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Abstract. Coarse grained arc consistency algorithms, like
AC-3, operate by maintaining a list of arcs (or variables) that
records the revisions that are still to be performed. It is well
known that the performance of such algorithms is affected
by the order in which revisions are carried out. As a result,
several heuristics for ordering the elements of the revision
list have been proposed. These heuristics exploit information
about the original and the current state of the problem, such
as domain sizes, variable degrees, and allowed combinations
of values, to reduce the number of constraint checks and list
operations aiming at speeding up arc consistency computa-
tion. Recently, Boussemart et al. proposed novel variable or-
dering heuristics that exploit information about failures gath-
ered throughout search and recorded in the form of constraint
weights. Such heuristics are now considered as the most effi-
cient general purpose variable ordering heuristic for CSPs. In
this paper we show how information about constraint weights
can be exploited to efficiently order the revision list when
AC is applied during search. We propose a number of sim-
ple revision ordering heuristics based on constraint weights
for arc, variable, and constraint oriented implementations of
coarse grained arc consistency algorithms, and compare them
to the most efficient existing revision ordering heuristic. Im-
portantly, the new heuristics can not only reduce the num-
bers of constraints checks and list operations, but also cut
down the size of the explored search tree. Results from vari-
ous structured and random problems demonstrate that some
of the proposed heuristics can offer significant speed-ups.

1 Introduction

Among the plethora of algorithms that have been devised to
solve CSPs, the look-ahead algorithm termed MAC (main-
taining arc consistency) [16, 2] is considered as one of the
most efficient. As MAC applies arc consistency (AC) on the
problem after every variable assignment, speeding up the pro-
cess of AC application has received a lot of attention in the
literature. The numerous AC algorithms that have been pro-
posed can be classified into coarse grained and fine grained.
Typically, coarse grained algorithms like AC-3 [12] and its
extensions (e.g. AC2001/3.1 [3] and AC-3d [7]) apply succes-
sive revisions of arcs or, depending on the implementation,
variables [13]. On the other hand, fine grained algorithms like
AC-2004 [14] and AC-2007 [1] use various data structures to

apply successive revisions of variable-value-constraint triplets.
Although AC-3 does not have an optimal worst-case time
complexity, as the fine grained algorithms do, it is compet-
itive and often better in practice and has the additional ad-
vantage of being easy to implement. Further to this, some of
the extensions to AC-3 achieve optimal worst-case complexity
while preserving the simplicity of implementation and good
average case behavior.

It is well known that the way in which the list of revisions
is implemented and manipulated is an important point re-
garding the efficiency of coarse grained AC algorithms. In a
recent empirical investigation Boussemart et al. [4] showed
that a variable-oriented implementation of AC-3, as proposed
in [13], usually outperforms the standard arc-oriented imple-
mentation of [12] and the constraint-oriented implementation
of [4]. Perhaps more significantly, the order in which the ele-
ments of the revision list are processed, in any implementa-
tion, can have a notable effect on the number of constraint
checks and list insertion/removal operations. Since MAC ap-
plies AC thousands or even millions of times during search,
any savings in checks and list operations can be reflected
on the overall cpu time efficiency. Having recognized this,
Wallace and Freuder proposed a number of revision order-
ing heuristics aiming at speeding up AC processing as early
as 1992. Since then this issue has been further investigated
and alternative heuristics have been proposed [8, 7, 11, 4]. All
the proposed heuristics exploit information about the orig-
inal and the current state of the problem, such as domain
sizes, variable degrees, and allowed combinations of values, to
reduce the number of constraint checks and list operations.
However, it has to be noted that even the most successful
revision heuristic of variable-oriented propagation only offers
a 25% speed-up compared to a fifo implementation of the
revision list [4].

In recent years, powerful variable ordering heuristics have
been proposed and their integration with MAC has led to
significant speed-ups of existing solvers. The conflict-driven
weighted degree (wdeg) heuristics of Boussemart et al. are de-
signed to enhance variable selection by incorporating knowl-
edge gained during search, in particular knowledge derived
from failures [5]. These heuristics work as follows. All con-
straints are given an initial weight of 1. During search the
weight of a constraint is incremented by 1 every time the con-
straint causes a domain wipe-out (DWO) during constraint



propagation. The weighted degree (wdeg) of a variable is then
the sum of the weights of the constraints that include this
variable and at least another unassigned variable. The weights
are continuously updated during search by using information
learnt from previous failures. The basic wdeg heuristic selects
the variable having the largest weighted degree. In addition
to the basic wdeg heuristic, combining weighted degree and
domain size yields a heuristic that selects the variable with
the smallest ratio of current domain size to current weighted
degree (dom/wdeg). The advantage that these heuristics offer
is that they use previous search states as guidance, while older
standard heuristics either use the initial state or the current
state only.

In this paper we show how information about constraint
weights can be exploited not only to perform variable selec-
tion, but also to efficiently order the revision list when AC
is maintained during search. We investigate several new con-
straint weight based approaches to ordering the revision list
in all the alternative implementations of AC-3: arc-oriented,
variable-oriented and constraint-oriented. Experimental re-
sults from various random, academic and real world prob-
lems show that some of the proposed heuristics, when used in
conjunction with a conflict-driven variable ordering heuristic
such as dom/wdeg, demonstrate a measurable improvement
in constraint checks compared to the most efficient existing
revision ordering heuristic.

Notably, the new revision heuristics can not only reduce the
numbers of constraint checks and list operations, but also cut
down the size of the explored search tree by focusing search on
more relevant variables. Due to this, in the variable-oriented
implementation of AC-3, which is the most efficient among
the three alternatives, the new heuristics can offer significant
savings in cpu times. This opens up interesting directions for
future work since, apart from an implementation tool, revision
ordering heuristics can be viewed as methods to have a really
important impact on the search process.

The rest of the paper is organized as follows. Section 2
gives the necessary definitions and notation and briefly de-
scribes the three alternative implementations of AC-3. Section
3 summarizes existing work on revision ordering heuristics for
constraint propagation. In Section 4 we propose new revision
ordering heuristics based on constraint weights. In Section
5 we experimentally compare the proposed heuristics to the
best existing revision heuristics on a variety of problems. Con-
clusions are presented in Section 6.

2 Background

A Constraint Satisfaction Problem (CSP) is a tuple (X, D, C ),
where X is a set containing n variables {x1, x2, ..., xn}; D is a
set of domains {D(x1), D(x2), ..., D(xn)} for those variables,
with each D(xi) consisting of the possible values which xi may
take; and C is a set of constraints {c1, c2, ..., ck} between vari-
ables in subsets of X. Each ci ∈ C expresses a relation defining
which variable assignment combinations are allowed for the
variables in the scope of the constraint, vars(ci). Two vari-
ables are said to be neighbors if they share a constraint. The
arity of a constraint is the number of variables in the scope of
the constraint. A binary constraint between variables xi and
xj will be denoted by cij . In this paper we focus on binary
CSPs. However, the proposed revision ordering heuristics are

generic and can be applied on problems with constraints of
any arity.

A partial assignment is a set of tuple pairs, each tuple con-
sisting of an instantiated variable and the value that is as-
signed to it in the current search state. A full assignment is
one containing all n variables. A solution to a CSP is a full
assignment such that no constraint is violated.

An arc is a pair (c, xi) where xi ∈ vars(c). As we focus on
binary CSPs, any arc (cij , xi) will be alternatively denoted
by the pair of variables (xi,xj), where xj ∈ vars(cij). That
is, xj is the other variable involved in cij . An arc (xi,xj)
is arc consistent (AC) iff for every value a ∈ D(xi) there
exists at least one value b ∈ D(xj) such that the pair (a,b)
satisfies cij . In this case we say that b is a support of a on
arc (xi,xj). Accordingly, a is a support of b on arc (xj ,xi).
A problem is AC iff there are no empty domains and all arcs
are AC. The application of AC on a problem results in the
removal of all non-supported values from the domains of the
variables. A support check (consistency check) is a test to find
out if two values support each other. The revision of an arc
(xi,xj) using AC verifies if all values in D(xi) have supports
in D(xj). We say that a revision is fruitful if it deletes at least
one value, while it is redundant if it achieves no pruning. A
DWO-revision is one that causes a DWO. That is, it results
in an empty domain.

In the following, we will use the basic coarse grained algo-
rithm to establish arc consistency, namely, AC-3. This does
not limit the generality of the proposed heuristics as they can
be easily integrated into any coarse grained AC algorithm. In
the reported experiments we use MAC as our search algorithm
and the dom/wdeg heuristic for dynamic variable ordering.

2.1 AC-3 variants

The AC-3 arc consistency algorithm can be implemented us-
ing a variety of propagation schemes. We recall here the
three variants, as presented in [4], which respectively corre-
spond to algorithms with an arc-oriented, variable-oriented
and constraint-oriented propagation scheme.

The first one (arc-oriented propagation) is the most com-
monly presented and used because of its simple and natural
structure. Algorithm 1 depicts the main procedure. As ex-
plained, an arc is a variable pair (xi, xj) which corresponds
to a directed constraint. Hence, for each binary constraint cij

involving variables xi and xj there are two arcs, (xi, xj) and
(xj , xi). Initially, the algorithm inserts all arcs in the revision
list Q. Then, each arc (xi, xj) is removed from the list and
revised in turn. If any value in D(xi) is removed when revis-
ing (xi, xj), all arcs pointing to xi (i.e. having xi as second
element in the pair), except (xi, xj), will be inserted in Q (if
not already there) to be revised. Algorithm 2 depicts func-
tion revise(xi, xj) which seeks supports for the values of xi in
D(xj). It removes those values in D(xi) that do not have any
support in D(xj). The algorithm terminates when the list Q
becomes empty.

The variable-oriented propagation scheme was proposed by
McGregor [13] and later studied in [6]. Instead of keeping
arcs in the revision list, this variant of AC-3 keeps variables.
The main procedure is depicted in Algorithm 3. Initially, all
variables are inserted in the revision list Q. Then each variable
xi is removed from the list and each constraint involving xi



Algorithm 1 arc-oriented AC3

1: Q ←{(xi, xj)} | cij ∈ C or cji ∈ C, i 6= j
2: while Q 6= ∅ do
3: select and delete an arc (xi, xj) from Q
4: if REVISE(xi, xj) then
5: Q ← Q ∪ {(xk, xi)} | cki ∈ C, k 6= j
6: end if
7: end while

Algorithm 2 revise-3(xi, xj)

1: DELETE ← false
2: for each a ∈ D(xi) do
3: if @ b ∈ D(xj) such that (a, b) satisfies cij then
4: delete a from D(xi)
5: DELETE ← true
6: end if
7: end for
8: return DELETE

Algorithm 3 variable-oriented AC3

1: Q ← {xi | xi ∈ X}
2: ∀ cij ∈ C, ∀xi ∈ vars(cij), ctr(cij , xi) ← 1
3: while Q 6= ∅ do
4: get xi from Q
5: for each cij | xi ∈ vars(cij) do
6: if ctr(cij , xi) = 0 then continue
7: for each xj ∈ vars(cij) do
8: if needsNotBeRevised(cij , xj) then continue
9: nbRemovals ← revise(cij , xj)

10: if nbRemovals > 0 then
11: if dom(xj) = ∅ then return false
12: Q ← Q ∪ {xj}
13: for each cjk | cjk 6= cij ∧ xj ∈ vars(cjk) do
14: ctr(cjk, xj) ← ctr(cjk, xj) + nbRemovals
15: end for
16: end if
17: end for
18: for each xj ∈ vars(cij) do ctr(cij , xj) ← 0
19: end for
20: end while
21: return true

Algorithm 4 needsNotBeRevised(cij , xi) : boolean

1: return (ctr(cij , xi) > 0 and @xj ∈ vars(cij) | xj 6= xi ∧
ctr(cij , xj) > 0)

is processed. For each such constraint cij we revise the arc
(xj ,xi). If the revision removes some values from the domain
of xj , then variable xj is inserted in Q (if not already there).

Function needsNotBeRevised given in Algorithm 4, is used
to determine relevant revisions. This is done by associating
a counter ctr(cij ,xi) with any arc (xi,xj). The value of the
counter denotes the number of removed values in the domain
of variable xi since the last revision involving constraint cij .
If xi is the only variable in vars(cij) that has a counter value
greater than zero, then we only need to revise arc (xj ,xi).
Otherwise, both arcs are revised.

The constraint-oriented propagation scheme is depicted in
Algorithm 5. This algorithm is an analogue to Algorithm 3.

Algorithm 5 constraint-oriented AC3

1: Q ← {cij | cij ∈ C}
2: ∀ cij ∈ C, ∀xi ∈ vars(cij), ctr(cij , xi) ← 1
3: while Q 6= ∅ do
4: get cij from Q
5: for each xj ∈ vars(cij) do
6: if needsNotBeRevised(cij , xj) then continue
7: nbRemovals ← revise(cij , xj)
8: if nbRemovals > 0 then
9: if dom(xj) = ∅ then return false

10: for each cjk | cjk 6= cij ∧ xj ∈ vars(cjk) do
11: Q ← Q ∪ {xj}
12: ctr(cjk, xj) ← ctr(cjk, xj) + nbRemovals
13: end for
14: end if
15: end for
16: for each xj ∈ vars(cij) do ctr(cij , xj) ← 0
17: end while
18: return true

Initially, all constraints are inserted in the revision list Q.
Then each constraint cij is removed from the list and each
variable xj ∈ vars(cij) is selected and revised. If the revision
of the selected arc (cij , xj) is fruitful, then the reinsertion of
the constraint cij in the list is needed. As in variable-oriented
scheme, the same counters are also used here to avoid useless
revisions.

3 Related work

Revision ordering heuristics is a topic that has received con-
siderable attention in the literature. The first systematic
study on this topic was carried out by Wallace and Freuder,
who proposed a number of different revision ordering heuris-
tics that can be used with the arc-oriented variant of AC3 [17].
These heuristics, which are defined for binary constraints, are
based on three major features of CSPs: (i) the number of
acceptable pairs in each constraint (the constraint size or sat-
isfiability), (ii) the number of values in each domain and (iii)
the number of binary constraints that each variable partici-
pates in (the degree of the variable). Based on these features,
they proposed three revision ordering heuristics: (i) ordering
the list of arcs by increasing relative satisfiability (sat up),
(ii) ordering by increasing size of the domain of the variables
(dom j up) and (iii) ordering by descending degree of each
variable (deg down).

The heuristic sat up counts the number of acceptable pairs
of values in each constraint (i.e the number of tuples in the
Cartesian product built from the current domains of the vari-
ables involved in the constraint) and puts constraints in the
list in ascending order of this count. Although this heuristic
reduces the list additions and constraint checks, it does not
speed up the search process. When a value is deleted from
the domain of a variable, the counter that keeps the number
of acceptable arcs has to be updated. This process is usu-
ally time consuming because the algorithm has to identify
the constraints in which the specific variable participates and
to recalculate the counters with acceptable value pairs. Also
an additional overhead is needed to reorder the list.

The heuristic dom j up counts the number of remaining
values in each variable’s current domain during search. Vari-



ables are inserted in the list by increasing size of their do-
mains. This heuristic reduces significantly list additions and
constraint checks and is the most efficient heuristic among
those proposed in [17].

The deg down heuristic counts the current degree of each
variable. The initial degree of a variable xi is the number of
variables that share a constraint with xi. During search, the
current degree of xi is the number of unassigned variables that
share a constraint with xi. The deg down heuristic sorts vari-
ables in the list by decreasing size of their current degree. As
noticed in [17] and confirmed in [4], the (deg down) heuristic
does not offer any improvement.

Gent et al. [8] proposed another heuristic called kac. This
heuristic is based on the number of acceptable pairs of values
in each constraint and tries to minimize the constrainedness
of the resulting subproblem. Experiments have shown that
kac is time expensive but it performs less constraint checks
when compared to sat up and dom j up.

Boussemart et al. performed an empirical investigation of
the heuristics of [17] with respect to the different variants
(arc, variable and constraint) of AC-3 [4]. In addition, they
introduced some new heuristics. Concerning the arc-oriented
AC-3 variant, they have examined the dom j up as a stand
alone heuristic (called domv) or together with deg down which
is used in order to break ties (called ddeg ◦ domv). Moreover,
they proposed the ratio sat up/dom j up (called domc/domv)
as a new heuristic. Regarding the variable-oriented variant,
they adopted the domv and ddeg heuristics from [17] and
proposed a new one called remv. This heuristic corresponds
to the greatest proportion of removed values in a variable’s
domain. For the constraint-oriented variant they used domc

(the smallest current domain size) and remc (the greatest
proportion of removed values in a variable’s domain). Experi-
mental results showed that the variable-oriented AC-3 imple-
mentation with the domv revision ordering heuristic (simply
denoted dom hereafter) is the most efficient alternative.

4 Revision ordering heuristics based on
constraint weights

The heuristics described in the previous section, and espe-
cially dom, improve the performance of AC-3 (and MAC)
when compared to the classical queue or stack implementa-
tion of the revision list. This improvement in performance is
mainly due to the reduction in list additions and constraint
checks. A key principle that can also have a positive effect on
the performance is the “fail-first principle” of Haralick and
Elliot [10] which states that “to succeed, try first where you
are most likely to fail”. Considering revision ordering heuris-
tics this principle can be translated as follows: When AC is
applied during search (within an algorithm such as MAC), to
reach as early as possible a failure (DWO), order the revision
list by putting first the arc or variable which will guide you
earlier to a DWO.

To apply the “fail-first principle” in revision ordering
heuristics, we must use some metric to compute which arc
(or variable) in the AC revision list is the most probable to
cause failure. Until now, constraint weights have only been
used for variable selection. In our proposed revision ordering
heuristics, we use information about constraint weights as a
metric to order the AC revision list. These heuristics can ef-

ficiently be used in conjunction with conflict-driven variable
ordering heuristics in order to boost search.

The main idea behind these new heuristics is to handle as
early as possible potential DWO-revisions by appropriately
ordering the arcs, variables, or constraints in the revision list.
In this way the revision process of AC will be terminated ear-
lier and thus constraint checks can be significantly be reduced.
Moreover, with such a design we may be able to avoid many
redundant revisions.

Revision ordering and variable ordering heuristics have dif-
ferent tasks to perform when used in a search algorithm
like MAC. Before the appearance of conflict-driven heuristics
there was no way to achieve an interaction with each other,
i.e. the order in which the list was organized during AC was
impossible to affect the decision of which variable to select
next (and vice versa). The contribution of revision ordering
heuristics to the solver’s efficiency was limited to the reduc-
tion of list additions and constraint checks.

However, when a conflict-driven variable ordering heuristic
like wdeg or dom/weg is used, then there are cases where the
decision of which arc (or variable) to revise first can affect the
variable selection. To better illustrate this interaction we give
the following example.

Example 1 Assume we are using MAC with an arc-oriented
implementation of AC-3 to solve a CSP (X, D, C). Also as-
sume that a conflict-driven variable ordering heuristic (e.g.
dom/wdeg) is used, and that at some point during search the
following AC revision list is formed: Q={(c12, x1), (c34, x3),
(c56, x5)}. Suppose that (c12, x1) and (c56, x5) can both lead
to a DWO if they are selected first from the list. If a revision
ordering heuristic R1 selects (c12, x1) first then the DWO of
x1 will be detected and the weight of constraint c12 will in-
creased by 1. If some other revision ordering heuristic R2 se-
lects (c56, x5) first then the DWO of x5 will be detected but
this time the weight of a different constraint (c56) will in-
creased by 1. Since constraint weights affect the choices of
the variable ordering heuristic, R1 and R2 can lead to differ-
ent future decisions for variable instantiation. Thus, R1 and
R2 may guide search to different parts of the search space.

We now describe a number of new revision ordering heuris-
tics for all three AC-3 variants. It is easy to see that all these
heuristics are lightweight (i.e. cheap to compute) assuming
that the weights of constraints are updated during search.

Arc-oriented heuristics are tailored for the arc-oriented vari-
ant where the list of revisions Q stores arcs of the form
(cij ,xi). Since an arc consists of a constraint cij and a variable
xi, we can use information about the weight of the constraint,
or the weight of the variable, or both, to guide the heuristic
selection. These ideas are the basis of the proposed heuristics
described below. For each heuristic we specify the arc that it
selects.

• wcon: selects the arc (cij ,xi) such that cij has the highest
weight wcon among all constraints appearing in an arc in
Q.

• wdeg: selects the arc (cij ,xi) such that xi has the highest
weighted degree wdeg among all variables appearing in an
arc in Q.

• dom/wdeg: selects the arc (cij ,xi) such that xi has the
smallest ratio between current domain size and weighted
degree among all variables appearing in an arc in Q.



• dom/wcon: selects the arc (cij ,xi) having the smallest ratio
between the current domain size of xi and the weight of cij

among all arcs in Q.

The call to one of the proposed arc-oriented heuristics can
be attached to line 3 of Algorithm 1.

Variable-oriented heuristics are tailored for the variable-
oriented variant of AC-3 where the list of revisions Q stores
variables. For each of the heuristics given below we specify
the variable that it selects.

• wdeg: selects the variable having the highest weighted de-
gree wdeg among all variables in Q.

• dom/wdeg: selects the variable having the smallest ratio
between current domain size and wdeg among all variables
in Q.

The call to one of the proposed variable-oriented heuristics
can be attached to line 4 of Algorithm 3. After selecting a
variable, the algorithm revises, in some order, the constraints
in which the selected variable participates (line 5). Our heuris-
tics process these constraints in descending order according to
their corresponding weight.

Finally, the constraint-oriented heuristic wcon selects a con-
straint cij from the AC revision list having the highest weight
among all constraints in Q. The call to this heuristic can be at-
tached to line 4 of Algorithm 5. One can devise more complex
constraint-oriented heuristics by aggregating the weighted de-
grees of the variables involved in a constraint. However, we
have not yet experimented with such heuristics.

5 Experiments and results

In this section we experimentally investigate the behavior of
the new revision ordering heuristics proposed above on sev-
eral classes of real, toy and random problems1. In our experi-
ments we included both satisfiable and unsatisfiable instances.
We only give results for the two most significant arc consis-
tency variants: arc and variable oriented. We have excluded
the constraint-oriented variant since this is not as competitive
as the other two [4].

We compare our heuristics with dom, the most efficient pre-
viously proposed revision ordering heuristic. We also include
results from the standard fifo implementation of the revision
list which always selects the oldest element in the list (i.e. the
list is implemented as a queue). In our tests we have used the
following measures of performance: cpu time in seconds (t),
number of visited nodes (n) and number of constraint checks
(c). The solver we used applies d-way branching, dom/wdeg
for variable ordering and lexicographic value ordering. It also
employs restarts. Concerning the restart policy, the initial
number of allowed backtracks for the first run has been set
to 10 and at each new run the number of allowed backtracks
increases by a factor of 1.5.

Tables 1 and 2 show results from some real-world RLFAP
instances. In the arc-oriented implementation of AC-3 (Ta-
ble 1), heuristics wcon, mainly, and dom/wcon, to a lesser
extent, decrease the number of constraint checks compared to
dom. However, the decrease is not substantial and is rarely
translated into a decrease in cpu times. The notable speed-up

1 (http://www.cril.univ-artois.fr/∼lecoutre/research/benchmarks/)

Table 1. Cpu times (t), constraint checks (c) and nodes (n)
from frequency allocation problems (hard instances) using arc and

variable oriented propagation. The s prefix stands for scen
instances. Best cpu time is in bold.

ARC ORIENTED
Inst. queue dom wcon wdeg d/wdeg d/wcon
s11-f9 t 17,1 11,7 13,3 13,5 17,3 12,9

c 18M 13,9M 9,5M 15M 15,1M 12,1M
n 1760 1688 1689 1671 1681 1697

s11-f8 t 34,2 18,5 20,5 20 26 21,4
c 33,5M 21,1M 13,8M 21,7M 23,7M 19,8M
n 2902 2679 2699 2746 2682 2822

s11-f7 t 234,6 133,5 154,9 241,7 187,5 297,2
c 193,1M 114,7M 92,5M 202,5M 147,6M 215,9M
n 25830 21571 23334 30185 22427 43695

s11-f6 t 518 423,9 281,9 492,4 760,8 361,2
c 347M 336,9M 166,1M 372,1M 536,3M 261M
n 68225 73235 42541 71918 99874 52512

s11-f5 t 2571 2102 2792 2947 2641 2088
c 1,793G 1,539G 1,509G 2,107G 1,868G 1,414G
n 310,4M 318,3M 440,2M 378,1M 272,3M 274,3M

s11-f4 t 10220 7084 7523 9464 11409 9543
c 7,150G 5,075G 3,812G 6,490G 7,706G 6,186G
n 1,103G 1,038G 1,116G 1,219G 1,245G 1,152G

observed for problem s11-f6 is mainly attributed to the re-
duction in node visits offered by the two new heuristics. wdeg
and dom/wdeg are less competitive, indicating that informa-
tion about the variables involved in arcs is less important
compared to information about constraints.

The variable-oriented implementation (Table 2) is clearly
more efficient than the arc-oriented one. This confirms the
results of [4]. Concerning this implementation, heuristic
dom/wdeg outperforms dom and queue both in node visits
and checks. Importantly, these savings are reflected on no-
table cpu time gains making the variable-oriented dom/wdeg
the overall winner. Results also show that as the instances
becomes harder, the efficiency of dom/wdeg heuristic com-
pared to dom increases. The variable-oriented wdeg heuristic
in most cases outperforms dom but is clearly less efficient than
dom/wdeg.

Table 2. Cpu times (t), constraint checks (c) and nodes (n)
from frequency allocation problems (hard instances) using arc and

variable oriented propagation. The s prefix stands for scen
instances. Best cpu time is in bold.

VARIABLE ORIENTED
Inst. queue dom wdeg d/wdeg
s11-f9 t 16,2 9,3 9,9 9

c 16,3M 8,2M 9,3M 7,9M
n 1767 1635 1677 1664

s11-f8 t 30,1 15,8 16,9 15,2
c 30,3M 12,4M 14,7M 12,1M
n 2879 2697 2679 2695

s11-f7 t 187,3 144,1 140,8 98,6
c 139,1M 84,1M 113,4M 59,5M
n 26139 27485 21332 19298

s11-f6 t 286 356,3 395,8 245,6
c 220,3M 189,4M 297,6M 138,6M
n 36331 68391 60919 46174

s11-f5 t 2254 2966 1840 1579
c 1,492G 1,522G 1,081G 832,8M
n 327,9M 582,1M 278,9M 292,6M

s11-f4 t 12729 10806 8648 6077
c 8,676G 5,405G 4,975G 3,110G
n 1,682G 1,982G 1,374G 1,048G

In Table 3 we present results from structured instances
belonging to benchmark classes langford and driver. As the
variable-oriented AC-3 variant is more efficient than the arc-
oriented one, we only present results from the former. Results
show that on easy problems all heuristics except queue are
quite competitive. But as the difficulty of the problem in-
creases, the improvement offered by the dom/wdeg revision
heuristic becomes clear. On instance driverlogw-09 we can see



the effect that weight based revision ordering heuristics can
have on search. dom/wdeg cuts down the number of node vis-
its by more than 5 times resulting in a similar speed-up. It is
interesting that dom/wdeg is considerably more efficient than
wdeg and dom, indicating that information about domain size
or weighted degree alone is not sufficient to efficiently order
the revision list.

Table 3. Cpu times (t), constraint checks (c) and nodes (n)
from structured problems using variable oriented propagation.

Best cpu time is in bold.

Instance queue dom wdeg d/wdeg
langford-2-9 t 49,4 42,7 55 42,1

c 71,7M 58,8M 71,9M 58,7M
n 71729 58897 71907 59095

langford-2-10 t 450 392,4 381,7 309,9
c 241,8M 204,1M 198M 142,4M
n 497,359 410819 381161 305480

langford-3-11 t 633,5 590,9 768,6 467,9
c 294M 253,8M 337,3M 184,7M
n 119036 99619 152063 96567

langford-4-10 t 76,3 52,6 90,6 37,5
c 37,8M 23,9M 42,9M 15,6M
n 5253 4352 5759 3896

driverlogw-08c t 26,4 13,4 13,1 13,3
c 15M 6,2M 7,9M 6,5M
n 7576 4451 2870 3895

driverlogw-09 t 206,1 374,5 315,6 63,9
c 109M 181M 146,5M 28,4M
n 30720 60084 46188 10917

Finally, in Table 4 we present results from benchmark ran-
dom problems. Here, there is a large diversity in the results.
All heuristics seems to lack robustness and there is no clear
winner. The constraint weight based heuristics can be up to
one order of magnitude faster than dom (instance geo50-20-
d4-75-2), but they can also be significantly slower (frb30-15-
2). In all cases, the large run time differences in favor of one
or another heuristic are caused by corresponding differences
in the size of the explored search tree, as node visits clearly
demonstrate.

A possible explanation for the diversity in the performance
of the heuristics on random problems as opposed to structured
ones is the following. When dealing with structured problems,
and assuming we use the variable-oriented variant of AC-3, a
weighted based heuristic like dom/wdeg will give priority for
revision to variables that are involved in hard subproblems
and hence will carry out DWO-revisions faster. This will in
turn increase the weights of constraints that are involved in
such hard subproblems and thus search will focus on the most
important parts of the search space. Random instances that
lack structure do not in general consist of hard local subprob-
lems. Thus, different decisions on which variables to revise
first can lead to different DWO-revisions being discovered,
which in turn can direct search tree to different parts of the
search space with unpredictable results. Note that for struc-
tured problems only a few possible DWO-revisions are present
in the revision list at each point in time, while for random ones
there can be a large number of such revisions.

6 Conclusions

In this paper we showed how information about constraint
weights can be exploited not only to perform variable selec-
tion, but also to order the revision list when arc consistency is
applied during search. As a result, we proposed a number of
simple and lightweight revision ordering heuristics for coarse
grained arc consistency algorithms. The proposed heuristics

Table 4. Cpu times (t), constraint checks (c) and nodes (n)
from random problems using variable oriented propagation. Best

cpu time is in bold.

Instance queue dom wdeg d/wdeg
frb30-15-1 t 26 19 26,7 12,8

c 11,9M 8M 11,8M 5,4M
n 6142 5648 6058 3659

frb30-15-2 t 69,4 27,1 108,3 86,6
c 32,9M 15,7M 64,8M 49,6M
n 18099 11617 36818 35822

frb35-17-1 t 114,6 176,5 107,5 228,6
c 67,6M 103,6M 64,6M 130,2M
n 27213 59585 28062 74098

rand-2-30-15 t 1130,1 67,8 89,3 98,5
c 82,4M 38,2M 52,2M 56,2M
n 42056 29056 29563 42115

geo50-20-d4-75-2 t 213,5 366,1 31,7 36
c 138M 223,3M 20,3M 20,7M
n 30747 88111 5468 8029

order the revision list by trying to carry out possible DWO-
revisions as soon as possible. Importantly, the heuristics can
not only reduce the numbers of constraint checks and list op-
erations but they can also have a significant effect on search.
Among the heuristic we experimented with, the one with best
performance was dom/wdeg in the variable-oriented imple-
mentation of arc consistency. Experimental results from var-
ious domains displayed the potential of the proposed heuris-
tics.

As future work, it would be interesting to study the inter-
action of revision ordering heuristics with other modern vari-
able ordering heuristics apart from dom/wdeg. For example,
the impact-based heuristics of [15] and the explanation-based
heuristics of [9].
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