we can note that there are no



significant differences in their performance. This occured not
only with respect to their mean performance but, largely, with
respect to individual instances as well. What is interesting is
that Hdwo, which is slightly better overall, achieves its results
with only few invocations of the strong propagator as the
percentages s show, with positive table-10 and BDD being
exceptions to this.

Finally, comparing Hdel to its parameterized version with
l set to 10, we can note that the fully automated version is
generally preferable. It achieves better mean performance on
7 out of the 11 classes and it is not significantly outperformed
in the other 4. This hints at a particular importance of the
revisions that immediately follow a propagation event in terms
of the likelihood of another propagation event occuring.

B. Are revisions after DWOs important?

In this section we investigate the reason for the success of
Hdwo. In Table II we record ratios concerning value deletions
to demonstrate the effects of the calls to S in revisions
immediately following a revision that caused a DWO. We
have picked an indicative instance from each class. Ddwo

is the number of revisions that caused value deletions and
immediately follow a revision that caused a DWO. D is
the number of all revisions that caused deletions. Rdwo is
the number of revisions that immediately follow a revision
that caused a DWO. Table II gives the ratios Ddwo/D and
Ddwo/Rdwo for GAC, maxRPWC, and Hdwo.

TABLE II
PERCENTAGES OF REVISIONS THAT CAUSED VALUE DELETIONS AFTER A

PREVIOUS DWO TO ALL REVISIONS THAT CAUSED DELETIONS
(Ddwo/D) AND REVISIONS THAT CAUSED VALUE DELETIONS AFTER A

PREVIOUS DWO TO ALL REVISIONS EXECUTED AFTER A PREVIOUS DWO
(Ddwo/Rdwo) FROM REPRESENTATIVE INSTANCES.

Class Instance GAC maxRPWC Hdwo

Ddwo/D 0.55 0.59 1.01
Rand-fcd Ddwo/Rdwo 9.8 12.15 17.98

Ddwo/D 0.5 0.58 1.01
Random Ddwo/Rdwo 8.95 11.7 19.01

Ddwo/D 1.48 2.95 4.92
Positive table-8 Ddwo/Rdwo 3.54 6.24 12.88

Ddwo/D 1.73 1.08 2.01
Aim Ddwo/Rdwo 14.61 2.27 10.24

Ddwo/D 1.37 2.49 2.75
Chessboard Ddwo/Rdwo 3.46 5.85 7.53

Ddwo/D 0.02 0.92 0.01
Schurr’s lemma Ddwo/Rdwo 0.28 6.3 0.21

Ddwo/D 0.22 0.62 0.11
Dubois Ddwo/Rdwo 6.65 8.93 7.28

Ddwo/D 0.77 0.77 0.77
Pret Ddwo/Rdwo 13.58 13.58 13.58

Ddwo/D 2.26 2.31 2.31
Renault Ddwo/Rdwo 3.58 4.18 4.14

Hdwo has the highest percentages, compared to GAC and
maxRPWC, for both ratios shown in Table II. Especially on
Random, Random-fcd and Positive table we observe that the
numbers for Hdwo are more than two times higher, showing
that applying a strong consistency after a DWO can
increase the likelihood of value pruning. For the rest of the
classes the advantage is less obvious for two reasons: either
because the strong consistency cannot offer extra pruning (i.e.
pret) or because it is applied very few times (i.e. Chessboard

coloration). Note that no instance from the BDD class is
included. This is because in these problems very few con-
straints give non-zero results for D when maxRPWC or Hdwo

is applied (in contrast to GAC). That is, very few constraints
are active during the (very short) search process with these
methods.

V. REFINING THE HEURISTICS

Heuristics Hdwo and Hdel apply the strong propagator S on
all variables involved in a constraint if one of these variables
suffered a DWO (resp. value deletion) in the previous revision
of the constraint. This may incur unnecessary invocations of
S that only increase the cpu time overhead without offering
any filtering. The following heuristics are refinements of Hdwo

and Hdel that try to improve on this by targetting the use of
the strong propagator on variables that are more likely to be
filtered.
• Heuristic Hv

dwo monitors the revisions of constraints and
the DWOs of the variables’ domains. For any constraint
c and any variable xi ∈ var(c), each vi ∈ D(xi) is
made W unless the immediately preceding revision of c
resulted in the DWO of D(xi). In this case the values of
D(xi) are made S.

• Heuristic Hv
del monitors the revisions of constraints and

the value deletions from the variables’ domains. For
any constraint c and any variable xi ∈ var(c), each
vi ∈ D(xi) is made W unless the immediately preceding
revision of c resulted in at least one value deletion from
D(xi). In this case the values of D(xi) are made S.

Hv
dwo and Hv

del restrict the application of the strong propa-
gator on variables that suffered a propagation event (DWO
or value deletion) in the immediately preceding constraint
revision as opposed to all variables in the constraint’s scope.
The intuition behind this is that such variables are more likely
to suffer a DWO or value deletion(s) again, especially in hard
parts of the search space. The experimental results given below
indicate that this is true since the effects of restricting the
invocations of S on the search effort are not significant while
cpu times improve.

Table III presents mean results from all tested instances.
Columns Hv

del and Hv
dwo give results from the use of maxR-

PWC as the strong propagator, while column S-Hv
dwo gives

results from the use of SAC. The last column, called Hybrid,
gives results from a simple heuristic method that applies
SAC and maxRPWC alternatively. Specifically, maxRPWC
is selected as the S propagator when a constraint intersects
with another constraint on more than one variable and SAC
otherwise. Note that maxRPWC cannot achieve any extra
filtering compared to GAC when constraints intersect on
exactly one variable [8], while SAC can. Results from Table
III are similar to those from Table I in the sense that again the
heuristic methods Hv

dwo and Hv
del achieve a balance between

GAC and maxRWPC.
On the other hand, heuristic S-Hv

dwo is not as successful.
Although it often manages to cut down the number of node
visits considerably (the two random classes and aim), this is



not reflected to cpu times (with the exception of aim) meaning
that singleton checks are quite expensive. In addition, there are
many classes where S-Hv

dwo does not manage to save search
effort compared to GAC. However, the performance of S-Hv

dwo

is still close to that of GAC, being sometimes better, and it is
by far superior to the performance of an algorithm that applies
SAC on all variables throughout search1.

TABLE III
AVERAGE CPU TIMES (T) IN SECS, NODES (N) AND THE PERCENTAGE OF

THE STRONG CONSISTENCY (S) FROM ALL CLASSES.

Class GAC Hv
del Hv

dwo S-Hv
dwo Hybrid

t 182 179 165 192 133
Rand-fcd n 131,745 87,271 125,447 44,346 113,984

s 0 10.7 0.3 0.4 0.2
t 220 237 195 325 176

Random n 151,039 111,768 138,985 67,690 150,706
s 0 12 0.3 0.4 0.2
t 1,629 1,609 1,746 1,594 1,693

Positive n 47,073 27,740 45,108 42,330 47,101
table-8 s 0 4.5 0.3 0.3 0.3

t - 640 625 - 664
Positive n - 0 0 - 0
table-10 s - 100 100 - 100

t 9.5 3.5 4.3 2.2 2.5
Aim n 1,324,118 391,493 547,469 186,262 250,618

s 0 8.6 1.4 2.2 0.5
t 7,771 3.9 3.2 10,768 4

BDD n 36,804 10 10 36,896 10
s 0 56.8 56.8 0.4 56.8
t 4.6 6.2 5.3 5.1 5.4

Chess- n 57,024 61,374 59,390 58,491 65,640
board s 0 2.4 1.4 3.5 1.4

t 63 73 63 67 65
Schurr’s n 559,971 571,976 549,335 492,630 482,396
lemma s 0 8.5 0.6 0.2 0.2

t 934 1,282 936 1,287 1,357
Dubois n 175,325,461 225,836,708 172,724,047 189,160,406 215,484,904

s 0 41.7 1.9 1.7 0.8
t 46 49 48 53 50

Pret n 37,017,710 37,017,710 37,017,710 33,190,315 34,392,941
s 0 18.1 1.7 1.7 0.6
t 118 122 122 - 430

Renault n 801 417 544 - 580
s 0 12.4 7.3 - 8.8

Comparing heuristics Hv
dwo and Hv

del to Hdwo and Hdel, we
can note that the former are more efficient. Although they
restrict the application of the strong consistency by 50% up to
more than 80%, as the percentages s show, this does not incur
any significant increase in node visits while at the same time
cpu effort is saved. In contrast, there are many cases where the
number of node visits is cut down (e.g. random class). These
results show that Hv

dwo and Hv
del achieve a better focus in the

application of the strong consistency.
Finally, the Hybrid method is very competitive on all

classes, except modified Renault, being faster than all other
methods on the random-fcd and random classes. Again it is
interesting that this method ahieves a good performance with
very few invocations of the strong propagator.

Figure 1 summarizes our results by presenting pairwise
comparisons on all tested instances. Figure 1(a) compares the
cpu times of GAC to those of maxRPWC in a logarithmic
scale. Points above (resp. below) the diagonal correspond to
instances that were solved faster by maxRPWC (resp. GAC).
This figure clearly demostrates the performance gap between

1Results of this algorithm are not given because it is not competitive in
cpu times in most cases.

(a) GAC vs. maxRPWC

(b) GAC vs. Hv
dwo

(c) maxRPWC vs. Hv
dwo

Fig. 1. Cpu times of Hv
dwo compared to GAC and maxRPWC, for all

evaluated instances.



GAC and maxRPWC. GAC is faster on the majority of the
instances, often by large margins, but since it is a weaker
consistency level, it sometimes thrashes, while the stronger
maxRPWC does not. These results justify the need for a robust
method that can achieve a balance between the two.

Figure 1(b) (resp. Figure 1(c)) compares the cpu times
of Hv

dwo to those of GAC (resp. maxRPWC). These figures
clearly demonstrate the benefits of the adaptive heuristics.
Although the majority of the instances is still below the
diagonal in Figure 1(b), they are much closer to it, indicating
small differences between the two methods on those instances.
These are instances where the application of maxRPWC does
not offer any notable reductions in search tree size. By keeping
the number of calls to the maxRPWC propagator low, the
adaptive heuristic manages to avoid slowing down search
considerably. On the other hand, there are still instances where
GAC thrashes while Hv

dwo, following maxRPWC, does not.
In Figure 1(c) most instances are above the diagonal demon-

strating that Hv
dwo, following GAC, is faster than maxRPWC.

On the other hand, there are no instances where Hv
dwo thrashes.

VI. RELATED WORK

As discussed earlier, selecting the appropriate propagator for
a constraint is a problem that is essential to CP and therefore
has attracted a lot of interest. Standard solvers do not use
adaptive methods to tackle this problem. They either preselect
the propagator or use costs and other measures to order the
various propagators. Regarding the second approach, Schulte
and Stuckey describe some state-of-the-art methods which are
used to order propagators by many well known solvers (e.g.
Gecode, Choco) [2].

Automatic CP solver tuning has attracted a lot of interest
recently. Several researchers have approched this problem
through the use of ML methods (e.g. [14], [15]). [3] proposed
the use of reinforcement learning for the dynamic selection of
a variable ordering heuristic at each point of search for CSPs.
Another recent work uses ML to decide prior to search whether
lazy learning will be switched on or off [5]. Closer to the
focus of this paper, there has been little research on learning
strategies for constraint propagation. [4] uses ML methods for
the automatic selection of constraint propagation techniques.
In particular, a static method for the pre-selection between
Forward Checking and Arc Consistency is proposed. [16]
evaluates ensemble classification for selecting an appropriate
propagator for the alldifferent constraint. Again this is done
in a static way prior to search.

Following a different line of work, but with a similar goal,
there are some works proposing heuristic methods to auto-
matically adapt contraint propagation. Apart from [1], we can
mention the following: El Sakkout et al. proposed a scheme
called adaptive arc propagation for dynamically deciding
whether to process individual constraints using AC or forward
checking [17]. Freuder and Wallace proposed a technique,
called selective relaxation which can be used to restrict AC
propagation based on two local criteria; the distance in the
constraint graph of any variable from the currently instantiated

one, and the proportion of values deleted [18]. Probabilistic
arc consistency is a scheme that can dynamically adapt the
level of local consistency applied avoidis some constraint
checks and revisions that are unlikely to cause pruning [6].

VII. CONCLUSION

In this paper we described and evaluated simple heuristics
for the dynamic adaptation of constraint propagation meth-
ods. These are based on the heuristics proposed in [1], but
overcoming the limitations of that work, they are applicable
on constraints of any arity and, importantly, they are fully
automated. Experimental results show that refinements of the
basic heuristics that target the use of strong propagators on
variables that are more likely to be filtered achieve the best
results and outperform the standard method that applies a
fixed propagator throughout search, resulting in most robust
solvers. We believe that this work is a step towards the
efficient exploitation of the filtering power offered by strong
propagators in a fully automated way. In the future we will
examine the applicability of adaptive propagation heuristics
on global constraints with efficient specialized propagators for
domain and bounds consistency.

REFERENCES

[1] K. Stergiou, “Heuristics for Dynamically Adapting Propagation,” in
ECAI-2008, 2008, pp. 485–489.

[2] C. Schulte and P. Stuckey, “Efficient Constraint Propagation Engines,”
ACM Trans. Program. Lang. Syst., vol. 31, no. 1, pp. 1–43, 2008.

[3] Y. Xu, D. Stern, and H. Samulowitz, “Learning Adaptation to solve
Constraint Satisfaction Problems,” in Proceedings of Learning and
Intelligent Optimization (LION), 2009.

[4] S. Epstein, . Freuder, R. Wallace, and X. Li, “Learning propagation poli-
cies,” in Proceedings of the 2nd International Workshop on Constraint
Propagation and Implementation, 2005, pp. 1–15.

[5] I. P. Gent, C. Jefferson, L. Kotthoff, I. Miguel, N. C. A. Moore,
P. Nightingale, and K. E. Petrie, “Learning when to use lazy learning in
constraint solving,” in Proceedings of ECAI-2010, 2010, pp. 873–878.

[6] D. Mehta and M. van Dongen, “Probabilistic Consistency Boosts MAC
and SAC,” in Proceedings of IJCAI-2007, 2007, pp. 143–148.

[7] R. Debruyne and C. Bessière, “Domain Filtering Consistencies,” JAIR,
vol. 14, pp. 205–230, 2001.

[8] C. Bessiere, K. Stergiou, and T. Walsh, “Domain filtering consistencies
for non-binary constraints,” Artificial Intelligence, vol. 172, no. 6-7, pp.
800–822, 2008.

[9] C. Schulte and P. J. Stuckey, “When do bounds and domain propagation
lead to the same search space?” ACM Trans. Program. Lang. Syst.,
vol. 27, no. 3, pp. 388–425, 2005.

[10] C. Schulte and P. Stuckey, “Dynamic analysis of bounds versus domain
propagation,” in Proceedings of ICLP ’08, 2008, pp. 332–346.

[11] C. Lecoutre and R. Szymanek, “Generalized arc consistency for positive
table constraints,” in Proceedings of CP’06, 2006, pp. 284–298.

[12] A. Paparrizou and K. Stergiou, “An Efficient Higher-Order Consistency
Algorithm for Table Constraints,” in Proceedings of AAAI-2012, 2012.

[13] C. Bessiére, J. Régin, R. Yap, and Y. Zhang, “An Optimal Coarse-grained
Arc Consistency Algorithm,” Artificial Intelligence, vol. 165, no. 2, pp.
165–185, 2005.

[14] S. Minton, “Automatically Configuring Constraint Satisfaction Pro-
grams: A Case Study,” Constraints, vol. 1, no. 1/2, pp. 7–43, 1996.

[15] S. Epstein and S. Petrovic, “Learning to Solve Constraint Problems,” in
ICAPS-07 Workshop on Planning and Learning, 2007.

[16] L. Kotthoff, I. Miguel, and P. Nightingale, “Ensemble Classification for
Constraint Solver Configuration,” in Proceedings of CP’2010, 2010, pp.
321–329.

[17] H. El Sakkout, M. Wallace, and B. Richards, “An Instance of Adaptive
Constraint Propagation,” in Proceedings of CP-1996, 1996, pp. 164–178.

[18] E. Freuder and R. Wallace, “Selective relaxation for constraint satisfac-
tion problems,” in Proceedings of ICTAI-1996, 1996.


