
Strong Inverse Consistencies for Non-binary CSPs

Kostas Stergiou
Department of Information and Communication Systems Engineering

University of the Aegean, Samos, Greece
email: konsterg@aegean.gr

Abstract

Domain filtering local consistencies, such as inverse
consistencies, that only delete values and do not add new
constraints are particularly useful in Constraint Program-
ming. Although many such consistencies for binary con-
straints have been proposed and evaluated, the situation
with non-binary constraints is quite different. Only very
recently have domain filtering consistencies stronger than
GAC started to attract interest. Following this line of re-
search, we define a number of strong inverse consisten-
cies for non-binary constraints and compare their pruning
power. We show that three of these consistencies are equiva-
lent to maxRPC in binary CSPs while another is equivalent
to PIC. We also describe a generic algorithm for inverse
consistencies in non-binary CSPs and show how it can be
instantiated to enforce some of the proposed consistencies.
Finally, we make a preliminary empirical study that demon-
strates the potential of strong inverse consistencies.

1 Introduction
One of the great strengths of Constraint Programming is

the exploitation of local consistency techniques to prune in-
consistent values from the domains of variables and thus
avoid fruitless exploration of the search tree. The most
widely studied and used local consistency is generalized
arc consistency (GAC). It is widely accepted that “rela-
tion filtering” consistencies which alter the structure of the
constraint graph or the constraints’ relations (e.g. path
consistency) tend to be less practical than “domain fil-
tering” consistencies which only remove values from the
domains of the variables. As a result, many strong do-
main filtering consistencies for binary constraints have been
proposed and evaluated. For example, inverse and sin-
gleton consistencies [5, 3, 12]. In contrast, little work
had been done on such consistencies for non-binary con-
straints until very recently, whereas a number of consisten-
cies that are stronger than GAC, but not domain filtering,
have been developed. For example, pairwise consistency

[7], hyper-m-consistency [8], relational consistency [11],
and ω-consistency [9]. However, these consistencies are
rarely used in practice, mainly because they have a high
space complexity.

Very recently, three domain filtering consistencies for
non-binary CSPs were introduced and evaluated theoreti-
cally and empirically. These are relational path inverse con-
sistency (rPIC), restricted pairwise consistency (RPWC),
and max restricted pairwise consistency (maxRPWC)1 [10,
2]. All these are stronger than GAC and display promis-
ing performance on certain non-binary problems. Contin-
uing along the same lines of work, we propose a number
of strong inverse consistencies for non-binary constraints
and study them theoretically and empirically. These are re-
lational (1, 3)-consistency, relational neighborhood inverse
consistency, inverseω- consistency, extended inverseω-
consistency, and max restricted 3-wise consistency. To de-
rive these consistencies we are mainly inspired by known
relation-filtering consistencies for non-binary problems. In
our theoretical study we compare the pruning power of
these consistencies, most of which are stronger than maxR-
PWC, and show what they correspond to when restricted
to binary constraints. We also describe an algorithm that
can be used to apply the proposed consistencies. Finally we
give preliminary experimental results that demonstrate the
potential of strong inverse consistencies.

2 Background

A Constraint Satisfaction Problem(CSP)P is defined
as a tuple(X,D,C) where:X = {x1, . . . , xn} is a finite
set ofn variables,D = {D(x1), . . . ,D(xn)} is a set of
domains, andC = {c1, . . . , ce} is a set ofe constraints.
For each variablexi ∈ X, D(xi) is the finite domain of
its possible values. Each constraintci ∈ C is defined as a
pair (var(ci), rel(ci)), wherevar(ci) = {xj1 , . . . , xjk

} is
an ordered subset ofX called thescopeof ci, andrel(ci) is
a subset of theCartesianproductD(xj1)x . . . xD(xjk

) that
specifies the allowed combinations of values for the vari-

1maxRPWC was called pairwise inverse consistency in [10].

ables invar(ci). Each tupleτ ∈ rel(ci) is an ordered list
of values(a1, . . . , ak). A tuple isvalid iff none of the values
in the tuple has been removed from the domain of the cor-
responding variable. A constraintci can be either defined
extensionallyby explicitly giving relationrel(ci), or (usu-
ally) intensionallyby implicitly specifyingrel(ci) through
a predicate or arithmetic function. For any two constraints
ci andcj , the set of variables that are involved in both con-
straints is denoted byvar(ci) ∩ var(cj). If this set is not
empty, the constraintsintersect.

The assignment of valuea to variablexi is denoted by
(xi, a). Any tupleτ = (a1, . . . , ak) can be viewed as a set
of value to variable assignments{(x1, a1), . . . , (xk, ak)}.
In this way, an assignment of values to a set of variables
X ′ ⊆ X is a tuple overX ′. The set of variables over
which a tupleτ is defined isvar(τ). For any subset
var′ of var(τ), τ [var′] is the sub-tuple ofτ that includes
only assignments to the variables invar′. A tuple τ is
consistent, iff it is valid and for all constraintsci, where
var(ci) ⊆ var(τ), τ [var(ci)] ∈ rel(ci). A solution to a
CSP(X,D,C) is a consistent tuple assigning all variables
in X.

A value a ∈ D(xi) is consistent with a constraintcj ,
wherexi ∈ var(cj), iff ∃τ ∈ rel(cj) such thatτ [xi] = a

andτ is valid. In this case, we say thatτ is a GAC-support
of (xi, a) in cj . A constraintcj is Generalized Arc Consis-
tent (GAC) iff ∀ xi ∈ var(cj), ∀ a ∈ D(xi), there exists a
GAC-support fora in cj . A problem is GAC iff there is no
empty domain inD and all the constraints inC are GAC.
In binary CSPs, GAC is referred to aarc consistency(AC).

Since the allowed tuples of constraints are defined as re-
lations, standard relational operators can be used. Thepro-
jectionΠvar′τ of a tupleτ ∈ rel(ci) onvar′ is the subtuple
τ [var′]. Accordingly, the projection of a constraintci on a
set of variablesvar′, wherevar′ ⊆ var(ci) is a new con-
straintc′ wherevar(c′) = var′ andrel(c′) = Πvar′rel(ci).
Thejoin of two constraintsci andcj is a new constraint, de-
noted byci 1 cj , wherevar(ci 1 cj) = var(ci) ∪ var(cj)
andrel(ci 1 cj) = rel(ci) 1 rel(cj).

2.1 Local Consistencies

We now briefly review the most common local consis-
tencies for binary and non-binary CSPs.

A binary problem is(i, j) consistentiff it has non-empty
domains and any consistent instantiation ofi variables can
be extended to a consistent instantiation involvingj addi-
tional variables [4]. A problem isstrong(i, j)-consistentiff
it is (k, j) consistent for allk ≤ i. A problem isarc con-
sistent(AC) iff it is (1, 1)-consistent. A problem is (strong)
path consistent(PC) iff it is (strong)(2, 1)-consistent. A
problem ispath inverse consistent(PIC) iff it is (1, 2)-
consistent [5]. A problem ismax restricted path consistent
(maxRPC) iff it is (1,1)-consistent and for each value(xi, a)

and variablexj constrained withxi, there exists a value
b ∈ D(xj) that is an AC-support of(xi, a) and this pair of
values is path consistent (i.e. it can be consistently extended
to any third variable). A problem isinversem-consistentiff
it is (1,m) consistent. A problem isneighborhood inverse
consistent(NIC) iff any consistent instantiation of a vari-
ablexi can be extended to a consistent instantiation of all
the variables inxi’s neighborhood. A problemP is single-
ton arc consistent(SAC) [3] iff it has non-empty domains
and for any instantiation(xi, a) of a variablexi ∈ X, the
resulting subproblem can be made AC.

Some local consistencies for binary CSPs can be easily
extended to non-binary problems. For example, SAC has
been extended to SGAC. However, for other consistencies
(e.g. PIC and maxRPC) this extension is not straightfor-
ward. In the case of NIC there are two alternative exten-
sions to non-binary constraints. To determine if a value
a ∈ D(xi) is NIC, we can consider the subproblem con-
sisting of the set of variablesneigh(xi) = {xi1 , . . . , xim

}
involved in a constraint withxi and the constraints that only
include variables fromneigh(xi). Alternatively, we can
consider the subproblem consisting of variablesneigh(xi)
and all the constraints that include any of these variables
(and possibly other variables as well). In the rest of this
paper we follow the first definition of NIC for non-binary
constraints.

A problem isrelationally arc consistent(rel AC) iff any
consistent instantiation for all but one of the variables in
a constraint can be extended to the final variable so as to
satisfy the constraint [11]. A problem isrelationally path-
consistent(rel PC) iff any consistent instantiation for all but
one of the variables in a pair of constraints can be extended
to the final variable so as to satisfy both constraints. A prob-
lem is relationally m-consistentiff any consistent instanti-
ation for all but one of the variables in a set ofm distinct
constraints can be extended to the final variable so as to
satisfy allm constraints. A problem isrelationally (i,m)-
consistentiff any consistent instantiation fori of the vari-
ables in a set ofm constraints can be extended to all the
variables in the set.

A non-binary problem ispairwise consistent(PWC) [8])
iff it has non-empty relations and any consistent tuple in a
constraintci can be consistently extended to any other con-
straint [7]. PWC has been generalized tok-wise consistency
[6] andhyper-m-consistency[8]. A problem isk-wise con-
sistent iff any consistent tuple for a constraint can be consis-
tently extended to anyk−1 other constraints. A problem is
hyper-m-consistent iff any consistent combination of tuples
for m-1 constraints can be consistently extended to anymth

constraint.
A problem isω-consistentiff any tuple in a constraintci

can be consistently extended to any other constraintcj and
to all constraintsck such thatvar(ck) ⊆ var(ci) ∪ var(cj)

[9]. A problem isgeneralized dual arc consistentiff any
tuple in a constraintci can be consistently extended to any
other constraintcj and satisfy all constraintsck such that
var(ck) ∩ (var(ci) ∪ var(cj)) 6= ∅ [9].

Following [3], a consistency propertyA is stronger than
B iff in any problem in whichA holds thenB holds, and
strictly stronger (writtenA → B) iff it is stronger and there
is at least one problem in whichB holds butA does not. A
local consistency propertyA is incomparable withB (writ-
ten A ⊗ B) iff A is not stronger thanB nor vice versa.
Finally, a local consistency propertyA is equivalent toB
(written A ↔ B) iff A is stronger thanB and vice versa.
Note that relationships→ and↔ are transitive.

3 New Inverse Consistencies

In practice, most of the strong local consistency tech-
niques discussed in the previous section have prohibitive
space and time complexities. Freuder proposed inverse con-
sistencies as a way to overcome the space problem [5]. Such
consistencies require limited space as they only prune do-
mains. When an inverse local consistency is enforced, it
removes from the domain of a variable the values that can-
not be consistently extended to some additional variables.

Until the very recent introduction of rPIC, RPWC, and
maxRPWC, the study of inverse consistencies had been re-
stricted to binary constraints. Experimental results demon-
strated that applying maxRPWC, which is the strongest
among the three consistencies, is more efficient than apply-
ing the other consistencies [10, 2]. We will now define a
number of new inverse consistencies for non-binary prob-
lems. These are all strictly stronger than GAC. That is, if
applied, they will remove any value that is not GAC. Also,
each consistency may remove some additional values ac-
cording to the property it enforces. For any consistencyIC,
we say that a variablexi is IC iff any valuea ∈ D(xi)
is IC. A CSP isIC iff there is no empty domain and all
variables areIC. The following definitions specify when
a value isIC for a number of different inverse consisten-
cies. For completeness we include the definitions of rPIC
and maxRPWC.

Definition 3.1 [11, 10] A valuea ∈ D(xi) is relational
Path Inverse Consistent(rPIC) iff ∀cj ∈ C, wherexi ∈
var(cj), and for eachck ∈ C, there exists a GAC-support
τ of (xi, a) in rel(cj) and a valid tupleτ ′ ∈ rel(ck) such
thatτ [var(cj) ∩ var(ck)] = τ ′[var(cj) ∩ var(ck)].

If rPIC is applied on a variablexi it will remove any
valuea ∈ D(xi) such that for some constraintcj wherexi

participates, no GAC-support of(xi, a) can be extended to
a valid tuple in some other constraintck that intersects with
cj . Note that if the two constraints do not intersect then any
valid tuple inrel(cj) can be extended to any valid tuple in

rel(ck). Apart from rPIC we can consider other, stronger,
inverse relational consistencies. We now define relational
(1, 3)-consistency (derived from [11]) and relational NIC.

Definition 3.2 [11] A valuea ∈ D(xi) is relational (1, 3)-
Consistent(r(1, 3)C) iff ∀cj ∈ C, wherexi ∈ var(cj),
and for each pair of constraintsck, cl ∈ C, there exists
a GAC-supportτ of (xi, a) in rel(cj) and valid tuples
τ ′ ∈ rel(ck), τ ′′ ∈ rel(cl) s.t. τ [var(cj) ∩ var(ck)] =
τ ′[var(cj)∩var(ck)], τ [var(cj)∩var(cl)] = τ ′′[var(cj)∩
var(cl)], τ ′[var(ck) ∩ var(cl)] = τ ′′[var(ck) ∩ var(cl)].

If r(1, 3)C is applied on a variablexi it will remove any
valuea ∈ D(xi) such that for some constraintcj wherexi

participates, no GAC-support of(xi, a) can be extended to
valid tuples in some pair of extra constraints.

Definition 3.3 A value a ∈ D(xi) is relational Neigh-
borhood Inverse Consistent(rNIC) iff ∀cj ∈ C, where
xi ∈ var(cj), there exists a GAC-supportτ of (xi, a) in
rel(cj) that can be extended to a solution of the subprob-
lem consisting of the set of variablesXj = {var(cj) ∪
var(cj1)∪ . . .∪var(cjm

)}, wherecj1 , . . . , cjm
are the con-

straints that intersect withcj .

If rNIC is applied on a variablexi it will remove any
valuea ∈ D(xi) such that for some constraintcj wherexi

participates, no GAC-support of(xi, a) can be extended to
a consistent instantiation of all variables involved in a con-
straint that intersects withcj so that all constraints between
these variables are satisfied.

Definition 3.4 [10, 2] A valuea ∈ D(xi) is max Restricted
Pairwise Consistent(maxRPWC) iff∀cj ∈ C, wherexi ∈
var(cj), there exists a GAC-supportτ of (xi, a) in rel(cj)
s.t. ∀ck ∈ C, there exists a PW-supportτ ′ of τ in rel(ck).
A tupleτ ′ is a PW-support ofτ iff it is valid andτ [var(cj)∩
var(ck)] = τ ′[var(cj) ∩ var(ck)].

If maxRPWC is applied on a variablexi it will remove
any valuea ∈ D(xi) such that for some constraintcj where
xi participates, no GAC-support of(xi, a) can be extended
to a valid tuple in every other constraint (intersectingcj).

Definition 3.5 A valuea ∈ D(xi) is inverseω-consistent
(IωC) iff ∀cj ∈ C, wherexi ∈ var(cj), there exists a GAC-
supportτ of (xi, a) in rel(cj) s.t. ∀ck ∈ C, there exists an
ω-supportτ ′ of τ in rel(ck). A tuple τ ′ is anω-support of
τ iff it is a PW-support ofτ and∀cl ∈ C, wherevar(cl) ⊆
var(cj) ∪ var(ck), (τ 1 τ ′)[var(cl)] ∈ rel(cl).

If I ωC is applied on a variablexi it will remove any value
a ∈ D(xi) such that for some constraintcj wherexi par-
ticipates, no GAC-support of(xi, a) can be extended to a
valid tuple in every constraintck that intersects withcj and,
at the same time, satisfy all constraints defined on variables
var(cj) ∪ var(ck).

Definition 3.6 A value a ∈ D(xi) is extended inverseω-
consistent(EIωC) iff ∀cj ∈ C, wherexi ∈ var(cj), there
exists a GAC-supportτ of (xi, a) in rel(cj) s.t. ∀ck ∈ C,
there exists an extendedω-supportτ ′ of τ in rel(ck). A tu-
ple τ ′ is anextendedω-support ofτ iff it is a PW-support
of τ and ∀cl ∈ C, wherevar(cj) ∩ var(cl) 6= ∅ and
var(ck) ∩ var(cl) 6= ∅, Πvar(cl)∩(var(cj)∪var(ck))(τ 1

τ ′) ∈ Πvar(cl)∩(var(cj)∪var(ck))rel(cl) and can be extended
to a valid tuple inrel(cl).

If EIωC is applied on a variablexi it will remove any value
a ∈ D(xi) such that for some constraintcj wherexi par-
ticipates, no GAC-support of(xi, a) can be extended to a
valid tuple in each constraintck that intersects withcj and,
at the same time, satisfy all constraints that intersect with
both cj and ck. The difference between IωC and EIωC
is that the former considers a constraintcl only if it in-
cludes variables amongvar(cj) ∪ var(ck), while the lat-
ter also considers some constraints that include variables
amongvar(cj) ∪ var(ck) and other variables as well.

Definition 3.7 A value a ∈ D(xi) is max Restricted 3-
wise Consistent(maxR3WC) iff ∀cj ∈ C, wherexi ∈
var(cj), there exists a GAC-supportτ of (xi, a) in rel(cj)
s.t. ∀ck, cl ∈ C there exist valid tuplesτ ′ ∈ rel(ck), τ ′′ ∈
rel(cl) s.t. τ [var(cj) ∩ var(ck)] = τ ′[var(cj) ∩ var(ck)],
τ [var(cj)∩var(cl)] = τ ′′[var(cj)∩var(cl)], τ ′[var(ck)∩
var(cl)] = τ ′′[var(ck) ∩ var(cl)].

If maxR3WC is applied on a variablexi it will remove
any valuea ∈ D(xi) such that for some constraintcj where
xi participates, no GAC-support of(xi, a) can be extended
to valid tuples in every pair of other constraints.

3.1 Theoretical Study

To clarify the above definitions, we first give an example
that demonstrates which values are deleted by the applica-
tion of these consistencies.

Example 3.1 Figure 1a shows a problem with 6 variables
and 4 constraints with the given allowed tuples. All do-
mains are{0, 1} exceptD(x1) which is{0, 1, 2}. Assume
that we are trying to apply a given inverse consistency on
variablex1. All values of x1 are GAC as they are GAC-
supported in bothc1 andc2. Value 0 is not rPIC (and thus
not maxRPWC) as none of its GAC-supports inc1 can be
consistently extended toc2. Values 1 and 2 are maxRPWC
as their GAC supports take the same values in the variables
shared byc1 andc2. But value 1 is not IωC as its GAC sup-
ports inc1 andc2 do not satisfy constraintc4. Value 2 is
IωC but it is not EIωC as its GAC-supports satisfyc4 but do
not satisfy constraintc3. No value ofx1 is rNIC as in this
problem wherec1 intersects with all other constraints, rNIC
requires that these values participate in a solution.

a)

b)

c1
 c2
 c3

x
1
 x
2
 x
3
 x
4
 x
5
 x
6

c1

c2

c3

x1
x2
x3
x4

x5
x6

c4

c
1
:
x1
,
x2
,
x3

 0 0 0

 1 0 1

 1 1 0

c
2
:
x2
,
x3
,
x4
,
x5

 0 0 0 0

 0 1 1 0

 1 0 0 1

c
3
:
x4
,
x5
,
x6

 0 1 0

 1 0 0

c1
:
x1
,
x2
,
x3
,
x4

 0 0 0 0

 0 0 0 1

 1 1 0 0

 2 0 0 0

c2
:
x1
,
x2
,
x5

 0 1 0

 1 1 0

 2 0 1

c3
:
x3
,
x5
,
x6

 0 0 0

 1 1 0

 1 1 1

c4
:
x4
,
x5

 0 1

 1 0

Figure 1. Applying inverse consistencies on
non-binary problems.

Now consider the problem depicted in Figure 1b with
five 0-1 variables and one variable (x6) with domain{0}.
Value 0 ofx1 has tuple(0, 0, 0) as GAC-support inc1. This
tuple can be extended to tuple(0, 0, 0, 0) in c2 and there
are no constraints that intersect with bothc1 andc2. There-
fore (x1, 0) is EIωC. However, the GAC support of 0 can-
not be consistently extended to the pair of constraintsc2, c3

since tuple(0, 0, 0, 0) of c2 has no PW-support inc3. Hence,
(x1, 0) is not maxR3WC (or r(1, 3)C).

Theorem 3.1 On problems with non-binary constraints the
following relationships hold:
1) EIωC → IωC → maxRPWC→ rPIC
2) maxR3WC→ maxRPWC and EIω ⊗ maxR3WC⊗ IωC
3) r(1, 3)C is incomparable to maxRPWC, IωC, EIωC, and
maxR3WC→ r(1, 3)C → rPIC
4) NIC is incomparable to rPIC, r(1, 3)C, maxRPWC, IωC,
EIωC, maxR3WC and rNIC→ NIC
5) rNIC→ EIωC and maxR3WC⊗ rNIC ⊗ r(1, 3)C

Proof:
1) By definition, the “stronger than” relationship holds

between maxR3WC, EIωC, IωC, maxRPWC, and rPIC. To
show maxR3WC→ EIωC → IωC → maxRPWC, consider
the problems in Example 3.1. The relationship between
maxRPC and rPIC was proved in [10].

2) By definition, maxR3WC is stronger than maxRPWC.
For strictness consider the problem in Example 3.1b which
is maxRPWC but not maxR3WC. To show that maxR3WC
is incomparable to EIωC and IωC first consider the same
problem which is EIωC (and IωC). Now consider the prob-
lem of Figure 2a with 5 0-1 variables. This is maxR3WC
but not IωC.

3) To show that r(1, 3)C is incomparable to EIωC, IωC
and maxRPWC, it suffices to show that r(1, 3)C can be
stronger than EIωC and weaker than maxRPWC. First con-
sider the second problem in Example 3.1. This problem
is EIωC but it is not r(1, 3)C. Now consider the problem
in Figure 2b with 6 variables and 4 constraints intersecting
on variablesx2 andx3. Value 0 ofx2 is r(1, 3)C but it is

c
1

c
2

c
3

c
4

x1
 x
2
 x3

x
4

x
5

c1
:
x1
,
x2
,
x3

 0 0 0

 0 1 1

c2
:
x1
,
x4
,
x5

 0 0 0

 0 1 1

c3
:
x2
,
x4

 0 0

 1 1

c4
:
x3
,
x5

 0 1

 1 0

c
1
:{
x1
,
x2
,
x3
}

 0 0 0

 0 0 1

 0 0 2

c
2
: {
x2
,
x3
,
x4
}

 0 0 0

 0 1 0

c
3
: {
x2
,
x3
,
x5
}

 0 0 0

 0 2 0

c4
: {
x2
,
x3
,
x6
}

 0 1 0

 0 2 0

c
1

c
2

c
3

x
1
 x
2
 x
3

x
4

x
5

x6

c
4

a)

b)

Figure 2. A problem that is maxR3WC but not
IωC (a). A problem that is r (1, 3)C but not
maxRPWC (b).

not maxRPWC. By definition, maxR3WC is stronger than
r(1, 3)C. To show strictness consider the example of Fig-
ure 2 where value 0 ofx2 is r(1, 3)C but it is not maxR3WC.
By definition, r(1, 3)C is stronger than rPIC. To show strict-
ness consider the second problem in Example 3.1. This
problem is rPIC but it is not r(1, 3)C.

4) To prove that NIC is incomparable to rPIC, maxR-
PWC, IωC, EIωC, and maxR3WC it suffices to show that
NIC can be weaker than rPIC and stronger than maxR3WC.
To show the former, consider a problem with two con-
straintsc1, c2, wherevar(c1) = {x1, x2, x3} andrel(c1) =
{(0, 0, 0), (1, 1, 0), (0, 1, 1)}, var(c2) = {x1, x2, x4} and
rel(c2) = {(0, 0, 0), (1, 1, 0), (1, 0, 1)}. This problem is
NIC but it is not rPIC. To show the latter, consider a clique
of six variables where all constraints are binary6= con-
straints and all domains are{0, . . . , 4}. This problem is
maxR3WC but not NIC. The same examples prove that NIC
is incomparable to r(1, 3)C.

To prove that rNIC→ NIC consider a problem that is
rNIC. Any assignment of a variablexi has a GAC-support
τ in each constraintcj which involvesxi that can be consis-
tently extended to all variables involved in constraints inter-
secting withcj . Therefore,τ can be consistently extended
to all variables involved in a constraint withxi, as these con-
straints intersect (on at leastxi) with cj . Hence, the problem
is NIC. To show strictness, consider the previous example.
This is NIC but not rNIC.

5) To prove that rNIC is incomparable to maxR3WC
and r(1, 3)C first consider again the binary problem with
a clique of six variables. This is maxR3WC but not rNIC.
Now consider the second problem in Example 3.1. This is
rNIC but not r(1, 3)C.

To prove rNIC→ EIωC consider a problem that is rNIC.
Any assignment of a variablexi has a GAC-supportτ in
each constraintcj which involvesxi that can be consistently
extended to all variables involved in constraints intersecting

rPIC
maxRPWC

r
(1,3)
C

IwC
EIwC

maxR3WC

NIC
rNIC

Figure 3. Relationships between inverse con-
sistencies for non-binary CSPs.

with cj . Therefore,τ can be extended to any constraintck

intersecting withcj s.t. all constraints that intersect with
both cj andck are satisfied. Hence, the problem is EIωC.
To show strictness, consider again the binary problem with
a clique of six variables. This is EIωC but not rNIC.2

Figure 3 summarizes the relationships between the vari-
ous consistencies. For clarity, some relationships are omit-
ted.

3.1.1 Binary Constraints

A natural question is what the aforementioned inverse con-
sistencies correspond to in binary CSPs. In [10] it was
shown that rPIC and maxRPWC are equivalent to GAC
when all constraints intersect on at most one variable. If we
assume that multiple constraints on the same variables are
combined into one, then this is the case with binary con-
straints. Therefore, in binary problems rPIC and maxR-
PWC reduce to AC. We show that when restricted to bi-
nary constraints, maxR3WC, IωC and EIωC are equivalent
to maxRPC while r(1, 3)C is equivalent to PIC.

Theorem 3.2 On binary CSPs we have maxR3WC↔
EIωC ↔ IωC ↔ maxRPC and r(1, 3)C ↔ PIC.

Proof: To show IωC↔ maxRPC it suffices to show that if a
value is deleted by maxRPC then it is also deleted by IωC,
and vice versa. Consider a valuea ∈ xi that is removed
by maxRPC. Valuea is removed because it is either not AC
or because there exists a variablexj constrained withxi

for which there is no valueb ∈ D(xj) such that the pair
< a, b > is path consistent. In the former case,a will be
removed by IωC since IωC is stronger than GAC (i.e. AC
in binary CSPs). In the latter case, take any AC-support
b ∈ D(xj) of (xi, a). Since the pair< a, b > is not path
consistent there must be a variablexl such that no value in
D(xl) is compatible with both(xi, a) and(xj , b). Assume
thatc is the constraint betweenxi andxj andc′ is the con-
straint betweenxi andxl. We cannot find AC-supports for
a in D(xj) andD(xl) so that these supports satisfy the con-
straints onvar(c) ∪ var(c′), i.e. the constraint betweenxj

andxl. Hence, valuea is not IωC.

Now consider a valuea ∈ D(xi) that is deleted by IωC.
If a is deleted because it is not AC then maxRPC will ob-
viously delete it. Otherwise, there must be a constraintc

involving xi and a variablexj such that no AC-support of
(xi, a) in D(xj) can be consistently extended to any con-
straint c′ that intersects withc so that the constraints on
var(c)∪var(c′) are satisfied. Take such a constraintc′ and,
without loss of generality, assume thatvar(c′) = {xj , xl}.
As we only have binary constraints, the only other con-
straint that can exist among variablesvar(c)∪var(c′) is the
one betweenxi andxl. Value(xi, a) cannot be be consis-
tently extended toxj andxl so that all constraints between
the three variables are satisfied. Hence,a is not maxRPC.

We now show that in binary problems EIωC and
maxR3WC are equivalent to IωC. Assume that a binary
problem is IωC. Then any assignment(xi, a) can be con-
sistently extended to any constraintc that includesxi and
any other constraintc′ that intersects withc so that all con-
straints between variablesvar(c) ∪ var(c′) are satisfied.
Since there is no constraint that intersects with bothc and
c′ and includes additional variables (as all constraints are
binary), (xi, a) is also EIωC. Now consider any third con-
straintc′′. If this intersects with bothc andc′ then, since
(xi, a) is IωC, there exists an AC-support of(xi, a) in c that
can be consistently extended to bothc′ andc′′. If c′′ inter-
sects only with one ofc,c′ (sayc′) then any valid tuple ofc′

can be consistently extended toc′′ since the problem is IωC,
and hence AC. Therefore, in any case,(xi, a) is maxR3WC.

We now show that r(1, 3)C is equivalent to PIC. Consider
a valuea ∈ D(xi) that is removed by PIC. It is removed ei-
ther because it is not AC or because it cannot be extended to
some pair of variablesxj andxl so that the constraints be-
tween all three variables are satisfied. In the former case,a

will be removed by r(1, 3)C since r(1, 3)C is stronger than
GAC. In the latter case no AC-support ofa in D(xj) can be
consistently extended to a value inD(xl) so that the con-
straint betweenxi andxl is satisfied. Hence, valuea is not
r(1, 3)C. Now consider a valuea ∈ D(xi) that is deleted by
r(1, 3)C. There must be a constraintc involvingxi and some
other variablexj such that no AC-support ofa in D(xj)
can be consistently extended to some pair of constraintsc′

andc′′. There are two cases depending on whether the three
constraints form a triangle (i.e. they are the three constraints
involving xi, xj and a third variablexl). If they do not form
a triangle thena is removed because it is not AC, in which
case PIC will also remove it. If the constraints form a tri-
angle thena cannot be be consistently extended toxj and
a third variablexl so that all constraints between the three
variables are satisfied. Hence,a is not PIC.2

4 An Algorithm for Inverse Consistencies
A generic AC-7 based algorithm for inverse local con-

sistencies in binary CSPs was proposed in [12]. A generic

GAC-3 based algorithm for inverse consistencies in non-
binary CSPs was given in [10] and [2]. Also, instantiations
of this algorithm that can be used to apply maxRPWC, rPIC
and RPWC were presented. Here we recall the generic al-
gorithm using a slightly different description and show how
it can be instantiated to apply IωC, EIωC, and maxR3WC
(Figure 4). Similar algorithms can be used to apply rPIC
(see [2]) and r(1, 3)C. The presentation of these algorithms
is omitted because of limited space. Algorithms for NIC
and rNIC in general require search, as the neighborhood of
a variable can be very large.

Algorithm InvCons takes as input a (non-binary) CSP
P and a specified inverse consistencyIC, and enforcesIC
on P. InvCons uses a listQ of constraints to propagate
value deletions, and works as follows. Initially, all con-
straints are added toQ. Then constraints are sequentially
removed fromQ and the domains of the variables involved
in these constraints are revised. For each such constraint
cj and variablexi, the revision is performed using func-
tion Revise(xi,cj,IC). If after the revision the domain
of xi becomes empty then the algorithm detects the incon-
sistency and terminates. Otherwise, if the domain ofxi is
pruned then each constraintck involving xi and each con-
straint intersecting withck will be put inQ. Note that in the
case of maxRPWC the intersection must be on more than
one variable. IfQ becomes empty, the algorithm terminates
having successfully enforcedIC onP.

In function Revise, for each valuea in D(xi), we
first look for a GAC-support inrel(cj) (line 3). Fol-
lowing GAC2001/3.1 [1], for each constraintcj and each
a ∈ D(xi), where xi ∈ var(cj), we keep a pointer
lastGACxi,a,cj

(initialized to the first tuple inrel(cj)).
This is now the most recently discovered tuple inrel(cj)
that GAC-supports(xi, a) and, depending onIC, has some
extra property. For instance, ifIC is maxRPWC (resp.
IωC) then lastGACxi,a,cj

must have PW-supports (resp.
ω-supports) in all constraints that intersect withcj . If
lastGACxi,a,cj

is valid then we know thata is GAC-
supported. Otherwise, we look for a new GAC-support
starting from the tuple immediately afterlastGACxi,a,cj

in the lexicographic order. IflastGACxi,a,cj
is valid or a

new GAC-support is found then functionSeek Support
is called to check if this GAC-support (tupleτ) satisfies the
extra property ofIC.

The implementation ofSeek Support depends on the
consistency being enforced. For maxRPWC, IωC, and
EIωC,Seek Support iterates over each constraintck that
intersects withcjFor each such constraint it searches for
a tupleτ ′ that is a PW-support, IωC-support, or extended
IωC-support, respectively, ofτ . If such tuples are found for
all intersecting constraints thenSeek Support returns
TRUE andlastGACxi,a,cj

is updated. If noIC-support
τ ′ is found on some intersecting constraint, indicated by

function InvCons(P,IC)
1:put all constraints inQ;
2:while Q is not empty
3: pop constraintcj from Q;
4: for each variablexi ∈ var(cj)
5: if Revise(xi,cj,IC)> 0 then
6: if D(xi) is emptythen return INCONSISTENCY;
7: for eachck ∈ C s.t.xi ∈ var(ck)
8: put inQ eachcl ∈ C s.t. |var(cl) ∩ var(ck)| > 0;
9: putck in Q;
10:return CONSISTENCY;

function Revise(xi,cj ,IC)
1:for each valuea ∈ D(xi)
2: PW← FALSE;
3: for each validτ(∈ rel(cj)) ≥l lastGACxi,a,cj

, s.t.τ [xi] = a
4: if Seek Support(xi,cj ,τ ,IC) then
5: lastGACxi,a,cj

← τ ;
6: PW← TRUE;break;
7: if ¬PW then removea from D(xi);
8:return number of deleted values;

function Seek Support(xi,cj ,τ ,IωC)
1:for eachck ∈ C s.t. |var(cj) ∩ var(ck)| > 0
2: for eachτ ′(∈ rel(ck))
3: if τ ′ is valid and τ [var(cj) ∩ var(ck)] = τ ′[var(cj) ∩ var(ck)]
4: ωC← TRUE;
5: for eachcl ∈ C, s.t.var(cl) ⊆ var(cj) ∪ var(ck)
6: if (τ 1 τ ′)[var(cl)] /∈ rel(cl)
7: then ωC← FALSE; break;
8: if ωC then break;
9: if τ ′ = NIL then return FALSE;
10:return TRUE;

function Seek Support(xi,cj ,τ ,EIωC)
1:for eachck ∈ C s.t. |var(cj) ∩ var(ck)| > 0
2: for eachτ ′(∈ rel(ck))
3: if τ ′ is valid and τ [var(cj) ∩ var(ck)] = τ ′[var(cj) ∩ var(ck)]
4: EωC← TRUE;
5: for eachcl ∈ C, s.t.

var(cj) ∩ var(cl) 6= ∅ ∧ var(ck) ∩ var(cl) 6= ∅
6: if Πvar(cl)∩(var(cj)∪var(ck))(τ 1 τ ′) /∈

Πvar(cl)∩(var(cj)∪var(ck))rel(cl)

or Πvar(cl)∩(var(cj)∪var(ck))

cannot be extended to a valid tuple inrel(cl)
7: then EωC← FALSE; break;
8: if EωC then break;
9: if τ ′ = NIL then return FALSE;
10:return TRUE;

function Seek Support(xi,cj ,τ ,maxR3WC)
1:for eachck ∈ C s.t. |var(cj) ∩ var(ck)| > 0
2: for each validτ ′(∈ rel(ck))

s.t. τ [var(cj) ∩ var(ck)] = τ ′[var(cj) ∩ var(ck)]
3: 3W← TRUE;
4: for eachcl ∈ C

s.t. |var(cj) ∩ var(cl)| > 0 ∨ |var(ck) ∩ var(cl)| > 0
5: if ∄ valid τ ′′(∈ rel(cl)) such that

τ [var(cj) ∩ var(cl)] = τ ′′[var(cj) ∩ var(cl)] and
τ ′[var(ck) ∩ var(cl)] = τ ′′[var(ck) ∩ var(cl)]

6: then 3W← FALSE; break;
7: if 3W then break;
8: if τ ′ = NIL then return FALSE;
9:return TRUE;

Figure 4. A generic algorithm for inverse con-
sistencies and its instantiations.

τ ′ becomingNIL, thenSeek Support returns FALSE
and the algorithm looks for a new GAC-support in function
Revise. If no GAC-support that satisfies the property of
IC is found,a is removed fromD(xi).

In the case of maxR3WC,Seek Support iterates over
each constraintck that intersects withcj and searches for
a PW-support ofτ in rel(ck). If such a tupleτ ′ is found,
the algorithm iterates over each constraintcl that intersects
with cj or ck (or both) and searches for a tupleτ ′′ ∈ rel(cl)
that is a PW-support of bothτ and τ ′. In casecl does
not intersect withcj (resp. ck) then obviously any valid
τ ′′ ∈ rel(cl) is a PW-support ofτ (resp.τ ′). If such a pair
of tuples is found for all pairs of constraintsck andcl then
Seek Support returns TRUE andlastGACxi,a,cj

is up-
dated. OtherwiseSeek Support returns FALSE and a
new GAC-support is seeked in functionRevise.

5 Experimental Results
We compared IωC and EIωC to maxRPWC on random

problems. A more detailed comparison of all the consisten-
cies presented in Section 3 on random and real problems is
ongoing work. A random CSP is defined by the parameters
<n, d, k, p(e), q>, wheren is the number of variables,d the
uniform domain size,k the uniform arity of the constraints,
p the density of the problem (i.e. the ratio between thee

constraints and the number of possible constraints involving
k variables), andq the uniform looseness of the constraints
(i.e. the ratio between the number of allowed tuples anddk

- the maximum number of tuples in a constraint).
Figure 5 (top) shows average CPU times for

the three consistencies on 100 instances of class
<30, 20, 4, 0.001(27), q>. We show both the time
needed to enforce the consistencies and the time required to
solve the instances with an algorithm that maintains maxR-
PWC during search after they have been preprocessed by
each of the three consistencies (suffixs). The bottom figure
shows the average percentages of instances proved to be
inconsistent and values pruned by the three consistencies.
The value ofq is varied along the x-axis. Note that the
class of Figure 5 gives rise to problems where maintaining
maxRPWC is much more efficient than maintaining GAC.

IωC displays similar performance to maxRPWC in cpu
times, deletion percentage, and inconsistency detection.
This is not surprising given that this is a sparse class where
all constraints are 4-ary. As a result, for any pair of in-
tersecting constraintscj , ck there is seldom the case that
some other constraint exists which only involves variables
from var(cj) ∪ var(ck). EIωC detects many more incon-
sistent problems and deletes a higher percentage of values
(for q>0.004) than IωC and maxRPWC, albeit with a higher
cost. However, this preprocessing cost is negligible com-
pared to the cost of search, and as a result, the search al-
gorithm that uses EIωC preprocessing is more efficient than

10

100

1000

10000

100000

1e+006

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

cp
u

tim
e

(m
se

cs
)

constraint looseness (%)

maxRPWC s
IwC s

EIwC s
maxRPWC

IwC
EIwC

0

20

40

60

80

100

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016%
 d

el
et

ed
 v

al
ue

s
an

d
in

co
ns

is
te

nt
 p

ro
bl

em
s

constraint looseness (%)

maxRPWC d
IwC d

EIwC d
maxRPWC i

IwC i
EIwC i

Figure 5. Cpu times (top) and percentages
of deleted values (d suffix) and inconsistent
problems detected (i suffix) (bottom).

the others up to the value ofq where EIωC achieves a no-
table number of value deletions.

Table 1 gives results from problems of
class <50, 10, 4, 0.001(230), q> (1) and class
<100, 10, 4, 0.0001(392), q> (2). In each line we
give the number of inconsistent instances detected, the
average percentage of value deletions, and the cpu time (in
msecs). The first three lines in the table refer to class 1
and correspond to parameter settings such that maxRPWC
determines as inconsistent almost all, around half and only
a few of the instances. Accordingly for class 2 in the next
three lines. EIωC proves the inconsistency of all instances
and in some cases it runs up to one order of magnitude
faster than the other consistencies as it quickly wipes out
some domain. IωC proves the inconsistency of many
more instances than maxRPWC (especially in class 1) in
competitive run times.

6 Conclusion
Although domain filtering consistencies tend to be more

practical than consistencies that change the constraint re-

class maxRPWC IωC EIωC
inc-%del-time inc-%del-time inc-%del-time

1 96-28-583 99-26-275 100-7-48
1 45-15-561 90-27-441 100-10-90
1 8-3-295 53-17-470 100-13-231
2 95-24-888 95-23-813 100-10-70
2 48-14-1488 54-16-1251 100-13-302
2 9-3-412 18-5-535 100-15-674

Table 1. Average results over 100 instances
on two classes of random problems.

lations and the constraint graph, only few such consisten-
cies have been proposed for non-binary constraints. In this
paper, we performed a detailed study of several strong in-
verse consistencies for non-binary constraints. All these
consistencies are stronger than GAC, the consistency that is
predominantly used by current constraint solvers, and most
are stronger than maxRPWC. Preliminary experimental re-
sults demonstrated the potential of these strong consisten-
cies. However, further empirical studies are necessary.

References

[1] C. Bessìere, J. Ŕegin, R. Yap, and Y. Zhang. An Optimal
Coarse-grained Arc Consistency Algorithm.Artificial Intel-
ligence, 165(2):165–185, 2005.

[2] C. Bessìere, K. Stergiou, and T. Walsh. Domain filtering
Consistencies for Non-binary Constraints.To appear in Ar-
tificial Intelligence, 2007.

[3] R. Debruyne and C. Bessière. Domain Filtering Consisten-
cies.JAIR, 14:205–230, 2001.

[4] E. Freuder. A Sufficient Condition for Backtrack-bounded
Search.JACM, 32(4):755–761, 1985.

[5] E. Freuder and C. Elfe. Neighborhood Inverse Consistency
Preprocessing. InAAAI’96, pages 202–208, 1996.

[6] M. Gyssens. On the complexity of join dependencies.ACM
Trans. Database Syst., 11(1):81–108, 1986.

[7] P. Janssen, P. Jégou, B. Nouguier, and M. Vilarem. A fil-
tering process for general constraint satisfaction problems:
Achieving pairwise consistency using an associated binary
representation. InProceedings of IEEE Workshop on Tools
for Artificial Intelligence, pages 420–427, 1989.

[8] P. J́egou. On the Consistency of General Constraint Satisfac-
tion Problems. InAAAI’93, pages 114–119, 1993.

[9] S. Nagarajan, S. Goodwin, and A. Sattar. Extending Dual
Arc Consistency.International Journal of Pattern Recogni-
tion and Artificial Intelligence, 17(5):781–815, 2003.

[10] K. Stergiou and T. Walsh. Inverse Consistencies for Non-
binary Constraints. InECAI-2006, pages 153–157, 2006.

[11] P. van Beek and R. Dechter. On the Minimality and Global
Consistency of Row-convex Constraint Networks.JACM,
42(3):543–561, 1995.

[12] G. Verfaillie, D. Martinez, and C. Bessière. A Generic Cus-
tomizable Framework for Inverse Local Consistency. InPro-
ceedings of AAAI’99, pages 169–174, 1999.

