Strong Inverse Consistencies for Non-binary CSPs

Kostas Stergiou
Department of Information and Communication Systems Ergging
University of the Aegean, Samos, Greece
email: konsterg@aegean.gr

Abstract [7], hypersn-consistency [8], relational consistency [11],
and w-consistency [9]. However, these consistencies are
Domain filtering local consistencies, such as inverse rarely used in practice, mainly because they have a high

consistencies, that only delete values and do not add newspace complexity.
constraints are particularly useful in Constraint Program Very recently, three domain filtering consistencies for
ming. Although many such consistencies for binary con- non-binary CSPs were introduced and evaluated theoreti-
straints have been proposed and evaluated, the situationcally and empirically. These are relational path inverse co
with non-binary constraints is quite different. Only very sistency (rPIC), restricted pairwise consistency (RPWC),
recently have domain filtering consistencies stronger than and max restricted pairwise consistency (maxRPW),
GAC started to attract interest. Following this line of re- 2]. All these are stronger than GAC and display promis-
search, we define a number of strong inverse consisten-ing performance on certain non-binary problems. Contin-
cies for non-binary constraints and compare their pruning uing along the same lines of work, we propose a number
power. We show that three of these consistencies are equivaef strong inverse consistencies for non-binary constsaint
lent to maxRPC in binary CSPs while another is equivalent and study them theoretically and empirically. These are re-
to PIC. We also describe a generic algorithm for inverse lational (1, 3)-consistency, relational neighborhood inverse
consistencies in non-binary CSPs and show how it can beconsistency, inverse- consistency, extended inverse
instantiated to enforce some of the proposed consistenciesconsistency, and max restricted 3-wise consistency. To de-
Finally, we make a preliminary empirical study that demon- rive these consistencies we are mainly inspired by known
strates the potential of strong inverse consistencies. relation-filtering consistencies for non-binary problerirs

our theoretical study we compare the pruning power of

these consistencies, most of which are stronger than maxR-
1 Introduction PWC, and show what they correspond to when restricted
to binary constraints. We also describe an algorithm that

- . : .~ can be used to apply the proposed consistencies. Finally we
the exploitation of local consistency techniques to prume i . o .
consistent values from the domains of variables and thus® < preliminary experimental results that demonstraee th

avoid fruitless exploration of the search tree. The most potential of strong inverse consistencies.
widely studied and used local consistency is generalized
arc consistency (GAC). It is widely accepted that “rela- 2 Background

tion fllte_rmg COES'StiﬂC'eS Wht'Ch_ ?lt?r t?efstructuretmét th A Constraint Satisfaction ProbleftCSP) P is defined
constraint graph or the constraints’ relations (e.g. pa as a tuple(X, D, C) where: X = {1, ..., 2.} is a finite

copsstency)_ tend. to be_ less practical than “domain fil- set ofn variables,D = {D(z1),..., D(z,)} is a set of
tering” consistencies which only remove values from the domains, and” — {c1 c.} is a set ofe constraints

. ; , = {c1,..-,¢Ce >)
domains of the variables. As a result, many strong do- For each variable;; € X, D(z;) is the finite domain of

main flltednng :j:on3|s|te:1c:jes fgr binary colnstralnts ha\ﬂsr;)e ._its possible values. Each constrainte C' is defined as a
proposed and evaluated. For example, inverse an S'n'pair (var(c;), rel(ci)), wherevar(c;) = {xj,,..., 2}, } is

gleton consistencies [5, 3, 12]. In contrast, little work an ordered subset df called thescopeof ¢;, andrel(c:) is

had been done on such consistencies for non-binary coN-, cubset of th€artesianproductD (z;,)x. . . xD(z;,) that

sf[ramts until very recently, whereas a number Of_ co_ns+s_ten specifies the allowed combinations of values for the vari-
cies that are stronger than GAC, but not domain filtering,

have been developed. For example, pairwise consistency maxRPWC was called pairwise inverse consistency in [10].

One of the great strengths of Constraint Programming is

ables invar(c;). Each tupler € rel(c;) is an ordered list ~ and variablez; constrained withz;, there exists a value
of values(as, ..., a). Atupleisvalidiff none of the values b € D(z;) that is an AC-support ofz;, a) and this pair of

in the tuple has been removed from the domain of the cor-values is path consistent (i.e. it can be consistently eleen
responding variable. A constraint can be either defined to any third variable). A problem isiversem-consistentff
extensionallyby explicitly giving relationrel(c;), or (usu- itis (1, m) consistent. A problem iseighborhood inverse
ally) intensionallyby implicitly specifyingrel(c;) through consistentNIC) iff any consistent instantiation of a vari-
a predicate or arithmetic function. For any two constraints ablez; can be extended to a consistent instantiation of all
¢; andc;, the set of variables that are involved in both con- the variables ir;'s neighborhood. A problen® is single-
straints is denoted byar(c;) N var(c;). If this setis not ton arc consisten(SAC) [3] iff it has non-empty domains

empty, the constrainistersect and for any instantiatiofiz;,) of a variablex; € X, the

The assignment of value to variablez; is denoted by resulting subproblem can be made AC.
(z3,a). Any tupler = (a1,...,a;) can be viewed as a set Some local consistencies for binary CSPs can be easily
of value to variable assignmenfgx1,a1),..., (z,ax)}. extended to non-binary problems. For example, SAC has

In this way, an assignment of values to a set of variablespeen extended to SGAC. However, for other consistencies
X' C X is a tuple overX’. The set of variables over (e.g. PIC and maxRPC) this extension is not straightfor-
which a tupler is defined isvar(r). For any subset ward. In the case of NIC there are two alternative exten-
var’ of var(r), T[var'] is the sub-tuple of that includes sjons to non-binary constraints. To determine if a value
only assignments to the variables éar’. A tuple 7 is 4 e D(x;) is NIC, we can consider the subproblem con-

consistentiff it is valid and for all constraints;;, where sisting of the set of variablescigh(z;) = {x;,,...,z;, }

var(c;) C var(r), Tlvar(c;)] € rel(c;). A solutionto a involved in a constraint witlr; and the constraints that only

CSP(X, D, C) is a consistent tuple assigning all variables include variables fromeigh(z;). Alternatively, we can

in X. consider the subproblem consisting of variablesgh(z;)
Avaluea € D(z;) is consistent with a constraiaf, and all the constraints that include any of these variables

wherexz; € var(c;), iff 37 € rel(c;) such thatr[z;] = a (and possibly other variables as well). In the rest of this

andr is valid. In this case, we say thatis a GAC-support paper we follow the first definition of NIC for non-binary
of (z;,a) in ¢;. A constraintc; is Generalized Arc Consis- constraints.

tent(GAC) iff V.z; € var(c;), ¥V a € D(x;), there exists a A problem isrelationally arc consistengrel AC) iff any
GAC-support fora in ¢;. A problem is GAC iff there isno consistent instantiation for all but one of the variables in
empty domain inD and all the constraints i6" are GAC. 3 constraint can be extended to the final variable so as to
In binary CSPs, GAC is referred taeac consistencyAC). satisfy the constraint [11]. A problem islationally path-

Since the allowed tuples of constraints are defined as reonsistentrel PC) iff any consistent instantiation for all but
lations, standard relational operators can be usedpite gne of the variables in a pair of constraints can be extended

jectionIT,,, 7 of atupler € rel(c;) onvar’ isthe subtuple g the final variable so as to satisfy both constraints. A prob

7[var']. Accordingly, the projection of a constraiaton a e isrelationally m-consistentff any consistent instanti-
set of variablesiar’, wherevar’ C wvar(c;) is @ new con- aion for all but one of the variables in a setsof distinct
straintc’ wherevar (') = var’ andrel(c') = Iy, rel(c;). constraints can be extended to the final variable so as to
Thejoin of two constraints; andc; is a new constraint, de- satisfy allm constraints. A problem igelationally (i, m)-
noted byc; X ¢;, wherevar(c; X ¢;) = var(c;) Uvar(c;) consisteniff any consistent instantiation far of the vari-
andrel(c; X ¢;) = rel(c;) M rel(c;). ables in a set ofn constraints can be extended to all the
_) variables in the set.

2.1 Local Consistencies A non-binary problem ipairwise consisterPWC) [8])

We now briefly review the most common local consis- iff it has non-empty relations and any consistent tuple in a
tencies for binary and non-binary CSPs. constraintc; can be consistently extended to any other con-

A binary problem ig(i, j) consistentff it has non-empty straint [7]. PWC has _been generalized<twi§e cor_lsistency
domains and any consistent instantiatiori eriables can [6] andhyperm-consistency8]. A problem isk-wise con-

be extended to a consistent instantiation involvjngddi- Sistentiff any consistent tuple for a constraint can be isens
tional variables [4]. A problem istrong(, j)-consistentff tently extended to any — 1 other constraints. A problem is
itis (k,) consistent for alk < 4. A problem isarc con- hyperm-consistent iff any consistent combination of tuples

sistent(AC) iff itis (1, 1)-consistent. A problem is (strong) ~for m-1 constraints can be consistently extended toraty
path consisten(PC) iff it is (strong) (2, 1)-consistent. A constraint.

problem ispath inverse consister{PIC) iff it is (1,2)- A problem isw-consistentff any tuple in a constraint;
consistent [5]. A problem isax restricted path consistent can be consistently extended to any other constrgiand
(maxRPC)iffitis (1,1)-consistent and for each valug, a) to all constraints;, such thavar(ci) C var(c;) Uvar(c;)

[9]. A problem isgeneralized dual arc consisteiit any
tuple in a constraint; can be consistently extended to any
other constraint; and satisfy all constraints, such that
var(ck) N (var(c;) Uvar(c;)) # 019].

Following [3], a consistency property is stronger than
B iff in any problem in whichA holds thenB holds, and
strictly stronger (writtemd — B) iff it is stronger and there
is at least one problem in whicB holds butA does not. A
local consistency property is incomparable wittB (writ-
ten A ® B) iff A is not stronger tharB nor vice versa.
Finally, a local consistency property is equivalent toB
(written A — B) iff A is stronger tharB and vice versa.
Note that relationships> and« are transitive.

3 New Inverse Consistencies

In practice, most of the strong local consistency tech-
niques discussed in the previous section have prohibitive

rel(ci). Apart from rPIC we can consider other, stronger,
inverse relational consistencies. We now define relational
(1, 3)-consistency (derived from [11]) and relational NIC.

Definition 3.2 [11] A valuea € D(z;) is relational (1, 3)-
Consistent(r(1, 3)C) iff Ve; € C, wherex; € var(cy),
and for each pair of constraints,c¢; € C, there exists
a GAC-supportr of (z;,a) in rel(c;) and valid tuples
7' € rel(ey), 7" € rel(q) s.t. tlvar(cj) Nvar(cy)] =
7' [var(c;)Nvar(c)], Tlvar(c;)Nvar(e)] = 7"[var(c;)N
var(cp)], 7' var(ck) Nwvar(c)] = 7" war(ck) Nvar(c)].

If r(1,3)C is applied on a variable; it will remove any
valuea € D(z;) such that for some constraiat wherex;
participates, no GAC-support ¢f;,a) can be extended to
valid tuples in some pair of extra constraints.

Definition 3.3 A value ¢ € D(x;) is relational Neigh-
borhood Inverse ConsisteritNIC) iff Vc; € C, where

space and time complexities. Freuder proposed inverse con@; € var(c;), there exists a GAC-supportof (z;,a) in
sistencies as a way to overcome the space problem [5]. Suchrel(c;) that can be extended to a solution of the subprob-
consistencies require limited space as they only prune do-em consisting of the set of variables; = {var(c;) U

mains. When an inverse local consistency is enforced, it
removes from the domain of a variable the values that can-
not be consistently extended to some additional variables.
Until the very recent introduction of rPIC, RPWC, and
maxRPWC, the study of inverse consistencies had been re
stricted to binary constraints. Experimental results demo
strated that applying maxRPWC, which is the strongest
among the three consistencies, is more efficient than apply
ing the other consistencies [10, 2]. We will now define a
number of new inverse consistencies for non-binary prob-
lems. These are all strictly stronger than GAC. That is, if
applied, they will remove any value that is not GAC. Also,
each consistency may remove some additional values ac
cording to the property it enforces. For any consistdnCy
we say that a variable; is | Ciff any valuea € D(z;)
is | C. A CSP isl Ciff there is no empty domain and all
variables ard C. The following definitions specify when
a value isl C for a number of different inverse consisten-
cies. For completeness we include the definitions of rPIC
and maxRPWC.

Definition 3.1 [11, 10] A valuea € D(z;) is relational
Path Inverse ConsisterftPIC) iff Vc¢; € C, wherex; €
var(c;), and for eaclr, € C, there exists a GAC-support
T of (z;,a) in rel(c;) and a valid tupler’ € rel(ci) such
thatr[var(c;) Nvar(cy)] = 7' [var(c;) Nvar(c)].

If rPIC is applied on a variable; it will remove any
valuea € D(z;) such that for some constraiat wherex;
participates, no GAC-support ¢f;, a) can be extended to
a valid tuple in some other constraintthat intersects with
c;. Note that if the two constraints do not intersect then any
valid tuple inrel(c;) can be extended to any valid tuple in

var(cj,)U...Uvar(cj,,)}, wherec;,, ...
straints that intersect withy.

,¢;,, are the con-

If rNIC is applied on a variable:; it will remove any
valuea € D(z;) such that for some constraiat wherex;
participates, no GAC-support ¢f;,a) can be extended to
a consistent instantiation of all variables involved in aco
straint that intersects witty so that all constraints between

these variables are satisfied.

Definition 3.4 [10, 2] A valuea € D(z;) is max Restricted
Pairwise ConsistenfmaxRPWC) iffVc; € C, wherez; €
var(c;), there exists a GAC-supportof (z;,a) in rel(c;)
s.t. Ve, € C, there exists a PW-support of 7 in rel(cy).
Atupler’ is a PW-support of iff itis valid and 7 [var(c;)N
var(c)] = 7' [var(c;) Nvar(cy)).

If maxRPWC is applied on a variable it will remove
any valuex € D(z;) such that for some constraifit where
x; participates, no GAC-support ¢f;, a) can be extended
to a valid tuple in every other constraint (intersectinp

Definition 3.5 A valuea € D(z;) is inversew-consistent
(lwC)iff Vc; € C, wherez; € var(c;), there exists a GAC-
supportr of (z;,a) in rel(c;) s.t. Vei, € C, there exists an
w-supportr’ of 7 in rel(cg). Atupler’ is anw-support of
7 iff it is a PW-support ofr andV¢; € C, wherevar(c¢;) C
var(c;) Uvar(cg), (1 X 7")[var(¢)] € rel(c).

If 1wC is applied on a variable; it will remove any value

a € D(z;) such that for some constraiat wherex; par-
ticipates, no GAC-support dfz;,a) can be extended to a
valid tuple in every constrainf, that intersects witk; and,

at the same time, satisfy all constraints defined on vargable
var(c;) Uvar(cg).

Definition 3.6 A valuea € D(z;) is extended inverse-
consisten(ElwC) iff Vc; € C, wherex; € var(c;), there
exists a GAC-support of (z;,a) in rel(c;) s.t. Ve, € C,
there exists an extendedsupportr’ of 7 in rel(cy). A tu-
ple 7’ is anextendedv-support ofr iff it is a PW-support
of 7 andVe, € C, wherevar(c;) N wvar(¢) # 0 and
var(ck) n var(cl) # 0, Hva'r(cl)ﬂ(var(cj)U?)ar(ck))(T X
') € Wyar(e)n(var(c,)uvar(er)) el (c1) and can be extended
to a valid tuple inrel(c;).

If ElwC is applied on a variable; it will remove any value

a € D(z;) such that for some constraiaf wherex; par-
ticipates, no GAC-support dfz;,a) can be extended to a
valid tuple in each constraimj, that intersects witle; and,

at the same time, satisfy all constraints that intersedt wit
both ¢c; and ¢,. The difference betweenwlC and EWC

is that the former considers a constraintonly if it in-
cludes variables amongur(c;) U var(ck), while the lat-

cl

eNe @)
C
2eX-
c3
c2: X2,x3,x4 x5

cl:x1,x2,x3
bon e
cl 2 c3 11 10

1 1
0 0

cl:x1,x2,x3,x4
0000

c2:x1,x2,x5

010
0
1

c3:x3,x5,x6
000

0
1

c4: x4,x5
01
10

11 11
20 11

0001
1100
2000

a)

¢3: x4,x5,x6
0 010
0 100
1

b)

Figure 1. Applying inverse consistencies on
non-binary problems.

Now consider the problem depicted in Figure 1b with
five 0-1 variables and one variables) with domain{0}.
Value 0 ofz; has tuple(0,0,0) as GAC-support im;. This
tuple can be extended to tup{6,0,0,0) in ¢; and there

ter also considers some constraints that include variables, o no constraints that intersect with bothandc,. There-

amonguar(c;) U var(cy) and other variables as well.

Definition 3.7 A value ¢ € D(z;) is max Restricted 3-
wise Consisten{maxR3WC) iff Ve; € C, wherex; €
var(c;), there exists a GAC-supportof (z;,a) in rel(c;)
s.t. Veg, ¢ € C there exist valid tuples’ € rel(c), 7" €
rel(c;) s.t. T[var(c;) Nvar(ck)] = 7' [var(c;) Nvar(c)],
Tvar(cj)Nvar(c)] = 7" [var(c;) Nvar(c)], ' [var(cy) N
var(c)] = 7" [var(ex) Nwar(c)].

If maxR3WC is applied on a variable; it will remove
any valuen € D(z;) such that for some constraifitwhere
x; participates, no GAC-support ¢f;, a) can be extended
to valid tuples in every pair of other constraints.

3.1 Theoretical Study
To clarify the above definitions, we first give an example

fore (z1,0) is ElwC. However, the GAC support of O can-
not be consistently extended to the pair of constraistss
since tupl€0, 0, 0, 0) of c2 has no PW-support ity. Hence,
(x1,0) is not maxR3WC (or (1, 3)C).

Theorem 3.1 On problems with non-binary constraints the
following relationships hold:

1) ElwC — lwC — maxRPWGC- rPIC

2) maxR3WG-~ maxRPWC and &l ® maxR3WG» 1wC

3) r(1,3)C is incomparable to maxRPWGC,C, ElwC, and
maxR3WG- r(1,3)C — rPIC

4) NIC is incomparable to rPIC,(i, 3)C, maxRPWCuC,
ElwC, maxR3WC and rNIG- NIC

5) rNIC — ElwC and maxR3W®& rNIC ® r(1, 3)C

Proof:
1) By definition, the “stronger than” relationship holds

that demonstrates which values are deleted by the applicabetween maxR3WC, EiC, lwC, maxRPWC, and rPIC. To

tion of these consistencies.

Example 3.1 Figure 1a shows a problem with 6 variables
and 4 constraints with the given allowed tuples. All do-
mains are{0, 1} exceptD(z,) which is{0,1,2}. Assume

show maxR3WC— ElwC — lwC — maxRPWC, consider
the problems in Example 3.1. The relationship between
maxRPC and rPIC was proved in [10].

2) By definition, maxR3WC is stronger than maxRPWC.
For strictness consider the problem in Example 3.1b which

that we are trying to apply a given inverse consistency onis maxRPWC but not maxR3WC. To show that maxR3WC

variablex,. All values ofx; are GAC as they are GAC-
supported in botfe; andc,. Value 0 is not rPIC (and thus
not maxRPWC) as none of its GAC-supportscincan be

consistently extended 6. Values 1 and 2 are maxRPWC

is incomparable to RIC and WC first consider the same
problem which is ELC (and lC). Now consider the prob-
lem of Figure 2a with 5 0-1 variables. This is maxR3WC
but not LC.

as their GAC supports take the same values in the variables 3) To show that (1, 3)C is incomparable to EIC, IwC

shared by, andc,. But value 1 is notdC as its GAC sup-
ports inc; andcy, do not satisfy constrainty. Value 2 is
lwC butitis not ELC as its GAC-supports satiséy but do
not satisfy constraint;. No value ofz; is rNIC as in this
problem where; intersects with all other constraints, rNIC
requires that these values participate in a solution.

and maxRPWC, it suffices to show thdilf3)C can be
stronger than E/C and weaker than maxRPWC. First con-
sider the second problem in Example 3.1. This problem
is ElwC but it is not (1,3)C. Now consider the problem
in Figure 2b with 6 variables and 4 constraints intersecting
on variablesr, andzs. Value 0 ofz, is r(1,3)C but it is

cl:x1,x2,x3 ¢2:x1,x4,x5 ¢3:x2,x4 c4:x3,x5

000 000 00 01
011 011 11 10
a)

cl:{x1,x2,x3} €2:{x2,x3,x4}

000 00O
001 010
00 2
c3:{x2,x3,x5} c4:{x2,x3,x6} . . .)
000 010 Figure 3. Relationships between inverse con-
020 020

sistencies for non-binary CSPs.

Figure 2. A problem that is maxR3WC but not .)
lwC (a). A problem that is r (1,3)C but not with ¢;. Therefore;r can be extended to any constraipt

maxRPWC (b). intersecting withc; s.t. all constraints that intersect with
both ¢; andc;, are satisfied. Hence, the problem isvElL
To show strictness, consider again the binary problem with
a clique of six variables. This is EC but not rNIC.O
not maxRPWC. By definition, maxR3WC is stronger than Figure 3 summarizes the relationships between the vari-

r(1,3)C. To show strictness consider the example of Fig- ous consistencies. For clarity, some relationships aré-omi
ure 2 where value 0 af; is r(1, 3)C butitis not maxR3WC. teq.

By definition, (1, 3)C is stronger than rPIC. To show strict-
ness consider the second problem in Example 3.1. This
problem is rPIC but it is not(d, 3)C. o) .
4) To prove that NIC is incomparable to rPIC, maxR- A natural question is what the aforementioned inverse con-
PWC, LC, ElC, and maxR3WC it suffices to show that sistencies correspond to in binary CSPs. In [10] it was

NIC can be weaker than rPIC and stronger than maxR3wc.Shown that rPIC and maxRPWC are equivalent to GAC
To show the former, consider a problem with two con- when all constraints intersect on at most one variable. If we

straintscy, co, Wherevar(c;) = {1, 2, 3} andrel(c;) = assume that multiple constr.air)ts on the same vgriables are
{(0,0,0), (1,1,0), (0,1,1)}, var(cs) = {a1,zs,24} and combmed into one, then 'thIS is the case with binary con-
rel(c;) = {(0,0,0),(1,1,0),(1,0,1)}. This problem is straints. Therefore, in binary problems rPIC gnd maxR-
NIC but it is not rPIC. To show the latter, consider a clique PWC reduce to AC. We show that when restricted to bi-
of six variables where all constraints are bingtycon- Nary constraints, maxR3WG,C and ELC are equivalent
straints and all domains a0, ...,4}. This problem is @ MaxRPC while (1, 3)C is equivalent to PIC.
_mz_axRBWC but not NIC. The same examples prove that NIC Theorem 3.2 On binary CSPs we have maxR3WG
is incomparable to(t, 3)C.) . ElwC < lwC < maxRPC and(1, 3)C < PIC.

To prove that rNIC— NIC consider a problem that is
rNIC. Any assignment of a variable; has a GAC-support Proof: To show lC «+ maxRPC it suffices to show that if a
7 in each constraint; which involvesz; that can be consis- value is deleted by maxRPC then it is also deleted.s®, |
tently extended to all variables involved in constraintgiin and vice versa. Consider a valuec z; that is removed
secting withe;. Therefore,r can be consistently extended by maxRPC. Value is removed because it is either not AC
to all variables involved in a constraint with), as these con- or because there exists a variabige constrained withe;
straints intersect (on at leas{) with c;. Hence, the problem for which there is no valué € D(xz;) such that the pair
is NIC. To show strictness, consider the previous example.< a,b > is path consistent. In the former casewill be
This is NIC but not rNIC. removed by &C since LC is stronger than GAC (i.e. AC

5) To prove that rNIC is incomparable to maxR3WC in binary CSPs). In the latter case, take any AC-support
and (1, 3)C first consider again the binary problem with b € D(z;) of (z;,a). Since the paik a,b > is not path
a clique of six variables. This is maxR3WC but not rNIC. consistent there must be a variablesuch that no value in
Now consider the second problem in Example 3.1. This is D(x;) is compatible with botl{z;, a) and(x;,b). Assume

3.1.1 Binary Constraints

rNIC but not (1, 3)C. thatc is the constraint betweery andz; and¢’ is the con-
To prove rNIC— ElwC consider a problem that is rNIC. straint betweemn:; andz;. We cannot find AC-supports for
Any assignment of a variable; has a GAC-support in ain D(z;) andD(z;) so that these supports satisfy the con-

each constraint; which involvesz; that can be consistently straints orwar(c) U var(c’), i.e. the constraint between
extended to all variables involved in constraints intetiggc andz;. Hence, value is not wC.

Now consider a value € D(z;) that is deleted byuC.

If a is deleted because it is not AC then maxRPC will ob-
viously delete it. Otherwise, there must be a constraint
involving z; and a variable:; such that no AC-support of
(x;,a) in D(z;) can be consistently extended to any con-
straint ¢’ that intersects withe so that the constraints on
var(c)Uvar(c') are satisfied. Take such a constrairand,
without loss of generality, assume thatr(c') = {z;, z;}.

As we only have binary constraints, the only other con-
straint that can exist among variables-(¢) Uvar(c’) is the
one between:; andz;. Value (z;,a) cannot be be consis-
tently extended ta:; andx; so that all constraints between
the three variables are satisfied. Hences not maxRPC.

We now show that in binary problems &C and
maxR3WC are equivalent tawC. Assume that a binary
problem is WC. Then any assignmeit;, a) can be con-
sistently extended to any constrainthat includese; and
any other constraint’ that intersects witl so that all con-
straints between variablasur(c) U var(c¢') are satisfied.
Since there is no constraint that intersects with bo#nd

GAC-3 based algorithm for inverse consistencies in non-
binary CSPs was given in [10] and [2]. Also, instantiations
of this algorithm that can be used to apply maxRPWC, rPIC
and RPWC were presented. Here we recall the generic al-
gorithm using a slightly different description and show how
it can be instantiated to applwC, ElwC, and maxR3WC
(Figure 4). Similar algorithms can be used to apply rPIC
(see [2]) and (1, 3)C. The presentation of these algorithms
is omitted because of limited space. Algorithms for NIC
and rNIC in general require search, as the neighborhood of
a variable can be very large.

Algorithm | nvCons takes as input a (non-binary) CSP
P and a specified inverse consistenidy, and enforce$ C
on P. I nvCons uses a listp of constraints to propagate
value deletions, and works as follows. Initially, all con-
straints are added tQ. Then constraints are sequentially
removed from) and the domains of the variables involved
in these constraints are revised. For each such constraint
c; and variablex;, the revision is performed using func-
tion Revi se(z;, ¢j, | O) . If after the revision the domain

¢’ and includes additional variables (as all constraints areof »; becomes empty then the algorithm detects the incon-

binary), (z;, a) is also EWC. Now consider any third con-
straintc”. If this intersects with botle and ¢’ then, since
(z;,a) is lwC, there exists an AC-support of;, a) in c that
can be consistently extended to betrandc”. If ¢’ inter-
sects only with one aof,¢’ (sayc’) then any valid tuple of’
can be consistently extendeddbsince the problem isdC,
and hence AC. Therefore, in any cage,, a) is maxR3WC.
We now show that(d, 3)C is equivalent to PIC. Consider
avaluea € D(x;) thatis removed by PIC. Itis removed ei-

ther because it is not AC or because it cannot be extended t

some pair of variables; andz; so that the constraints be-
tween all three variables are satisfied. In the former case,
will be removed by (1, 3)C since (1, 3)C is stronger than
GAC. In the latter case no AC-support®fn D(z;) can be
consistently extended to a value i(z;) so that the con-
straint between:; andz; is satisfied. Hence, valueis not
r(1,3)C. Now consider a value € D(z;) that is deleted by
r(1,3)C. There must be a constraininvolving z; and some
other variablex; such that no AC-support af in D(x;)
can be consistently extended to some pair of constraints
andc”. There are two cases depending on whether the thre
constraints form a triangle (i.e. they are the three comtsra
involving x;, «; and a third variable;). If they do not form

a triangle theru is removed because it is not AC, in which
case PIC will also remove it. If the constraints form a tri-
angle theru cannot be be consistently extendedctoand

a third variabler; so that all constraints between the three
variables are satisfied. Heneeis not PIC.O

4 An Algorithm for Inverse Consistencies
A generic AC-7 based algorithm for inverse local con-

(0]

sistency and terminates. Otherwise, if the domain:ois
pruned then each constraint involving x; and each con-
straint intersecting witla,. will be putin@. Note that in the
case of maxRPWC the intersection must be on more than
one variable. I{) becomes empty, the algorithm terminates
having successfully enforceédC on P.

In function Revi se, for each values in D(z;), we
first look for a GAC-support inrel(c;) (line 3). Fol-
lowing GAC2001/3.1 [1], for each constraint and each
a € D(z;), wherez; € wvar(c;), we keep a pointer
lastGACy, q., (initialized to the first tuple inrel(c;)).
This is now the most recently discovered tuplerii(c;)
that GAC-supportéz;, a) and, depending om C, has some
extra property. For instance, ifC is maxRPWC (resp.
lwC) thenlastGAC,, .., must have PW-supports (resp.
w-supports) in all constraints that intersect with If
lastGACy, a.c; is valid then we know that is GAC-
supported. Otherwise, we look for a new GAC-support
starting from the tuple immediately aftéistGAC,, 4.,
in the lexicographic order. WfastGAC,, 4 ., is valid or a

Chew GAC-support is found then functi®eek _Suppor t

is called to check if this GAC-support (tuptg satisfies the
extra property of C.

The implementation oBeek _Support depends on the
consistency being enforced. For maxRPWGC] and
ElwC, Seek _Suppor t iterates over each constraintthat
intersects withc;For each such constraint it searches for
a tupler’ that is a PW-supportIC-support, or extended
lwC-support, respectively, of. If such tuples are found for
all intersecting constraints the®eek _Support returns
TRUE andlastGAC,, .., is updated. If no C-support

sistencies in binary CSPs was proposed in [12]. A generic7’ is found on some intersecting constraint, indicated by

function I nvCons(P, |1 C

1:put all constraints i®;

2:while Q is not empty

3. pop constraint; from Q;

4: for each variabler; € var(c;)

5 if Revi se(z;, ¢;, 1 C) > 0then

6 if D(x;) is emptythen return INCONSISTENCY;

7: for eachey, € C's.t.z; € var(cy)

8: putin@ eache; € C s.t. |var(c;) Nvar(cg)| > 0;
9: putcg in Q;

10return CONSISTENCY;

function Revi se(z;,c;,IC)
1:for each valuer € D(z;)
2: PW<« FALSE;

3. for each validr(€ rel(c;j)) 2; lastGACy, a.c;, St.T[zi] = a

4 if Seek_Support (z;,c;,7,IC) then

5: lastGAC’mi’a’cj — T

6: PW— TRUE; break;

7. if -PWthenremovea from D(z;);

8:return number of deleted values;

function Seek _Support (z;,c;,7,IwC)

1for eachey, € C s.t.Jvar(c;) Nvar(c,)| > 0

for eachr’(€ rel(cy))

3 if 7/ is validand 7[var(c;) Nvar(cg)] = 7/ [var(c;) Nvar(ck)]
4 wC— TRUE;

5: for eache; € C, s.t.var(c;) C var(c;) Uvar(cy)

6: if (7™ 7")[var(c)] ¢ rel(c)
7:

8

9

1

then wC« FALSE; break;
if wC then break;
. if 7/ = NIL then return FALSE;
Oreturn TRUE;

function Seek_Support (z;,c;,7,ElwC)
1:for eachey, € C's.t. |var(cj) Nwar(ck)| > 0

2: for eachr’(€ rel(cy))
3: if 7/ is validand T[var(c;) Nwvar(cy)] = 7' [var(c;) Nvar(cy)]
4: EwC— TRUE;
5: for eachc; € C, s.t.
var(c;) Nvar(e) # 0 Avar(c,) Nvar(c;) # 0
6: if Hvar(q)ﬂ(vw'(c]-)U'um"(ck))(T N 7—/) ¢

Hvar(cl)ﬁ(va'r'((;j)Uva'r'(ck))Tel(Cl)
or Hvar(cl)ﬂ(var((:j)U'uar(ck))
cannot be extended to a valid tupleriei(c;)
7: then EwC+— FALSE; break;
8: if EwC then break;
9: if 7/ = NIL then return FALSE;
10return TRUE;

function Seek_Support (z;,c;,7,maxR3WC)
1:for eachey, € C's.t. |var(c;) Nwar(ck)| > 0
2: for eachvalidr’ (€ rel(ck))
s.t.7[var(c;) Nwar(cg)] = 7' [var(c;) Nvar(cy)]
3W«— TRUE;
for eachc; € C
s.t.|var(c;) Nwar(c)| > 0V |var(cx) Nvar(c)| >0
if Bvalid 7" (€ rel(c;)) such that
Tlvar(c;) Nvar(ce)] = 7"’ [var(c;) Nvar(c)] and
7' var(cg) Nwar(c;)] = 7/’ [var(cx) Nvar(c))
then 3W«— FALSE; break;
if 3W then break;
if 7/ = NIL then return FALSE;
return TRUE;

3:
4.

a

ey

Figure 4. A generic algorithm for inverse con-
sistencies and its instantiations.

7/ becomingNIL, thenSeek _Support returns FALSE
and the algorithm looks for a new GAC-support in function
Revi se. If no GAC-support that satisfies the property of
| Cis found,a is removed fromD(z;).

In the case of maxR3WGeek _Suppor t iterates over
each constraint;, that intersects witle; and searches for
a PW-support of in rel(cg). If such a tupler’ is found,
the algorithm iterates over each constrajnthat intersects
with ¢; or ¢, (or both) and searches for a tupté € rel(c;)
that is a PW-support of both and 7’. In casec¢; does
not intersect withe; (resp. c;) then obviously any valid
7" € rel(c;) is a PW-support of (resp.7’). If such a pair
of tuples is found for all pairs of constraintg and¢; then
Seek _Support returns TRUE andastGAC,, 4., is up-
dated. Otherwisé&eek _Support returns FALSE and a
new GAC-support is seeked in functi®evi se.

5 Experimental Results

We compareddC and ELC to maxRPWC on random
problems. A more detailed comparison of all the consisten-
cies presented in Section 3 on random and real problems is
ongoing work. A random CSP is defined by the parameters
<n,d, k,p(e), ¢>, wheren is the number of variabled,the
uniform domain sizek the uniform arity of the constraints,

p the density of the problem (i.e. the ratio between ¢he
constraints and the number of possible constraints inmglvi
k variables), and the uniform looseness of the constraints
(i.e. the ratio between the number of allowed tuples é@nd

- the maximum number of tuples in a constraint).

Figure 5 (top) shows average CPU times for
the three consistencies on 100 instances of class
<30, 20,4,0.001(27), ¢>. We show both the time
needed to enforce the consistencies and the time required to
solve the instances with an algorithm that maintains maxR-
PWC during search after they have been preprocessed by
each of the three consistencies (suffix The bottom figure
shows the average percentages of instances proved to be
inconsistent and values pruned by the three consistencies.
The value ofg is varied along the x-axis. Note that the
class of Figure 5 gives rise to problems where maintaining
maxRPWC is much more efficient than maintaining GAC.

lwC displays similar performance to maxRPWC in cpu
times, deletion percentage, and inconsistency detection.
This is not surprising given that this is a sparse class where
all constraints are 4-ary. As a result, for any pair of in-
tersecting constraints;, c;, there is seldom the case that
some other constraint exists which only involves variables
from var(c;) U var(ci). ElwC detects many more incon-
sistent problems and deletes a higher percentage of values
(for ¢>0.004) thand,C and maxRPWC, albeit with a higher
cost. However, this preprocessing cost is negligible com-
pared to the cost of search, and as a result, the search al-
gorithm that uses EIC preprocessing is more efficient than

164006 ‘ ‘ ‘ clasy maxRPWC lwC ElwC
maxRPWC s —— inc-%del-time| inc-%del-time| inc-%del-time
pes 1 | 96-28-583 | 99-26-275 | 100-7-48
100000 F 1 1 45-15-561 | 90-27-441 | 100-10-90
& 1 8-3-295 | 53-17-470 | 100-13-231
8 10000 I 1 2 05-24-888 | 95-23-813 | 100-10-70
E 2 48-14-1488 | 54-16-1251| 100-13-302
2 2 9-3-412 18-5-535 | 100-15-674
= 1000 E
>
5
100 | e] Table 1. Average results over 100 instances
on two classes of random problems.
10
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
constraint looseness (%)
2 100 — ‘ ‘ ‘ lations and the constraint graph, only few such consisten-
s N maxRPWed cies have been proposed for non-binary constraints. In this
S ol maxFEI;V\XICCdi B paper, we performed a detailed study of several strong in-
c v
£ i E:wgi verse consistencies for non-binary constraints. All these
B | \ WC | -
g ol v | consistencies are stronger than GAC, the consistencysthat i
2 [N predominantly used by current constraint solvers, and most
o \ » .. .
& a0l | are stronger than maxRPWC. Preliminary experimental re-
§ ‘ sults demonstrated the potential of these strong consisten
e 5] cies. However, further empirical studies are necessary.
3 Sl KB e oo
e 0 T —— e References
© 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

constraint looseness (%)

[1] C. Bessere, J. Rgin, R. Yap, and Y. Zhang. An Optimal
Figure 5. Cpu times (top) and percentages Coarse-grained Arc Consistency Algorithirtificial Intel-

: ; ; ligence 165(2):165-185, 2005.
of deleted values (d.sufﬁ.x) and inconsistent [2] C. Bessere, K. Stergiou, and T. Walsh. Domain filtering
problems detected (¢ suffix) (bottom).

Consistencies for Non-binary Constraini® appear in Ar-

tificial Intelligence 2007.
[3] R. Debruyne and C. Bessie. Domain Filtering Consisten-

] cies.JAIR 14:205-230, 2001.
the others up to the value gfwhere ELC achieves a no- [4] E. Freuder. A Sufficient Condition for Backtrack-bounded

table number of value deletions. SearchJACM, 32(4):755-761, 1985.
Table 1 gives results from problems of [5] E. Freuder and C. Elfe. Neighborhood Inverse Consistency

Preprocessing. IAAAI'96, pages 202—-208, 1996.
class <50,10,4,0.001(230),¢> (1) and class [6] M. Gyssens. On the complexity of join dependencit€M

<100,10,4,0.0001(392),¢> (2). In each line we Trans. Database Syst1(1):81-108, 1986.

give the number of inconsistent instances detected, the [7] P. Janssen, Pédou, B. Nouguier, and M. Vilarem. A fil-
average percentage of value deletions, and the cpu time (in tering process for general constraint satisfaction problems:
msecs). The first three lines in the table refer to class 1 Achieving pairwise consistency using an associated binary
and correspond to parameter settings such that maxRPWC fepresentation. liProceedings of IEEE Workshop on Tools
determines as inconsistent almost all, around half and only (o Erﬁgrgﬂ?%lnlleggﬂgﬁst%%%iso?é%}?r;i é?)?lZiraint Satisfac.
a few Qf the instances. Accqrdmgly for class 2 in the next tion Problems. IAAAI'93, pages 114-119, 1993.

three lines. ELC proves the inconsistency of all instances [9] S. Nagarajan, S. Goodwin, and A. Sattar. Extending Dual
and in some cases it runs up to one order of magnitude Arc Consistency.nternational Journal of Pattern Recogni-
faster than the other consistencies as it quickly wipes out tion and Artificial Intelligence17(5):781-815, 2003.

some domain. &C proves the inconsistency of many 10] K. Stergiou and T. Walsh. Inverse Consistencies for Non-

. : . . binary Constraints. lECAI-2006 pages 153-157, 2006.
more instances than maxRPWC (especially in class 1) in[11} p. van Beek and R. Dechter. On the Minimality and Giobal

competitive run times. Consistency of Row-convex Constraint Network3ACM,
42(3):543-561, 1995.
6 C lusi [12] G. Verfaillie, D. Martinez, and C. Bessie. A Generic Cus-
onclusion tomizable Framework for Inverse Local ConsistencyPio-
Although domain filtering consistencies tend to be more ceedings of AAAI'99ages 169-174, 1999.

practical than consistencies that change the constraint re

