
Heuristics for Dynamically Adapting Propagation
Kostas Stergiou1

Abstract.
Building adaptive constraint solvers is a major challenge in con-

straint programming. An important line of research towards this goal
is concerned with ways to dynamically adapt the level of local con-
sistency applied during search. A related problem that is receiving
a lot of attention is the design of adaptive branching heuristics. The
recently proposed adaptive variable ordering heuristics of Bousse-
mart et al. use information derived from domain wipeouts to iden-
tify highly activeconstraints and focus search on hard parts of the
problem resulting in important saves in search effort. In this paper
we show how information about domain wipeouts and value dele-
tions gathered during search can be exploited, not only to perform
variable selection, but also to dynamically adapt the level of con-
straint propagation achieved on the constraints of the problem. First
we demonstrate that when an adaptive heuristic is used, value dele-
tions and domain wipeouts caused by individual constraints largely
occur in clusters of consecutive or nearby constraint revisions. Based
on this observation, we develop a number of simple heuristics that al-
low us to dynamically switch between enforcing a weak, and cheap
local consistency, and a strong but more expensive one, depending
on the activity of individual constraints. As a case study we exper-
iment with binary problems using AC as the weak consistency and
maxRPC as the strong one. Results from various domains demon-
strate the usefulness of the proposed heuristics.

1 INTRODUCTION
Building adaptive constraint solvers is a major challenge in constraint
programming. One aspect of this goal is concerned with ways to dy-
namically adapt the level of local consistency applied on constraints
during search. Constraint solvers typically maintain (generalized) arc
consistency (G)AC, or a weaker consistency property like bounds
consistency, during search. Although many stronger local consisten-
cies have been proposed, their practical usage is limited as they are
mostly applied during preprocessing, if at all. The main obstacle is
the high time and in some cases space complexity of the algorithms
that can achieve these consistencies. This, coupled with the implicit
general assumption that constraints should be propagated with a pre-
determined local consistency throughout search, makes maintaining
strong consistencies an infeasible option, except for some specific
CSPs. One way to overcome the high complexity of maintaining
a strong consistency while retaining its benefits is to dynamically
evoke it during search only when certain conditions are met. There
have been some works along this line in the literature, mainly fo-
cusing on methods to switch between AC and weaker consisten-
cies [8, 10, 17, 14]. Here we consider methods to selectively apply
stronger local consistencies than AC during search.

1 Department of Information & Communication Systems Engineering Uni-
versity of the Aegean, Greece (konsterg@aegean.gr).

Recently, Boussemart et al. proposed two adaptiveconflict-driven
variable ordering heuristics for CSPs called wdeg and dom/wdeg [2].
These heuristics use information derived from conflicts, in the form
of domain wipeouts (DWOs), and stored as constraint weights to
guide search. These heuristics, and especially dom/wdeg, are among
the most efficient, if notthe most efficient, general-purpose heuris-
tics for CSPs. Grimes and Wallace proposed alternative conflict-
driven heuristics that consider value deletions as the basic propaga-
tion events associated with constraint weights [11]. The efficiency
of all the proposed conflict-directed heuristics is due to their abil-
ity to learn though conflicts encountered during search. As a result
they can guide search towards hard parts of the problem and identify
contentiousconstraints [11].

It has been recognized, for example in [14], that in many problems
only few of the constraint revisions that occur during search are fruit-
ful (i.e. delete values) while, as an extreme case, some constraints do
not cause any value deletions at all despite being revised many times.
Hence it would be desirable to apply a strong consistency only when
it is likely that it will prune many values and avoid using such a
consistency when the expected pruning is non-existent or very low.
Through weight recording, conflict-driven heuristics are able to iden-
tify highly active constraints and focus search on variables involved
in such constraints. Given that highly active constraints usually re-
side in hard parts of the problem, can one take advantage of this
information to adapt the level of constraint propagation accordingly?

In this paper we show how information about conflicts and value
deletions can be exploited, not only to perform variable selection,
but also to dynamically adapt the level of local consistency achieved
on the constraints of the problem. First we demonstrate that when a
conflict-driven heuristic is used on structured problems, constraint
activity during search is not uniformly distributed among the re-
visions of the constraints. On the contrary it is highly clustered
as value deletions and domain wipeouts caused by individual con-
straints largely occur in clusters of nearby revisions. Based on this
observation, we develop simple heuristics that allow us to dynami-
cally switch between enforcing a weak, and cheap local consistency,
and a strong but more expensive one. The proposed heuristics achieve
this by monitoring the activity of the constraints in the problem and
triggering a switch between different propagation methods on in-
dividual constraints once certain conditions are met. For example,
one of the heuristics works as follows. It applies a weak consistency
on each constraintc until a revision ofc results in a DWO. Then
it switches to a strong consistency and applies it onc for the next
few revisions. If no further weight update occurs during these revi-
sions, it switches back to a weaker consistency. As a case study we
experiment with binary problems using AC as the weak consistency
and maxRPC as the strong one. Experimental results from various
domains demonstrate the usefulness of the proposed heuristics.



2 BACKGROUND
A Constraint Satisfaction Problem(CSP) is a tuple(X, D, C)
where:X is a set ofn variables,D is a set of domains, one for
each variable, andC is a set ofe constraints. Each constraintc is
a pair (var(c), rel(c)), wherevar(c) = {x1, . . . , xk} is an or-
dered subset ofX, and rel(c) is a subset of theCartesianprod-
uct D(x1)x . . . xD(xk). In a binary CSP, a directed constraintc,
with var(c) = {xi, xj}, is arc consistent(AC) iff for every value
ai ∈ D(xi) there exists a valueaj ∈ D(xj) s.t. the 2-tuple
<(xi, ai), (xj , aj)> satisfiesc. In this case(xj , aj) is called an
AC-support of(xi, ai) on c. A problem is AC iff there is no empty
domain inD and all the constraints inC are AC. A directed con-
straint c, with var(c) = {xi, xj}, is max restricted path consis-
tent (maxRPC) iff it is AC and for each value(xi, ai) there ex-
ists a valueaj ∈ D(xj) that is an AC-support of(xi, ai) s.t. the
2-tuple <(xi, ai), (xj , aj)> is path consistent(PC) [5]. A tuple
<(xi, ai), (xj , aj)> is PC iff for any third variablexm there exists a
valueam ∈ D(xm) s.t.(xm, am) is an AC-support of both(xi, ai)
and(xj , aj). In this case we say that(xj , aj) is a maxRPC-support
of (xi, ai) on c.

The revisionof a constraintc, with var(c) = {xi, xj}, using a
local consistencyA is the process of checking whether the values
of xi verify the property ofA. We say that a revision isfruitful if
it deletes at least one value, while it isredundantif it achieves no
pruning. A DWO-revisionis one that causes a DWO. We will say
that a constraint isDWO-activeduring a run of a search algorithm if
it caused at least one DWO. Accordingly, we will call a constraint
deletion-activeif it deleted at least one value from a domain and
deletion-inactiveif it caused no pruning at all.

3 CONSTRAINT ACTIVITY DURING SEARCH
In many, mainly structured, problems some constraints do not cause
any DWOs or even are deletion-inactive during the run of a search al-
gorithm. For example, when solving the scen11 RLFA problem with
MAC+dom/wdeg, only 27 of the 4103 constraints in the problem
were DWO-active while 2182 were deletion-active. The activity of
the constraints in a problem depends on the structure of the prob-
lem since constraints in difficult local subproblems are more likely
to cause deletions and DWOs, especially if a heuristic like dom/wdeg
that can identify such subproblems is used. Due to the complex in-
teractions that may exist between constraints, the activity also de-
pends on the search algorithm, the propagation method, the variable
ordering heuristic, and on the order in which constraints are prop-
agated. For example, when solving scen11 with an algorithm that
maintains maxRPC (MmaxRPC) + dom/wdeg, 29 constraints were
DWO-active with 13 of these identified as DWO-active by both MAC
and MmaxRPC.

Importantly, many revisions of the constraints that are DWO-
active and deletion-active are redundant or achieve very little prun-
ing. Figure 1 demonstrates how DWOs (y-axis) caused by 4 sam-
ple constraints are detected as constraint revisions (x-axis) occur
throughout search. That is, each data point gives the weight of the
constraint at its i-th DWO-revision. The algorithm used is MAC +
dom/wdeg and the sample constraints are taken from three structured
and one random problem. As we can see, DWOs in structured prob-
lems form clusters of successive or very close calls to the revision
procedure, with the exception of a few outliers. The same pattern oc-
curs with respect to value deletions (not shown due to lack of space).
In contrast, DWOs in the random instance are distributed in a much
more uniform way along the line of revisions. Similar results were

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500

co
ns

tr
ai

nt
 w

ei
gh

t

constraint revisions

weight updates
0

10

20

30

40

50

60

0 100 200 300 400 500 600

co
ns

tr
ai

nt
 w

ei
gh

t

constraint revisions

weight updates

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400 1600 1800 2000

co
ns

tr
ai

nt
 w

ei
gh

t

constraint revisions

weight updates
0

20

40

60

80

100

120

140

160

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000

co
ns

tr
ai

nt
 w

ei
gh

t

constraint revisions

weight updates

Figure 1. DWOs caused by sample constraints from the RLFAP instance
scen11 (top left), the driver instance driver-08c (top right), the quasigroup

completion instance qcp15-120-0 (bottom left), and the forced random
instance frb35-17-0 (bottom right).

obtained when MmaxRPC was used in place of MAC. Note that in
the structured problems the percentage of DWO-revisions to total re-
visions is low. There were also many redundant revisions. For exam-
ple in the RLFAP instance the sample constraint, which was the most
active one in terms of DWOs caused, was revised 3386 times during
search, but only 407 of these revisions were fruitful, while only 265
were DWO-revisions.

To further investigate these observations we run theExpectation
Maximization(EM) clustering algorithm [7] on the data of Figure 1
(top left). This revealed 20 clusters of DWO-revisions with average
size of 13.25. The mean and median standard deviation (SD) for the
DWO-revisions (x-axis) across the clusters was 21.67 and 7.41 re-
spectively. The SD in a cluster is an important piece of information
as it represents the average distance of any member of the cluster
from the cluster’s centroid. That is, it is a measure of the cluster’s
density. The median SD over the 20 clusters is quite low which indi-
cates that DWO-revisions are closely grouped together. The mean is
higher because it is affected by the presence of outliers. That is, some
of the clusters formed by EM may include outliers which increase the
cluster’s SD.

Table 1. Clustering results from benchmark instances.

instance #constraintsavg#clustersavg sizemean SDmedian SD
scen11 27/4103 6.66 10.82 41.09 16.12
driver-08c 87/9321 2.44 12.62 38.50 25.11
qcp15-120-0 554/3150 12.87 15.26 226.12 129.28
frb35-17-0 233/262 7.20 19.38 1856.70 1649.05

Table 1 shows clustering results from the four benchmark in-
stances of Figure 1. For each instance we report the ratio of DWO-
active constraints over the total number of constraints, the average
number of clusters, the average cluster size, and the mean and me-
dian SD for the clusters of DWO-revisions. Averages are taken over
20 sample DWO-active constraints from each problem. The mean
and median SD are much lower in structured problems compared
to the random one verifying the observation that in the presence of
structure DWO-revisions largely occur in clusters while in its ab-
sence they tend to be uniformly distributed. The question we try to



answer in the following is whether we can take advantage of this to
discover dead-ends sooner through strong propagation while keeping
cpu times manageable.

4 HEURISTICALLY ADAPTING
PROPAGATION

We now present four simple heuristics that can be used to dynam-
ically adapt the level of consistency enforced on individual con-
straints. These heuristics exploit information regarding domain re-
ductions and wipeouts gathered during search. We limit ourselves
to the case where dynamic adaptation involves switching between
a weak, and cheap, local consistency and a stronger but more ex-
pensive one. In general, it may be desirable to utilize a suit of local
consistencies with varying power and properties. The intuition be-
hind the heuristics is twofold. First to target the application of the
strong consistency on areas in the search space where a constraint is
highly active so that domain pruning is maximized and dead-ends are
encountered faster. And second to avoid using an expensive propa-
gation method when pruning is unlikely. The first three heuristics try
to take advantage of the clusterness that fruitful revisions display in
structured problems, while the fourth heuristic simply reacts to any
deletions caused by a constraint.

Importantly, any heuristic, be it for branching or for adapting the
local consistency enforced, must belightweight, i.e. cheap to com-
pute. As it will become clear, the heuristics proposed here are indeed
lightweight as they affect the complexity of the propagation proce-
dure only by a constant factor.

The heuristics can be distinguished according to the propagation
events they monitor (deletions or DWOs) and also according to the
extent of user involvement in their tuning (fully and semi automated).
Heuristics based on DWOs (value deletions) may change or maintain
the level of local consistency employed on a given constraint by mon-
itoring the DWOs (value deletions) caused by this constraint. There
are also hybrid heuristics that may react to both types of propagation
events. Fully automated heuristics do not require any tuning while
semi automated ones are parameterized by a bound. This bound spec-
ifies the desired number of revisions during which a strong consis-
tency is enforced after a propagation event has been detected. The
greater the bound the longer is the strong consistency applied.

In our experiments we have used AC and maxRPC as the weak
and strong local consistency respectively. As proved in [5], maxRPC
is strictly stronger than AC. That is, it will always delete at least the
same values as AC. Also, maxRPC displays a good cpu time to value
deletions ratio compared to other strong local consistencies [6]. How-
ever, since our approach is generic, when describing the heuristics we
will avoid naming specific consistencies and instead we will refer to
switching between a weak (W ) and a strong (S) local consistency,
whereS is strictly stronger thanW .

For eachc ∈ C, the heuristics record the following information:
1) rev[c] is a counter holding the number of timesc has been revised,
incremented by one each timec is revised. 2) dwo[c] is an integer
denoting the revision in which the most recent DWO caused byc
occurred. 3) del[c] is a Boolean flag denoting whether the most recent
revision ofc resulted in at least one value deletion (del[c]=T) or not
(del[c]=F). 4) delS[c] is a Boolean flag denoting whether the most
recent revision ofc identified and deleted at least one value that is
W but notS. The flag becomes T only if a value that isW but not
S is deleted. Otherwise, it is set to F. 5) delW [c] is a Boolean flag
denoting whether the current revision ofc resulted in at least one
value deletion (delW [c]=T) or not (delW [c]=F).
H1(l): semi automated - DWO monitoring Heuristic H1 monitors
and counts the revisions and DWOs of the constraints in the problem.

A constraintc is madeS if the number of calls toRevise (c) since
the last time it caused a DWO is less or equal to a (user defined)
thresholdl. That is, if rev[c]-dwo[c] ≤ l. Otherwise, it is madeW .
H2: fully or semi automated - deletion monitoring H2 monitors

revisions and value deletions. A constraintc is madeS as long as
del[c]=T. Otherwise, it is madeW . H2 can be semi automated in
a similar way to H1 by allowing for a (user defined) numberl of
redundant revisions after the last fruitful revision. Ifl is set to 0 we
get the fully automated version of H2.

H3: fully or semi automated - hybrid H3 is a refinement of H2.
It monitors revisions, value deletions, and DWOs. A constraintc is
madeS as long as delS[c]=T. Otherwise, it is madeW . Once the
constraint causes a DWO, delS[c] is set to T and the monitoring of
S’s effects starts again. If this is not done then once delS[c] is set
to F the constraint will thereafter be propagated usingW . H3 can
be semi automated in a similar way to H1 and H2 by allowing for a
(user defined) numberl of revisions that only deleteW -inconsistent
values or no values at all after the last revision that deleted values
that wereW but notS.

H4: fully or semi automated - deletion monitoring H4 monitors
value deletions. For any constraintc, H4 appliesW until del W [c]
becomes T. In this casec is madeS. In other words, if at least one
value is deleted from the domain of a variablex ∈ var(c) by W then
S is applied on the remaining available values inD(x). H4 can be
semi automated by insisting thatS is applied only if a (user defined)
proportionp of x’s values have been deleted byW during the current
revision ofc. With high values ofp S will be applied only when it is
likely that it will cause a DWO.

Importantly, the heuristics defined above can be combined either
disjunctively or conjunctively in various ways. For example, heuris-
tic H∨124 appliesS on a constraint whenever the condition specified
by either H1, H2, or H4 holds. Heuristic H∧24 appliesS when both
the conditions of H2 and H4 hold. We can choose a disjunctive or
conjunctive combination depending on whether we wantS applied
to a greater or lesser extent respectively.

Figure 2 describes the implementation of functionsRevise for
applying a weak or a strong consistency using the proposed heuris-
tics. They are based on corresponding functions of coarse-grained al-
gorithms like AC-3. Once a constraint is selected for revision a func-
tion we callDecide (which is not shown for space reasons) is called
to determine how it will be propagated. This function is parameter-
ized by the adaptive propagation heuristich and the data structures
required for the computation of the heuristics. The appropriate func-
tion w.r.t. toh is called to compute the heuristic and decide on the
local consistency to be applied. Thereafter, depending on the selected
consistency, the appropriate version of functionRevise is called to
perform the propagation. The two versions ofRevise shown, one
for W and one forS, implement H∨124 or H∨134. As values are deleted
and DWOs are detected, the data structures used by the heuristics are
updated. Initially, i.e. before the first revision ofc, del[c], del W [c]
and delS[c] are set to F and rev[c], dwo[c] are set to 0.

5 EXPERIMENTS
We implemented and tested the heuristics described in Section 4 as
well as a number of combined heuristics. We used d-way branch-
ing, dom/wdeg for variable ordering, and lexicographic value or-
dering. We experimented with the following classes of benchmarks
taken from C. Lecoutre’s web page, where details about them can be
found: radio links frequency assignment (RLFAP), langford, black
hole, driver, hanoi, quasigroup completion, quasigroup with holes,



function Revise (c,xi,S)
rev[c]++;
for eacha ∈ D(xi)

if a is notW -supported inc then
deletea from D(xi);

2: del[c] ← T;
else ifa is notS-supported inc then

deletea from D(xi);
2: del[c] ← T;
3: del S[c] ← T;

if D(xi) = ∅ then
dwo[c] ← rev[c];

3: del S[c] ← T;
2:if no value is deletedthen del[c] ← F;
3:if no value that isW is deleted byS then del S[c] ← F;

function Revise (c,xi,W )
rev[c]++;
for eacha ∈ D(xi)

if a is notW -supported inc then
deletea from D(xi);
del W [c] ← T;

2: del[c] ← T;
if del W=T then

for eacha ∈ D(xi)
if a is notS-supported inc then

deletea from D(xi);
3: del S[c] ← T;

if D(xi) = ∅ then
dwo[c] ← rev[c];

3: del S[c] ← T;
2:if no value is deletedthen del[c] ← F;
3:if no value that isW deleted byS then del S[c] ← F;

Figure 2. The versions ofRevise given can apply H∨124 or H∨134.
Removing lines labelled with 3 (2) gives H∨124 (H∨134).

graph coloring, composed random, forced random, geometric ran-
dom. Some classes and many specific instances are very easy (e.g.
composed) or very hard (e.g black hole) for all methods. The results
presented below demostrate that the heuristics retain the efficiency
of maxRPC where it is better than AC and improve it where it is
worse. Also, we need to point out that for many of the tested classes
there exist specialized methods that can solve the specific problems
much faster than the generic methods we use. Our aim is only to
demonstrate the efficiency of the proposed heuristics in dynamically
switching between different local consistencies.

Table 2 shows results from some real-world RLFAP instances.
We compare adaptive algorithms that use the heuristics of Section 4,
where each algorithm is denoted by the corresponding heuristic, to
MAC and MmaxRPC, simply denoted by AC and maxRPC respec-
tively. For H1, and any combined heuristic that includes H1, l was set
to 100 while for H2 l was set to 10. These values were chosen empir-
ically and display a good performance across a number of instances2.

In these problems maxRPC is too expensive to maintain compared
to AC. The adaptive heuristics cut down the size of the explored
search space and reduce the run times in most cases. This is more vis-
ible in problems where maxRPC visits considerably less nodes than
AC (e.g. graph08-f11). Importantly, in easy problems or in problems
where maxRPC does not have a considerable effect compared to AC
the heuristics do not slow the search process in a significant way.
Table 3 shows results, including only some of the heuristics, from
instances belonging to the following classes of benchmarks: graph

2 The fully automated version of H2 is competitive but less robust.

Table 2. Nodes (n) and cpu times (t) in seconds from RFLAP instances.
The s and g prefixes stand for scen and graph respectively. The best cpu time

for each instance is highlighted with bold.
instance AC maxRPC H1 H2 H3 H4 H∨14 H∨124
s11 n 2864 1334 1175 1842 1432 1678 1358 1360

t 6.9 24.2 3.7 6.7 5.5 6.0 4.9 4.9
s11-f9 n 108184 37663 35102 47552 39312 53338 38202 37743

t 539.6 3478.3 170.4 335.4 183.3 274.8 205.2 212.7
s11-f10 n 8576 2098 2197 2675 1938 3849 2462 2467

t 30.2 93.8 11.6 18.8 10.2 13.9 11.4 11.3
s11-f12 n 6678 1923 1750 2804 1763 3095 1953 1921

t 19.7 101.7 8.6 14.5 9.4 14.7 11.0 10.6
s02-f25 n 11998 5262 3114 10802 2938 12961 4367 4922

t 9.3 65.1 5.6 16.0 5.5 15.2 9.3 10.3
s03-f11 n 8314 880 1047 4830 2762 4518 2068 1489

t 26.4 24.7 5.6 20.2 11.8 17.2 12.5 9.5
g08-f10 n 11948 6342 6650 6423 9540 4863 4474 4119

t 34.5 147.1 21.9 19.4 26.8 13.9 16.3 16.2
g08-f11 n 9996 629 753 960 748 713 608 619

t 35.9 18.7 4.3 4.5 4.8 3.6 3.6 3.6
g14-f27 n 11602 926 10759 2237 9698 2877 2750 2750

t 13.0 2.5 15.3 3.1 17.2 3.3 3.1 3.1

coloring (1st,2nd), driver (3rd,4th), quasigroup completion (5th-7th),
quasigroups with holes (8th,9th). In some of these problems maxRPC
is much more efficient than AC. The heuristics, except H4, can fur-
ther improve on the performance of maxRPC making the adaptive
algorithms considerably more efficient than MAC.

Table 3. Nodes (n) and cpu times (t) in seconds from structured instances.

instance AC maxRPC H2 H4 H∨24 H∨124
queen8-8-8 n - 1458 2807 - 5863 4244

t >1h 3.15 2.9 >1h 5.1 2.7
games120-9 n 3208852 1392922 5511126226513316041331452449

t 403.7 432.3 834.3 293.7 216.1 195.9
driverlogw-08 n 3814 785 1003 3417 855 903

t 13.2 25.5 6.9 9.2 6.1 6.2
driverlogw-09 n 14786 8342 10802 10627 8859 8895

t 239.2 265.8 152.9 167.1 137.8 141.2
qcp-15-120-0 n 108336 21926 35394 101901 29990 27167

t 98.4 43.3 39.9 83.9 33.4 28.3
qcp-15-120-5 n 387742 80424 84193 370461 81269 112290

t 422.0 201.0 118.2 369.4 117.7 147.0
qcp-15-120-10n 1136801 52112 58325 152497 76399 68046

t 1178.0 113.6 65.1 145.1 88.6 71.2
qwh-20-166-0 n 104288 20236 15550 62993 15591 24725

t 269.1 86.9 42.3 140.0 46.0 78.2
qwh-20-166-1 n 132842 22688 29681 66775 25147 39435

t 355.4 111.4 88.2 151.1 78.5 116.7

The results given in Tables 2 and 3 show that individual heuristics
can display considerable variance in their performance from instance
to instance. On the contrary, combined heuristics are quite robust.
Comparing the heuristics, H2 and the combined ones that include H2

display good performance on a variety of problems. It has to be noted
that H∨24 and H∨124 were faster than AC in all instances we tried from
the classes mentioned at the start of this section, except for some easy
instances where they were slightly slower. H1 and H3 are effective on
RLFAPs but worse than H2 on quasigroup problems. The fully au-
tomated version of H4 displays the worst performance among the
individual heuristics. But we have not yet tried semi automated ver-
sions of H4. Overall the heuristics offer a good balance between AC
and maxRPC. In problems where maxRPC offers significant savings
in nodes, they retain this advantage and translate it into considerable
savings in run times. In problems where maxRPC offers moderate
savings in nodes, the heuristics significantly reduce the run times of
maxRPC and are competitive, and often faster, than AC.



Finally, Table 4 gives result from forced and geometric random
problems. As is clear, in such problems that lack structure the heuris-
tics do not reduce the node visits in a significant way and are out-
performed by AC. The best heuristic is by far H4. This is because
H4 does not target clusters of activity to apply maxRPC but reacts
to value deletions wherever they occur. Hence, it is not significantly
handicapped by the absence of clusters.

Table 4. Nodes (n) and cpu times (t) in seconds from random instances.

instance AC maxRPC H2 H4 H∨24 H∨124
frb35-17 n 23782 14920 15022 21182 15064 14642

t 13.5 107.5 47.5 16.1 48.4 46.8
frb40-19 n 40058 20073 24446 32393 19722 22752

t 24.9 151.6 76.8 27.9 63.4 76.1
geo50-20-75n 227535 112785 148853 221211 142416 141726

t 218.9 2089.4 765.7 247.1 748.3 750.1

A final interesting observation is that sometimes the heuristics re-
sult in fewer node visits than maxRPC or in more than AC. This
is explained by the interaction between constraint propagation and
the variable ordering heuristic. Different propagation methods can
lead to different weight increases for the costraints, which in turn can
guide dom/wdeg to different variable selections, and hence different
parts of the search space.

6 RELATED WORK
Building adaptive constraint solvers is a topic that has attracted con-
siderable interest in the literature (see for example [1, 15, 9, 12]).
Part of this interest has been directed to the dynamic adaptation of
constraint propagation during search. The most common manifesta-
tion of this idea is the use of different propagators for different types
of domain reductions in arithmetic constraints. When handling arith-
metic constraints most solvers differentiate between events such as
removing a value from the middle of a domain, or from a bound of
a domain, or reducing a domain to a singleton, and apply suitable
propagators accordingly. Works on adaptive propagation for general
constraints include the following.

El Sakkout et al. proposed a scheme calledadaptive arc propa-
gation for dynamically deciding whether to process individual con-
straints using AC or forward checking [8]. Freuder and Wallace pro-
posed a technique, calledselective relaxationwhich can be used to
restrict AC propagation based on two criteria; the distance in the con-
straint graph of any variable from the currently instantiated one, and
the proportion of values deleted [10]. Chmeiss and Sais presented a
backtrack search algorithm, MAC (distk), that also uses a distance
parameterk as a bound to maintain a partial form of AC [4]. Schulte
and Stuckey proposed a technique for selecting which propagator to
apply to a given constraint, among an array of available constraint
propagators, using priorities that are dynamically updated [17]. Sim-
ilar ideas are also implemented in constraint solvers such as Choco
[13]. Probabilistic arc consistencyis a scheme that can help avoid
some consistency checks and constraint revisions that are unlikely
to cause any domain pruning [14]. As in [8], the scheme is based
on information gathered by examining the supports of values in con-
straints which can be very expensive for non-binary constraints.

Our work is more closely related to [8] as the aim is to dynami-
cally adapt the level of local consistency achieved on individual con-
straints. However, neither [8] or any of other works use information
about failures captured in the form of constraint weights to achieve
this. Besides, to the best of our knowledge, although many levels of
consistency stronger than AC have been proposed, they have not been
studied in this context before (i.e. evoking them dynamically).

7 CONCLUSION
We have proposed a number of simple heuristics for dynamically
switching between different local consistencies applied on individ-
ual constraints during search. These heuristics monitor propagation
events like DWOs and value deletions caused by the constraints and
react by changing the propagation method when certain conditions
are met. The inspiration behind the development of the heuristics
was based on observing the activity of the constraints when using
conflict-driven search heuristics. As we demonstrated, DWOs and
value deletions in structured problems mostly occur in clusters of
consecutive or nearby revisions. This can be taken advantage of to
increase or decrease the level of consistency applied when a con-
straint is highly active or inactive respectively. Experimental results
from various domains displayed the usefulness of the heuristics.

The work presented here is only a first step towards designing
heuristics for adaptive constraint propagation using information gath-
ered during search. There are several directions for future work. First
of all we need to further evaluate the heuristics including their con-
junctive combinations. We can also investigate different local con-
sistencies for binary and non-binary problems, try to devise more so-
phisticated heuristics, and integrate with existing related works (e.g.
[14]). Also, it would be interesting to study the interaction of adap-
tive propagation with other adaptive branching heuristics apart from
dom/wdeg. For example, the impact-based heuristics of [16] and the
explanation-based heuristics of [3].

REFERENCES
[1] J. Borrett, E Tsang, and N. Walsh, ‘Adaptive Constraint Satisfaction:

The Quickest First Principle’, inECAI-96, pp. 160–164, (1996).
[2] F. Boussemart, F. Heremy, C. Lecoutre, and L. Sais, ‘Boosting sys-

tematic search by weighting constraints’, inECAI-2004, pp. 482–486,
(2004).

[3] H. Cambazard and N. Jussien, ‘Identifying and Exploiting Problem
Structures Using Explanation-based Constraint Programming’,Con-
straints, 11, 295–313, (2006).

[4] A. Chmeiss and L. Sais, ‘Constraint Satisfaction Problems: Backtrack
Search Revisited’, inICTAI-2004, pp. 252–257, (2004).

[5] R. Debruyne and C. Bessière, ‘From restricted path consistency to max-
restricted path consistency’, inCP-97, pp. 312–326, (1997).

[6] R. Debruyne and C. Bessière, ‘Domain Filtering Consistencies’,Jour-
nal of Artificial Intelligence Research, 14, 205–230, (2001).

[7] A. Dempster, N. Laird, and D. Rubin, ‘Maximum Likelihood from In-
complete Data via the EM Algorithm’,Journal of the Royal Statistical
Society, 39(1), 1–38, (1977).

[8] H. El Sakkout, M. Wallace, and B. Richards, ‘An Instance of Adaptive
Constraint Propagation’, inCP-96, pp. 164–178, (1996).

[9] S. Epstein, E. Freuder, R. Wallace, A Morozov, and Samuels. B., ‘The
Adaptive Constraint Engine’, inCP-2002, pp. 525–540, (2002).

[10] E. Freuder and R.J. Wallace, ‘Selective relaxation for constraint satis-
faction problems’, inICTAI-96, (1996).

[11] D. Grimes and R.J. Wallace, ‘Sampling Strategies and Variable Selec-
tion in Weighted Degree Heuristics’, inCP-2007, pp. 831–838, (2007).

[12] 1st International Workshop on Autonomous Search (in conjunction with
CP-07), eds., Y. Hamadi, E. Monfroy, and F. Saubion, 2007.

[13] F. Laburthe and Ocre, ‘Choco : implementation du noyau d’un systeme
de contraintes’, inJNPC-00, pp. 151–165, (2000).

[14] D. Mehta and M.R.C. van Dongen, ‘Probabilistic Consistency Boosts
MAC and SAC’, inIJCAI-2007, pp. 143–148, (2007).

[15] S. Minton, ‘Automatically Configuring Constraint Satisfaction Pro-
grams: A Case Study’,Constraints, 1(1/2), 7–43, (1996).

[16] P. Refalo, ‘Impact-based search strategies for constraint programming’,
in CP-2004, pp. 556–571, (2004).

[17] C. Schulte and P.J. Stuckey, ‘Speeding Up Constraint Propagation’, in
CP-2004, pp. 619–633, (2004).


