Heuristics for Dynamically Adapting Propagation

Kostas Stergiou

Abstract. Recently, Boussemart et al. proposed two adamidrélict-driven
Building adaptive constraint solvers is a major challenge in con-variable ordering heuristics for CSPs called wdeg and dom/wdeg [2].
straint programming. An important line of research towards this goalThese heuristics use information derived from conflicts, in the form
is concerned with ways to dynamically adapt the level of local con-of domain wipeouts (DWOSs), and stored as constraint weights to
sistency applied during search. A related problem that is receivinguide search. These heuristics, and especially dom/wdeg, are among
a lot of attention is the design of adaptive branching heuristics. Thehe most efficient, if nothe most efficient, general-purpose heuris-
recently proposed adaptive variable ordering heuristics of Boussdics for CSPs. Grimes and Wallace proposed alternative conflict-
mart et al. use information derived from domain wipeouts to iden-driven heuristics that consider value deletions as the basic propaga-
tify highly active constraints and focus search on hard parts of thetion events associated with constraint weights [11]. The efficiency
problem resulting in important saves in search effort. In this papeof all the proposed conflict-directed heuristics is due to their abil-
we show how information about domain wipeouts and value deleity to learn though conflicts encountered during search. As a result
tions gathered during search can be exploited, not only to perfornthey can guide search towards hard parts of the problem and identify
variable selection, but also to dynamically adapt the level of con-contentiousonstraints [11].
straint propagation achieved on the constraints of the problem. First It has been recognized, for example in [14], that in many problems
we demonstrate that when an adaptive heuristic is used, value delenly few of the constraint revisions that occur during search are fruit-
tions and domain wipeouts caused by individual constraints largelyul (i.e. delete values) while, as an extreme case, some constraints do
occur in clusters of consecutive or nearby constraint revisions. Basetbt cause any value deletions at all despite being revised many times.
on this observation, we develop a number of simple heuristics that alHence it would be desirable to apply a strong consistency only when
low us to dynamically switch between enforcing a weak, and cheayit is likely that it will prune many values and avoid using such a
local consistency, and a strong but more expensive one, dependimmgnsistency when the expected pruning is non-existent or very low.
on the activity of individual constraints. As a case study we exper-Through weight recording, conflict-driven heuristics are able to iden-
iment with binary problems using AC as the weak consistency andify highly active constraints and focus search on variables involved
maxRPC as the strong one. Results from various domains demoim such constraints. Given that highly active constraints usually re-
strate the usefulness of the proposed heuristics. side in hard parts of the problem, can one take advantage of this
information to adapt the level of constraint propagation accordingly?
In this paper we show how information about conflicts and value
1 INTRODUCTION deletions can be exploited, not only to perform variable selection,
Building adaptive constraint solvers is a major challenge in constrainbut also to dynamically adapt the level of local consistency achieved
programming. One aspect of this goal is concerned with ways to dyen the constraints of the problem. First we demonstrate that when a
namically adapt the level of local consistency applied on constraintsonflict-driven heuristic is used on structured problems, constraint
during search. Constraint solvers typically maintain (generalized) aractivity during search is not uniformly distributed among the re-
consistency (G)AC, or a weaker consistency property like boundsisions of the constraints. On the contrary it is highly clustered
consistency, during search. Although many stronger local consisteras value deletions and domain wipeouts caused by individual con-
cies have been proposed, their practical usage is limited as they as#raints largely occur in clusters of nearby revisions. Based on this
mostly applied during preprocessing, if at all. The main obstacle iobservation, we develop simple heuristics that allow us to dynami-
the high time and in some cases space complexity of the algorithmsally switch between enforcing a weak, and cheap local consistency,
that can achieve these consistencies. This, coupled with the implicand a strong but more expensive one. The proposed heuristics achieve
general assumption that constraints should be propagated with a pretis by monitoring the activity of the constraints in the problem and
determined local consistency throughout search, makes maintainirtgiggering a switch between different propagation methods on in-
strong consistencies an infeasible option, except for some specifidividual constraints once certain conditions are met. For example,
CSPs. One way to overcome the high complexity of maintainingone of the heuristics works as follows. It applies a weak consistency
a strong consistency while retaining its benefits is to dynamicallyon each constraint until a revision ofc results in a DWO. Then
evoke it during search only when certain conditions are met. Therdé switches to a strong consistency and applies itcdor the next
have been some works along this line in the literature, mainly fo-few revisions. If no further weight update occurs during these revi-
cusing on methods to switch between AC and weaker consistersions, it switches back to a weaker consistency. As a case study we
cies [8, 10, 17, 14]. Here we consider methods to selectively applgxperiment with binary problems using AC as the weak consistency
stronger local consistencies than AC during search. and maxRPC as the strong one. Experimental results from various
domains demonstrate the usefulness of the proposed heuristics.

I Department of Information & Communication Systems Engineering Uni-
versity of the Aegean, Greece (konsterg@aegean.gr).

2 BACKGROUND ;

A Constraint Satisfaction ProbleniCSP) is a tuple(X, D, C) o /
where: X is a set ofn variables,D is a set of domains, one for

each variable, and’ is a set ofe constraints. Each constraintis .

a pair (var(c),rel(c)), wherevar(c) = {z1,...,zx} is an or- e 0!
dered subset of(, andrel(c) is a subset of th&€artesianprod- ¥

uct D(z1)X...xD(zx). In @ binary CSP, a directed constraint ob—at! fm L eonue ol
with var(c) = {zi,z;}, is arc consisten(AC) iff for every value

a; € D(z;) there exists a value; € D(z;) s.t. the 2-tuple

<(xs,ai), (zj,a;)> satisfiesc. In this case(z;,a;) is called an
AC-support of(z;, a;) onc. A problem is AC iff there is no empty
domain inD and all the constraints in' are AC. A directed con-
straint ¢, with var(c) = {z;,z;}, is max restricted path consis-
tent (maxRPC) iff it is AC and for each valuéz;, a;) there ex- :
ists a valuea; € D(z;) that is an AC-support ofz;, a;) s.t. the ot neight ypdates _:
2-tuple <(zi,a:), (xj,a;)> is path consisten(PC) [5]. A tuple PO a0
<(=i,ai), (z;,a;)> is PCiff for any third variabler.,,, there exists a

valuea,, € D(xm) S.t.(zm, am) is an AC-support of botlfz;, a;)
and(z;,a;). In this case we say thét;, a;) is a maxRPC-support
of (z;,a:) one.

The revisionof a constraint, with var(c) = {z;,z;}, using a
local consistency is the process of checking whether the values
of z; verify the property ofA. We say that a revision iguitful if
it deletes at least one value, while itrsdundantif it achieves no

150

constraint weight
constraint weight
-

50

weight updates_ +
200 300 400 500
constraint revisions

600

constraint weight
",
constraint weight

weight updates +
01000 2000 3000 4000 5000 6000 7000 8000 900010000
constraint revisions

Figure 1. DWOs caused by sample constraints from the RLFAP instance
scenll (top left), the driver instance driver-08c (top right), the quasigroup
completion instance qcp15-120-0 (bottom left), and the forced random

instance frb35-17-0 (bottom right).

obtained when MmaxRPC was used in place of MAC. Note that in
the structured problems the percentage of DWO-revisions to total re-
pruning. A DWO-revisionis one that causes a DWO. We will say visigns is low. Thgre were also many redunda.nt revi§ions. For exam-
that a constraint iDWO-activeduring a run of a search algorithm if P!€ in the RLFAP instance the sample constraint, which was the most
it caused at least one DWO. Accordingly, we will call a constraint 2Ctivé one in terms of DWOs caused, was revised 3386 times during
deletion-activeif it deleted at least one value from a domain and S€arch, but only 407 of these revisions were fruitful, while only 265

deletion-inactivef it caused no pruning at all. were DWO-revisions. _ _
To further investigate these observations we runERpectation

Maximization(EM) clustering algorithm [7] on the data of Figure 1
3 CONSTRAINT ACTIVITY DURING SEARCH (top left). This revealed 20 clusters of DWO-revisions with average

In many, mainly structured, problems some constraints do not causgize of 13.25. The mean and median standard deviation (SD) for the
any DWOs or even are deletion-inactive during the run of a search aPWO-revisions (x-axis) across the clusters was 21.67 and 7.41 re-
gorithm. For example, when solving the scen11 RLFA problem withSPectively. The SD in a cluster is an important piece of information
MAC+dom/wdeg, only 27 of the 4103 constraints in the problem?@S it represents the average distance of any member of the cluster
were DWO-active while 2182 were deletion-active. The activity of Tom the cluster's centroid. That is, it is a measure of the cluster's
the constraints in a problem depends on the structure of the protlensity. The median SD over the 20 clusters is quite low which indi-
lem since constraints in difficult local subproblems are more likelyc@tes that DWO-revisions are closely grouped together. The mean is
to cause deletions and DWOs, especially if a heuristic like dom/wdedligher because itis affected by the presence of outliers. Thatis, some
that can identify such subproblems is used. Due to the complex inof the clusters formed by EM may include outliers which increase the
teractions that may exist between constraints, the activity also detlUsters SD.

pends on the search algorithm, the propagation method, the variable

ordering heuristic, and on the order in which constraints are prop- Table 1. Clustering results from benchmark instances.

aga_lted_. For example, when solving scenll with an algor_lthm thztinstance F#£constraintsavg #clusterg avg sizg mean SO median SO
maintains maxRPC (MmaxRPC) + dom/wdeg, 29 constraints werggceni1 274103 6.66 1082 | 41.09 | 16.12
DWO-active with 13 of these identified as DWO-active by both MAC [driver-08c 87/9321 2.44 12.62 | 38550 25.11
and MmaxRPC. gcpl5-120-0 554/3150 12.87 15.26 | 226.12 | 129.28
Importantly, many revisions of the constraints that are DWO- fb35-17-0 233/262 .20 19.38 | 1856.70] 1649.0

active and deletion-active are redundant or achieve very little prun-

ing. Figure 1 demonstrates how DWOs (y-axis) caused by 4 sam-

ple constraints are detected as constraint revisions (x-axis) occur Table 1 shows clustering results from the four benchmark in-
throughout search. That is, each data point gives the weight of thetances of Figure 1. For each instance we report the ratio of DWO-
constraint at its i-th DWO-revision. The algorithm used is MAC + active constraints over the total number of constraints, the average
dom/wdeg and the sample constraints are taken from three structuresimber of clusters, the average cluster size, and the mean and me-
and one random problem. As we can see, DWOs in structured prolgian SD for the clusters of DWO-revisions. Averages are taken over
lems form clusters of successive or very close calls to the revisior20 sample DWO-active constraints from each problem. The mean
procedure, with the exception of a few outliers. The same pattern ocand median SD are much lower in structured problems compared
curs with respect to value deletions (not shown due to lack of spacejo the random one verifying the observation that in the presence of
In contrast, DWOs in the random instance are distributed in a muclstructure DWO-revisions largely occur in clusters while in its ab-
more uniform way along the line of revisions. Similar results weresence they tend to be uniformly distributed. The question we try to

answer in the following is whether we can take advantage of this t@A constraintc is madeS if the number of calls tdRevise (c) since
discover dead-ends sooner through strong propagation while keepirte last time it caused a DWO is less or equal to a (user defined)

cpu times manageable. threshold. That is, if revf]-dwo[c] < [. Otherwise, it is madé&V .
4 HEURISTICALLY ADAPTING H.: fully or semi automated - deletion monitoring H. monitors
PROPAGATION revisions and value deletions. A constrainis madesS as long as

We now present four simple heuristics that can be used to dynamqel[.c]:.T' Otherwise, it is mgdeW. H. can be semi automated in
ically adapt the level of consistency enforced on individual con-2 similar way _tc_) H by allowing for a (user _d(_efmed) numbeérof
straints. These heuristics exploit information regarding domain re_redundant revisions after th? last fruitful revision! I set to 0 we
ductions and wipeouts gathered during search. We limit ourselveget the fully automated version of.H
to the case where dynamic adaptation involves switching betweerHs: fully or semi automated - hybrid Hs is a refinement of bl
a weak, and cheap, local consistency and a stronger but more el-monitors revisions, value deletions, and DWOs. A constraiist
pensive one. In general, it may be desirable to utilize a suit of locamadesS as long as deb[c]=T. Otherwise, it is madéV’. Once the
consistencies with varying power and properties. The intuition beconstraint causes a DWO, dé[c] is set to T and the monitoring of
hind the heuristics is twofold. First to target the application of theS’s effects starts again. If this is not done then once $lef is set
strong consistency on areas in the search space where a constraint@sF the constraint will thereafter be propagated usditig H; can
highly active so that domain pruning is maximized and dead-ends are semi automated in a similar way tq dnd H by allowing for a
encountered faster. And second to avoid using an expensive propéiser defined) numbétrof revisions that only deletd/’-inconsistent
gation method when pruning is unlikely. The first three heuristics tryvalues or no values at all after the last revision that deleted values
to take advantage of the clusterness that fruitful revisions display ithat werel¥” but nots.
structured problems, while the fourth heuristic simply reacts to anyH,: fully or semi automated - deletion monitoring Hy, monitors
deletions caused by a constraint. value deletions. For any constraintH, appliesW until deLW[c]
Importantly, any heuristic, be it for branching or for adapting the becomes T. In this caseis madeS. In other words, if at least one
local consistency enforced, must bightweight i.e. cheap to com- value is deleted from the domain of a variable var(c) by W then
pute. As it will become clear, the heuristics proposed here are indeeg is applied on the remaining available valuesiiz). Hy can be
lightweight as they affect the complexity of the propagation proce-semi automated by insisting thétis applied only if a (user defined)
dure only by a constant factor. proportionp of z's values have been deleted Wy during the current
The heuristics can be distinguished according to the propagatiorevision ofc. With high values op S will be applied only when it is
events they monitor (deletions or DWOs) and also according to théikely that it will cause a DWO.
extent of user involvement in their tuning (fully and semi automated). Importantly, the heuristics defined above can be combined either
Heuristics based on DWOs (value deletions) may change or maintaigisjunctively or conjunctively in various ways. For example, heuris-
the level of local consistency employed on a given constraint by montic Hy,, appliesS on a constraint whenever the condition specified
itoring the DWOs (value deletions) caused by this constraint. Theréyy either H, Hz, or Hy holds. Heuristic H, appliesS when both
are also hybrid heuristics that may react to both types of propagatiothe conditions of K and H, hold. We can choose a disjunctive or
events. Fully automated heuristics do not require any tuning whil&zonjunctive combination depending on whether we wérapplied
semi automated ones are parameterized by a bound. This bound speg-a greater or lesser extent respectively.
ifies the desired number of revisions during which a strong consis- Figure 2 describes the implementation of functidtevise for
tency is enforced after a propagation event has been detected. Thgplying a weak or a strong consistency using the proposed heuris-
greater the bound the longer is the strong consistency applied. tics. They are based on corresponding functions of coarse-grained al-
In our experiments we have used AC and maxRPC as the wea§orithms like AC-3. Once a constraint is selected for revision a func-
and strong local consistency respectively. As proved in [5], maxRPGion we callDecide (which is not shown for space reasons) is called
is strictly stronger than AC. That is, it will always delete at least theto determine how it will be propagated. This function is parameter-
same values as AC. Also, maxRPC displays a good cpu time to valuged by the adaptive propagation heuristiand the data structures
deletions ratio compared to other strong local consistencies [6]. Howrequired for the computation of the heuristics. The appropriate func-
ever, since our approach is generic, when describing the heuristics Wibn w.r.t. to s is called to compute the heuristic and decide on the
will avoid naming specific consistencies and instead we will refer tolocal consistency to be applied. Thereafter, depending on the selected
switching between a weaki() and a strong{) local consistency, consistency, the appropriate version of functiRevise is called to
wheresS is strictly stronger tham’. perform the propagation. The two versionsRévise shown, one
For eachc € C, the heuristics record the following information: for W and one forS, implement H,, or HYs4. As values are deleted
1) rev[c] is a counter holding the number of timebas been revised, and DWOs are detected, the data structures used by the heuristics are
incremented by one each timeis revised. 2) dwaf] is an integer updated. Initially, i.e. before the first revision @fdellc], del_-W[c]
denoting the revision in which the most recent DWO caused by and delS[c] are set to F and rey], dwo|c] are set to 0.
occurred. 3) delf] is a Boolean flag denoting whether the most recent
revision ofc resulted in at least one value deletion (di[l’) or not
(del[c]=F). 4) delLS[c] is a Boolean flag denoting whether the most 5 EXPERIMENTS
recent revision of: identified and deleted at least one value that is We implemented and tested the heuristics described in Section 4 as
W but notS. The flag becomes T only if a value thatli§ but not ~ Well as a number of combined heuristics. We used d-way branch-
S is deleted. Otherwise, it is set to F. 5) d&l[c] is a Boolean flag ing, dom/wdeg for variable ordering, and lexicographic value or-
denoting whether the current revision efresulted in at least one dering. We experimented with the following classes of benchmarks
value deletion (delV[c]=T) or not (delW[c]=F). taken from C. Lecoutre’s web page, where details about them can be
H1(1): semi automated - DWO monitoring Heuristic H. monitors found: radio links frequency assignment (RLFAP), langford, black
and counts the revisions and DWOs of the constraints in the problenhole, driver, hanoi, quasigroup completion, quasigroup with holes,

function Revise (c.:,5) Table 2. Nodes (n) and cpu times (t) in seconds from RFLAP instances.

revicl++; The s and g prefixes stand for scen and graph respectively. The best cpu time
for eacha € D(z;) . for each instance is highlighted with bold.
if a is notW-supported irc then instancé | AC [maxRPQ Hy | Hy | Hs | Ha | AY, [l
deletea from D(x;); sIT |n| 2864 | 1334 | 1175| 1842| 1432| 1678| 1358| 1360
2: dellg] — T; t| 69 | 242 | 37| 67| 55| 6.0 | 49 | 4.9
else ifa is notS-supported irc then s11-19 |n|108184 37663 |35102 47552 3931253338 38202 37743
deletea from D(z;); t| 539.6 | 3478.3|170.4| 335.4| 183.3| 274.8| 205.2| 212.7
2: dellc] — T: S11-f10|n| 8576 | 2098 | 2197| 2675| 1938 | 3849 2462 | 2467
3 deLS[] — T: t| 302 | 938 | 11.6| 18.8| 10.2| 13.9| 11.4| 11.3
" D(2:) — f then S11-f12|n| 6678 | 1923 | 1750| 2804 1763 | 3095| 1953| 1921
if D(x;) = 0 then t| 19.7 | 101.7 | 86 | 145| 9.4 | 14.7| 11.0| 10.6
dwolc] — rev[c]; S02-125[n| 11998| 5262 | 311410802 293812961 4367 4922
3: delS[] < T, t| 93 | 651 | 56 | 16.0| 55 | 152| 9.3 | 10.3
2:if no value is deletethen del[c] — F; SO3-T11|n| 8314 | 880 | 1047| 4830| 2762 | 4518| 2068| 1489
3:if no value that iV is deleted byS then del.S[c] < F; t| 264 | 247 | 56 | 20.2| 11.8| 17.2| 125]| 95
g08-f10|n| 11948| 6342 | 6650| 6423| 9540 4863 | 4474 | 4119
; ; , t| 345 | 147.1 | 21.9| 19.4| 26.8| 13.9| 16.3| 16.2
fu?gﬂﬁ?ﬁ?"'se (cou) GOB-T1I[n| 9996 | 629 | 753 | 960 | 748 | 713 | 608 | 619
' t| 359 | 187 | 43 | 45| 48 | 36 | 36 | 3.6
for eacha € D(x:) _ 914-27|n| 11602| 926 |10759 2237| 9698| 2877] 2750 2750
if @ is notW-supported irc then t| 130 | 25 |153| 3.1 |17.2| 33| 31| 3.1
deletea from D(z;);
T
2 gZES/E]T; T coloring (1st,2nd), driver (3rd,4th), quasigroup completion (5th-7th),
if deLW =T then quasigroups with holes (8th,9th). In some of these problems maxRPC
for eacha € D(x;) is much more efficient than AC. The heuristics, except thn fur-
if a is notS-supported irc then ther improve on the performance of maxRPC making the adaptive
deletea from D(z;); algorithms considerably more efficient than MAC.
3: delLS[c] < T;

if D(z;) = 0 then
dwolc] « rev[c];
3: delS[c «T;

Table 3. Nodes (n) and cpu times (t) in seconds from structured instances.

- - inst AC RPG H H H H
2:if no value is deletethen del[c] — F; ns anc? - - max 2 4 24 124
. " queen8-8-8 |n 1458 2807 5863 | 4244
3:if no value that ig1” deleted byS then delLS[c] « F; t| >1h | 3.15 29 >1h 5.1 27
Figure 2. The versions oRevise given can apply K, or HY;,. games120-9 |n|3208852 139292755111262265133 1604133 1452449
Removing lines labelled with 3 (2) givesyl, (HY5,). t| 403.7 | 432.3 | 834.3 | 293.7 | 216.1 | 195.9
driverlogw-08|n| 3814 785 1003 | 3417 855 903
] t| 13.2 255 6.9 9.2 6.1 6.2
graph coloring, composed random, forced random, geometric rarj driverlogw-09 ? 12‘:%826 363;128 11%8205 11%2217 fg?% fffsz
dom. Some classes and many specific instances are very easy (€&bp-15-120-0|n| 108336] 21926 | 35394 | 101901| 29990 | 27167
composed) or very hard (e.g black hole) for all methods. The results t| 984 43.3 39.9 83.9 33.4 28.3
presented below demostrate that the heuristics retain the efficiengficP-15-120-5 ? 3?;;?)2 g%izg ?‘%923 3??25‘31 fi11276? 111572%0
of maxRPC where it is bet_ter than AC and improve it where it is §Cp-T5-120-T0n | 1136801 52112 | 58325 | 152497 76399 | 68046
worse. Also, we need to point out that for many of the tested classgs t| 1178.0| 1136 | 651 | 1451 | 88.6 71.2
there exist specialized methods that can solve the specific problemewh-20-166-0/n| 104288] 20236 | 15550 | 62993 | 15591 | 24725
much faster than the generic methods we use. Our aim is only to___ ; 12362%12 2%%38 2%%31 ég%% 2‘:_)61-27 379*1-?35
demonstrate the efficiency of the proposed heuristics in dynamlcallyf1 t| 3554 | 1114 | 882 | 1511 | 785 | 1167

switching between different local consistencies.
Table 2 shows results from some real-world RLFAP instances.
We compare adaptive algorithms that use the heuristics of Section 4, The results given in Tables 2 and 3 show that individual heuristics
where each algorithm is denoted by the corresponding heuristic, t6an display considerable variance in their performance from instance
MAC and MmaxRPC, simply denoted by AC and maxRPC respecl0 instance. On the contrary, combined heuristics are quite robust.
tively. For H;, and any combined heuristic that includes Hwas set ~ Comparing the heuristics,-and the combined ones that include H
to 100 while for B [was set to 10. These values were chosen empirdisplay good performance on a variety of problems. It has to be noted
ically and display a good performance across a number of instancesthat H; and H, were faster than AC in all instances we tried from
In these problems maxRPC is too expensive to maintain comparefffe classes mentioned at the start of this section, except for some easy
to AC. The adaptive heuristics cut down the size of the explorednstances where they were slightly slower.&hd H; are effective on
search space and reduce the run times in most cases. This is more Vit FAPs but worse than Hon quasigroup problems. The fully au-
ible in problems where maxRPC visits considerably less nodes thafpmated version of H displays the worst performance among the
AC (e.g. graph08-f11). Importantly, in easy problems or in prob|e,~nsindividual heuristics. But we have not yet tried semi automated ver-
where maxRPC does not have a considerable effect compared to Agons of H. Overall the heuristics offer a good balance between AC
the heuristics do not slow the search process in a significant waynd maxRPC. In problems where maxRPC offers significant savings
Table 3 shows results, including only some of the heuristics, fromin nodes, they retain this advantage and translate it into considerable

instances belonging to the following classes of benchmarks: grapfavings in run times. In problems where maxRPC offers moderate
savings in nodes, the heuristics significantly reduce the run times of

2 The fully automated version of44is competitive but less robust. maxRPC and are competitive, and often faster, than AC.

Finally, Table 4 gives result from forced and geometric random7 CONCLUSION

problems. As is clear, in such p_rc_)blc_ams that !a_lck structure the heuriswe have proposed a number of simple heuristics for dynamically
tics do not reduce the node V'S't§ "_1 5_‘ significant \{vay and are Out'switching between different local consistencies applied on individ-
performed by AC. The best heurlst!c is by fagHrhis is because ual constraints during search. These heuristics monitor propagation
Ha does not target clusters of activity to apply maxRPC but reacts, e s jike DWOs and value deletions caused by the constraints and
to val_ue deletions wherever they occur. Hence, it is not significantly,, o ¢ by changing the propagation method when certain conditions
handicapped by the absence of clusters. are met. The inspiration behind the development of the heuristics
was based on observing the activity of the constraints when using
conflict-driven search heuristics. As we demonstrated, DWOs and
H value deletions in structured problems mostly occur in clusters of

Table 4. Nodes (n) and cpu times (t) in seconds from random instances.

instance AC |maxRPQ Ha Hy Hy, 104 " =t !
frb35-17 |n| 23782| 14920 | 15022| 21182| 15064| 14642 consecutive or nearby revisions. This can be taken advantage of to
t| 135 | 1075 | 475 | 16.1 | 484 | 468 increase or decrease the level of consistency applied when a con-
frb40-19 ': 43228 "i%(fg’ 2;1(;1%6 32273%3 16?37 iz 27267 512 straint is highly active or inactive respectively. Experimental results
§e050-20-75n(227535 112785148853 221211 142416 41726 from various domains displayed the usefulness of the heuristics.
t| 218.9| 2089.4 | 765.7 | 247.1| 748.3| 750.1 The work presented here is only a first step towards designing

A final interesting observation is that sometimes the heuristics reheuristics for adaptive constraint propagation using information gath-
sult in fewer node visits than maxRPC or in more than AC. Thisered during search. There are several directions for future work. First
is explained by the interaction between constraint propagation angf all we need to further evaluate the heuristics including their con-
the variable ordering heuristic. Different propagation methods carunctive combinations. We can also investigate different local con-
lead to different weight increases for the costraints, which in turn car$istencies for binary and non-binary problems, try to devise more so-
guide dom/wdeg to different variable selections, and hence differenphisticated heuristics, and integrate with existing related works (e.g.

parts of the search space.

[14]). Also, it would be interesting to study the interaction of adap-

tive propagation with other adaptive branching heuristics apart from

6 RELATED WORK

Building adaptive constraint solvers is a topic that has attracted con-
siderable interest in the literature (see for example [1, 15, 9, 12])
Part of this interest has been directed to the dynamic adaptation
constraint propagation during search. The most common manifestak.]
tion of this idea is the use of different propagators for different types 2]
of domain reductions in arithmetic constraints. When handling arith-
metic constraints most solvers differentiate between events such as
removing a value from the middle of a domain, or from a bound of [3]
a domain, or reducing a domain to a singleton, and apply suitable
propagators accordingly. Works on adaptive propagation for generah]
constraints include the following.

El Sakkout et al. proposed a scheme cabelhptive arc propa-
gationfor dynamically deciding whether to process individual con-
straints using AC or forward checking [8]. Freuder and Wallace pro- (6]
posed a technique, calletlective relaxatiomhich can be usedto ,
restrict AC propagation based on two criteria; the distance in the con-
straint graph of any variable from the currently instantiated one, and
the proportion of values deleted [10]. Chmeiss and Sais presented]
backtrack search algorithm, MAC (dik}, that also uses a distance [9]
parametek as a bound to maintain a partial form of AC [4]. Schulte
and Stuckey proposed a technique for selecting which propagator (o]
apply to a given constraint, among an array of available constraint
propagators, using priorities that are dynamically updated [17]. Sim[1]
ilar ideas are also implemented in constraint solvers such as Cho
[13]. Probabilistic arc consistencis a scheme that can help avoid
some consistency checks and constraint revisions that are unlikel$3]
to cause any domain pruning [14]. As in [8], the scheme is based
on information gathered by examining the supports of values in cond4]
straints which can be very expensive for non-binary constraints. [15]

Our work is more closely related to [8] as the aim is to dynami-
cally adapt the level of local consistency achieved on individual con{16]
straints. However, neither [8] or any of other works use information
about failures captured in the form of constraint weights to achievéln
this. Besides, to the best of our knowledge, although many levels of
consistency stronger than AC have been proposed, they have not been
studied in this context before (i.e. evoking them dynamically).

(5]

dom/wdeg. For example, the impact-based heuristics of [16] and the
explanation-based heuristics of [3].

JREFERENCES

J. Borrett, E Tsang, and N. Walsh, ‘Adaptive Constraint Satisfaction:
The Quickest First Principle’, iECAI-96 pp. 160-164, (1996).

F. Boussemart, F. Heremy, C. Lecoutre, and L. Sais, ‘Boosting sys-
tematic search by weighting constraints’,BCAI-2004 pp. 482-486,
(2004).

H. Cambazard and N. Jussien, ‘Identifying and Exploiting Problem
Structures Using Explanation-based Constraint Programmi@agn-
straints 11, 295-313, (2006).

A. Chmeiss and L. Sais, ‘Constraint Satisfaction Problems: Backtrack
Search Revisited’, ilCTAI-2004 pp. 252—-257, (2004).

R. Debruyne and C. Besse, ‘From restricted path consistency to max-
restricted path consistency’, @®P-97, pp. 312—-326, (1997).

R. Debruyne and C. Besse, ‘Domain Filtering Consistencieslour-

nal of Artificial Intelligence Researchi4, 205-230, (2001).

A. Dempster, N. Laird, and D. Rubin, ‘Maximum Likelihood from In-
complete Data via the EM AlgorithmJournal of the Royal Statistical
Society 39(1), 1-38, (1977).

H. El Sakkout, M. Wallace, and B. Richards, ‘An Instance of Adaptive
Constraint Propagation’, i6P-96 pp. 164-178, (1996).

S. Epstein, E. Freuder, R. Wallace, A Morozov, and Samuels. B., ‘The
Adaptive Constraint Engine’, i€P-2002 pp. 525-540, (2002).

E. Freuder and R.J. Wallace, ‘Selective relaxation for constraint satis-
faction problems’, inCTAI-96, (1996).

D. Grimes and R.J. Wallace, ‘Sampling Strategies and Variable Selec-
tion in Weighted Degree Heuristics’, @P-2007 pp. 831-838, (2007).

1st International Workshop on Autonomous Search (in conjunction with
CP-07) eds., Y. Hamadi, E. Monfroy, and F. Saubion, 2007.

F. Laburthe and Ocre, ‘Choco : implementation du noyau d’un systeme
de contraintes’, iIINPC-00Q pp. 151-165, (2000).

D. Mehta and M.R.C. van Dongen, ‘Probabilistic Consistency Boosts
MAC and SAC’, inlJCAI-2007 pp. 143-148, (2007).

S. Minton, ‘Automatically Configuring Constraint Satisfaction Pro-
grams: A Case StudyConstraints 1(1/2), 7-43, (1996).

P. Refalo, ‘Impact-based search strategies for constraint programming’,
in CP-2004 pp. 556-571, (2004).

C. Schulte and P.J. Stuckey, ‘Speeding Up Constraint Propagation’, in
CP-2004 pp. 619-633, (2004).

