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Abstract. In constraint programming there are often many choices re-
garding the propagation method to be used on the constraints of a
problem. However, simple constraint solvers usually only apply a stan-
dard method, typically (generalized) arc consistency, on all constraints
throughout search. Advanced solvers additionally allow for the modeler
to choose among an array of propagators for certain (global) constraints.
Since complex interactions exist among constraints, deciding in the mod-
elling phase which propagation method to use on given constraints can
be a hard task that ideally we would like to free the user from. In this pa-
per we propose a simple technique towards the automation of this task.
Our approach exploits information gathered from a random probing pre-
processing phase to automatically decide on the propagation method to
be used on each constraint. As we demonstrate, data gathered though
probing allows for the solver to accurately differentiate between con-
straints that offer little pruning as opposed to ones that achieve many
domain reductions, and also to detect constraints and variables that are
amenable to certain propagation methods. Experimental results from an
initial evaluation of the proposed method on binary CSPs demonstrate
the benefits of our approach.

1 Introduction

Constraint propagation is a crucial reason for the success of constraint program-
ming in solving hard combinatorial problems. Hence, this topic has attracted
considerable interest and numerous generic and specialized constraint propaga-
tion techniques have been developed. As a result, when modelling a CSP there
are, quite often, many choices regarding the propagation method to be used on
the constraints of the problem. For example, advanced constraint solvers offer
efficient filtering algorithms for both bounds consistency and generalized arc con-
sistency (GAC), also known as domain consistency, for certain global constraints
(e.g. alldifferent). The former are typically faster but the latter are stronger. As
another example, there are numerous choices for local consistencies that can be
applied on binary constraints. Despite the wealth of choices for constraint propa-
gation, simple constraint solvers usually only apply a standard method, typically
(G)AC, on all constraints throughout search. For instance, arc consistency is al-
most exclusively used on binary constraints. Advanced solvers can also apply a
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predetermined propagation method but in addition they allow for the modeler
to choose among an array of propagators for certain (global) constraints. Finally,
some solvers employ mechanisms for dynamically determining the propagation
method during search based on the event that triggered propagation. Typically
this is done on particular types of constraints such as arithmetic constraints.

Since complex interactions exist among constraints, which may only be re-
vealed during search, deciding in the modelling phase which propagation method
to use on given constraints can be a hard task that we would like to free the
user from. For the case of a binary constraint, for example, it is very difficult to
know a priori if choosing to propagate it using a strong local consistency such
as singleton arc consistency or path consistency will pay off. Ideally, we would
like to avoid using a strong propagation method on a constraint that will never,
or rarely, cause domain reductions during search as this would result in needless
cpu effort. Also, it would be preferable to choose say a cheap bounds consistency
propagator for a constraint if we knew that stronger propagators achieve little
extra pruning. But again this is very difficult to predict prior to search.

Deciding on which propagator to use for certain constraints based on static
features of the problem is part of the modelling process and has attracted con-
siderable interest. However, most of these works are problem-specific and re-
quire specialized modelling skills. The dynamic selection of propagators during
search has also been investigated before, but to a far lesser extent (for exam-
ple [10,17,15,19,20]). In this paper we propose a simple novel technique towards
automating the task of choosing the right propagation method for individual
constraints prior to search. Our approach differs from previous works as it does
not the require the modeler’s involvement in the process. Furthermore, it can be
easily combined with dynamic methods or in itself extended to operate dynam-
ically during search.

The proposed approach, which we call LPP (Learning Propagators through
Probing) uses information gathered from a random probing preprocessing phase
to automatically decide on the propagation method to be used on each constraint.
A random probe is a single run of a search algorithm with random variable
ordering, a fixed cut-off, and propagation turned on. Random probes provide a
sample of diverse areas in the search space and in our case can provide useful
information regarding the percentage of fruitful revisions for each constraint,
the number of value deletions caused by certain propagation methods, etc. We
show that by exploiting such data the solver is able to accurately differentiate
between constraints that offer little pruning as opposed to ones that achieve
many domain reductions. As a result, the solver may automatically choose to
propagate the former constraints using a low-cost propagation method and the
latter using a stronger, and more expensive, propagator. Further to this, LPP
can detect constraints and variables that are amenable to certain propagation
methods. As we explain, these are accomplished through the use of a clustering
algorithm that partitions the constraints into clusters having different features.

Although the method proposed is generic, we only present an initial evalua-
tion on binary CSPs. To obtain the required data from random probing, we built
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a staged propagator [18] for binary problems, i.e. a set of multiple propagators
having varying cost and pruning power. This propagator progressively applies
various local consistencies starting with bounds consistency and culminating in
bounds singleton arc consistency. In a series of random probes where the propa-
gator is applied after each variable assignment, we recorded the number of times
each constraint was fruitfully revised, the local consistency that was responsible
for each such revision, and the number of value deletions caused by each con-
sistency. A comparison of these results to similar results obtained by running
heuristically guided search to termination (using the same propagator) revealed
interesting patterns. For instance, constraints that display a very low percentage
of fruitful revisions can be accurately discovered through random probing.

Our methodology exploits the results of random probing to decide how to
propagate each constraint during search using simple heuristic rules. Experimen-
tal results from various benchmarks demonstrate that LPP outperforms MAC,
i.e. the standard search algorithm for binary problems, on hard instances, some-
times by a very large margin. Also, LPP is quite competitive with heuristics from
[19] which dynamically switch between two local consistencies throughout search.

The rest of the paper is structured as follows. Section 2 gives some necessary
background and introduces notation. In Section 3 we describe the staged propa-
gator for binary constraints that we used in our experiments. Section 4 presents
the LPP framework and gives experimental results demonstrating the accuracy
of its predictions. In Section 5 we make an experimental evaluation of LPP on
various binary problems. In Section 6 we discuss related work, and finally in
Section 7 we conclude.

2 Background

A Constraint Satisfaction Problem (CSP) is a tuple (X, D, C) where: X =
{x1, . . . , xn} is a set of n variables, D = {D(x1), . . . , D(xn)} is a set of do-
mains, one for each variable, and C = {c1, . . . , ce} is a set of e constraints. Each
constraint c is a pair (var(c), rel(c)), where var(c) = {x1, . . . , xk} is an ordered
subset of X , and rel(c) is a subset of the Cartesian product D(x1)x . . . xD(xk).
In a binary CSP, a directed constraint c, with var(c) = {xi, xj}, is arc consistent
(AC) iff for every value ai ∈ D(xi) there exists a value aj ∈ D(xj) s.t. the 2-
tuple <(xi, ai), (xj , aj)> satisfies c. In this case (xj , aj) is called an AC-support
of (xi, ai) on c. A problem is AC iff there is no empty domain in D and all the
constraints in C are AC. Maintaining arc consistency (MAC), which the most
commonly used search algorithm for binary CSPs, applies AC to the problem
after each variable assignment. A variable xi is singleton arc consistent (SAC)
iff for each value ai ∈ D(xi) after assigning ai to xi and applying AC there is no
empty domain [9]. A problem is SAC iff all variables are SAC.

Assuming finite integer domains for the variables, each domain D(xi) has a
minimum and a maximum value, called the bounds of D(xi) and denoted by
minD(xi) and maxD(xi) respectively. A directed constraint c is bounds consis-
tent (BC) iff both minD(xi) and maxD(xi) have AC-supports on c. This defini-
tion of BC corresponds to BC(D) as defined in [4]. Bounds SAC (BSAC) is a
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restricted version of SAC that only applies SAC on the bounds of the variables’
domains [14].

A directed constraint c, with var(c) = {xi, xj}, is max restricted path con-
sistent (maxRPC) iff it is AC and for each value (xi, ai) there exists a value
aj ∈ D(xj) that is an AC-support of (xi, ai) s.t. the 2-tuple <(xi, ai), (xj , aj)>
is path consistent (PC) [9]. A tuple <(xi, ai), (xj , aj)> is PC iff for any third
variable xm there exists a value am ∈ D(xm) s.t. (xm, am) is an AC-support of
both (xi, ai) and (xj , aj).

The revision of a binary constraint c, with var(c) = {xi, xj}, using a local
consistency A is the process of checking whether the values of xi verify the
property of A. For example, the revision of c using AC verifies if all values in
D(xi) have AC-supports on c. We say that a revision is fruitful if it deletes at
least one value, while it is redundant if it achieves no pruning.

3 A Staged Propagator for Binary Constraints

Staged propagators were introduced by Schulte and Stuckey as a way to effi-
ciently apply the different propagators that may be available for certain types
of constraints [18]. A staged propagator for a constraint c is a set of propagators
for c, having varying pruning power and cost, that are combined together. Each
staged propagator has an internal state variable, called the state of the propa-
gator, which determines the individual propagation method to be used once an
event that triggers propagation for c occurs. For example, assuming that vari-
able xi appears in c, the removal of minD(xi) may force the staged propagator
to enter a state where a bounds consistency algorithm will be applied.

Here we describe a simple staged propagator for binary constraints that com-
bines together four local consistencies: BC, AC, maxRPC, and BSAC. For sim-
plicity, we will use the term stage to refer to one of the local consistencies that
are combined together. For example, value deletions caused by the AC stage will
refer to value deletion caused by the application of AC. We slightly abuse the
definition of a staged propagator as we have implemented a variable-oriented
propagation scheme where variables are the entities added to and removed from
the propagation queue. Although in constraint solvers like Ilog Solver and Gecode
the entities handled by the propagation queue are propagators, in the case of
binary constraints variable-oriented propagation is more efficient. This has been
previously demonstrated for arc consistency algorithms (e.g. [6,1]), but it is also
true for higher level consistencies. To be precise, our experimental results showed
a speed-up of up to three times in favor of variable-oriented propagation com-
pared to its constraint-oriented counterpart1.

Figure 1 gives an abstract high-level description of the staged propagator used.
During preprocessing with random probing this propagator is applied as shown in
Figure 1 after each variable assignment (current variable denotes the currently
assigned variable). The propagator removes a variable xi from the queue and
revises all constraints involving xi. That is, it applies all four stages successively,

1 These experimental results are omitted because of space restrictions.
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function Binary Staged Propagation(X,D,C,current variable)
1: add current variable to Q
2: while Q �= ∅
3: remove variable xi from Q;
4: for any constraint c, with var(c) = {xj , xi}
5: successively apply BC,AC,maxRPC to c;
6: apply BSAC to xj ;
7: if D(xj) = ∅ then return FAILURE;
8: else if D(xj) has been reduced then add xj to Q;
9: return TRUE;

Fig. 1. A staged propagator for binary CSPs

as long as no domain wipeout (DWO) occurs. After the application of each
stage the propagator records information concerning the pruning effects of the
relevant constraint and the currently applied stage, as detailed in the next section
(this is not shown in Figure 1 for simplicity). Once the process terminates, the
data gathered is processed as will be explained below to select the propagation
method to be applied on each constraint during search. Note that using the
staged propagator in its full power throughout search is prohibitively expensive
as it incurs many redundant revisions resulting in cpu times that can be orders
of magnitude slower than MAC. Also, using SAC instead of BSAC results in
more domain reductions albeit with a much higher cost.

4 Learning through Random Probing

In this section we first show that results gathered through random probing,
concerning the pruning effects of the constraints, often reflect similar results
gathered by running search to completion. Then we explain how LPP exploits
this to decide on the propagator for individual constraints prior to search.

4.1 Accuracy of Learning

The LPP methodology utilizes the staged propagator described previously to
gather data concerning the filtering power of the various propagation stages on
individual constraints. For each constraint c we record the following information:

1. the number of times c was revised,
2. the ratio of fruitful revisions over the total number of revisions,
3. the ratio of fruitful revisions over the total number of revisions for each of

the propagator’s stages,
4. the total number of value deletions caused by c,
5. the ratio of value deletions over the total number of deletions caused by each

stage separately.

The third item above is computed by simply recording the stage that is re-
sponsible for each value deletion during a fruitful revision of a constraint. Table 1
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Table 1. Sample data gathered by random probing in a frequency assignment problem

recorded data c1 c2 c3 ...
#revisions 60 63 69
fr-ratio 0.28 0.47 0.05
frBC-ratio 0.08 0.27 0.01
frAC-ratio 0.03 0.35 0.01
frmaxRPC -ratio 0.28 0.00 0.04
frBSAC-ratio 0.00 0.00 0.00
#deletions 51 136 8
delBC -ratio 0.06 0.60 0.25
delAC -ratio 0.03 0.40 0.25
delmaxRP C-ratio 0.91 0.00 0.50
delBSAC-ratio 0.00 0.00 0.00

depicts part of the data gathered by random probing in tabular form. There is
one column for each constraint, and each row corresponds to a piece of informa-
tion concerning the pruning achieved by the constraints. The sample data shown
is taken from a frequency assignment problem where we run 20 random probes
each being cut off once 100 nodes (i.e. variable assignments) have been counted.

As one can see, constraint c1 displayed a relatively high ratio of fruitful to
total revisions (28% in row 2), the maxRPC stage contributed at least one value
deletion in each of the constraint’s fruitful revisions (the number in row 5 is the
same as in row 2), and most of the value deletions it caused were due to the
maxRPC stage (91% in row 10). Constraint c2 displayed an even higher ratio of
fruitful revisions but this time all value deletions were contributed by the BC
and AC stages. Finally, constraint c3 had a low ratio of fruitful revisions (only
5%) and the 8 value deletions it caused were due to either BC, AC, or maxRPC.
BSAC did not contribute any value deletions for these three constraints.

As the data in Table 1 demonstrates, the various constraints can display
different behavior with respect to their revisions and the pruning they cause. The
interesting question is whether this behavior observed during random probing
is relevant to the corresponding behavior of the constraints during heuristically
guided search. Or in other words, whether we can “predict” how each constraint
will behave based on the random probing results. First of all, to get a better
picture of the distribution of the constraints into different patterns of behavior,
we run the clustering algorithm fuzzy c-means on the data gathered by random
probing. The following paragraph briefly discusses fuzzy c-means and then we
present some clustering results.

Fuzzy c-means (FCM) is one of the most frequently used clustering algorithms.
FCM allows one piece of data to belong to more than one clusters [5]. To this
end, data are bound to each cluster by means of a membership function. Given a
predefined number of clusters, FCM iteratively optimizes an objective function
that is based on the distance of each data point from the cluster centers and
the degree of membership in each cluster. In comparison to k-means, another
well-known clustering algorithm, the FCM objective function differs in taking
into account the degrees of membership in each cluster as well as an additional
parameter (the fuzzifier) that determines the level of cluster fuzziness. A large
fuzzifier results in fuzzier clusters whereas a fuzzifier equal to 1 results in crisp
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Fig. 2. Clustering results from a frequency assignment (left plots) and a random prob-
lem (right plots). The x-axis gives the ratio of fruitful revisions while the y-axis gives
the ratio of value deletions due to the maxRPC stage. The top plots show clusters
formed from the random probing results while the bottom ones show clusters formed
from search results.

partitioning. The iteration stops when the degrees of membership of data in each
cluster are not significantly modified in successive iteration steps. Similarly to
k-means, FCM tends to group data spatially according to their distance from
the cluster centers. However, this spatial partitioning is more flexible due to the
fuzzifier parameter. In this paper, we used 3 clusters and set the fuzzifier to 2
based on preliminary experiments.

The top plots in Figures 2 and 3 show how constraints are clustered after
running FCM on the data gathered by random probing for four different prob-
lems. The input parameters for FCM were the ratio of fruitful revisions and
the corresponding ratios for the propagation stages. The horizontal axis in the
figures gives the ratio of fruitful revisions while the vertical axis gives the ratio
of value deletions caused by the maxRPC stage. As is evident, in all four prob-
lems the three clusters created partition the constraints mainly according to the
ratio of fruitful revisions. Going from left to right the three clusters include con-
straints with increasing ratio. Apart from this differentiation additional useful
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Fig. 3. Clustering results from a frequency assignment (left plots) and a quasigroup
completion problem (right plots). The top plots show clusters formed from the random
probing results while the bottom ones show clusters formed from accumulated probing
and search results.

information can also be extracted. For example, the rightmost cluster in the top
left plot of Figure 3 mostly includes constraints with low ratio of value deletions
by maxRPC. Hence, it seems that for these constraints the maxRPC stage has
little effect.

To answer the question posted above on whether the pruning behavior of the
constraints during random probing is relevant to their behavior during search,
we run a search algorithm that applied the staged propagator after each vari-
able assignment. We also recorded the same information regarding revisions and
value deletions as during random probing. The bottom plots in Figure 2 show
how constraints are clustered after running FCM on this data for the same two
problems as in the top plots. Figure 3 displays similar results but in these two
cases random probing was applied prior to search. That is, the data is accumu-
lated from both preprocessing and search. In the three structured problems (the
left problem in Figure 2 and both problems in Figure 3) the distribution of the
constraints in the three clusters resembles the corresponding distribution from
the random probing results, especially in Figure 3. In contrast, the clusters in
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the random problem (right plots in Figure 2) are quite different compared to the
corresponding clusters from random probing. This indicates that in the absence
of structure it is difficult to predict the behavior of the constraints using random
probing.

Note that the bottom left plot in Figure 2 includes fewer data points (i.e.
constraints) than the top left one. This is because heuristically guided search
focuses on certain parts of the search space and as a result many constraints are
not revised at all, which means that the corresponding data points have (0,0)
coordinates on the plot. Also, in the bottom plot the three clusters are shifted
to the right compared to the top one. However, the membership of constraints
to clusters remains similar. That is, most constraints that belong to a particular
cluster in the top plot, say the middle one, belong to the corresponding cluster
in the bottom plot as well.

Table 2. Accuracy of clusters for various problems. The second column gives the
number of constraints in each problem.

instance e % accuracy % left cluster accuracy

scen11-f6 4102 70 96

scen11-f7 4102 79 97

driver9 17446 83 89

qcp15-120-9 3149 92 99

qwh20-166-1 7599 95 99

qwh20-166-8 7599 95 99

3-fullins-5-5 33750 58 94

myciel7-4 2359 65 72

frb40-19-0 320 59 73

Table 2 gives further evidence concerning the similarity of the clusters created
using the random probing results compared to the clusters created using results
from search. Each row in the table gives results from a benchmark problem.
These problems are all structured (either real or academic) apart from the last
one which was randomly generated (see Section 5 for more details). The third
column gives the percentage of constraints that were assigned to corresponding
clusters in both the random probing and the final clusterings. The fourth column
gives the percentage of constraints that were assigned to the leftmost cluster in
the preprocessing clustering and remained assigned to the leftmost cluster in
the final clustering. This is particularly useful as it demonstrates the accuracy
in identifying constraints that have a low ratio of fruitful revisions. For most
problems the percentage is very high, getting close to 100%. As expected, the
similarity between the clusterings is lower in the case of the random problem.

4.2 Exploiting Learning to Determine Propagators

Having shown that some important aspects of the pruning behavior that the
constraints display can be predicted through random probing, the question that
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naturally arises is how to exploit this in order to make informed automatic de-
cisions about the propagators to use on individual constraints during search. A
naive answer would be to simply look at the results gathered (e.g. Table 1) and
select the propagation stage that caused the highest number of deletions for a
constraint c as the propagator to be used on c. Although this is not entirely
useless (experiments showed it outperforms MAC!), it suffers from certain draw-
backs. Most notably it ignores the ratio of fruitful revisions which is a crucial
piece of information. Choosing a strong propagator for constraints that have a
low ratio is not cost-effective. For example, following this naive approach the
solver would select to propagate constraint c3 of Table 1 using maxRPC. This
can result in many redundant revisions of high cost.

LPP answers the above question by exploiting the results provided by the
FCM clustering algorithm and making the decisions using simple (heuristic)
rules which basically constitute a decision tree. Note that it is easy to identify
the three clusters by looking at the clusters’ centers. The cluster whose center has
the lowest value of fruitful revisions ratio is the one which includes constraints
with low ratio of fruitful revisions. Accordingly, we can differentiate the other
two clusters through their centers. The rules we have used are as follows.

– Any constraint belonging to the cluster whose center has the lowest ratio of
fruitful revisions (the leftmost cluster in the plots) is propagated with AC
or BC, depending on which one has the highest ratio of deletions.

– Any constraint belonging to the cluster whose center has the highest ratio
of fruitful revisions (the rightmost cluster in the plots) is propagated with
maxRPC if 1) the cluster center’s ratio of fruitful revisions by maxRPC
(frmaxRPC -ratio in Table 1) is the highest among the three clusters and
2) maxRPC has the highest ratio of deletions (delmaxRPC -ratio in Table 1)
compared to the other stages for this constraint. Otherwise, it is propa-
gated using heuristic H∨

12 from [19]. This heuristic switches between AC and
maxRPC during search according to certain conditions explained below.

– Any constraint belonging to the remaining cluster (the middle cluster) is
propagated using heuristic H∨

12 except if: 1) the cluster center’s ratio of
fruitful revisions by maxRPC is the highest among the three clusters in
which case it is propagated with maxRPC, or 2) the maxRPC stage does
not cause any deletions at all, in which case it is propagated with AC.

– BSAC is applied on any variable whose ratio of fruitful calls to BSAC over
the total number of calls is more that 0.5. That is, line 6 in Figure 1 is only
executed for these variables.

Heuristic H∨
12 monitors and counts revisions, DWOs and value deletions for

the constraints in the problem. It uses two (user defined) thresholds l1 and l2,
set to 100 and 10 in this paper, to switch between a weak but cheap local consis-
tency W and a stronger but more expensive one S. A constraint c is made S if
the number of times it was revised since the last time it caused a DWO is less or
equal to l1, or if the number of times it was revised since the last time it caused a
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value deletion is less or equal to l2. If none of these conditions holds, c it is made
W . In this paper W and S were set to AC and maxRPC respectively. Setting S
to BSAC or SAC resulted in a very cost-inefficient method.

A drawback of our method is that the heuristic rules described above were pre-
determined based on intuition and preliminary experiments, and hence required
expertise. The intuition is simple: we select a low-cost propagator for constraints
that displayed many redundant revisions during preprocessing, and a high-cost
but more efficient one for constraints that displayed many fruitful revisions most
of which were due to the high-cost propagator. Automatic generation of heuristic
rules is an important topic that requires further research.

5 Experimental Results

In this section we present an initial evaluation of LPP on binary CSPs. We
compare the method to the widely used MAC algorithm and also to heuristic
H∨

12 applied to all constraints of the problem as proposed in [19]. The solver
we used applies d-way branching, lexicographic value ordering, the dom/wdeg
variable ordering heuristic [7], and restarts. Concerning the restart policy, the
initial number of allowed backtracks for the first run has been set to 10 and at
each new run the number of allowed backtracks increases by a factor of 1.5. We
set the number of random probes to 20 and the cut-off limit for each probe to
100 nodes. We noticed little variance in the results when these settings changed,
but finding the “optimal” settings for each problem is an issue that requires
further research. Another topic for future work is the use of random probes with
random value ordering which may result in even more diverse sampling of the
search space. To keep preprocessing times manageable BSAC, which can be quite
time consuming, was only applied in 1/5th of the nodes (randomly selected).

We experimented with the following classes of problems: radio links frequency
assignment (RLFAPs), graph coloring (GC), haystacks (H), quasigroup comple-
tion (QCP), quasigroups with holes (QWH), forced random problems (R). All
apart from the last class are structured binary CSPs. Tables 3 and 4 give in-
dicative experimental results. The specific benchmark instances taken from C.
Lecoutre’s web page. The first table gives results from insoluble problems while
the second from soluble ones. For LPP we give both the total cpu time and the
time required for random probing and clustering. Note that the time required
for clustering is negligible compared to that for random probing.

As results demonstrate, LPP can be considerably more efficient than MAC
on the majority of the problems, and especially on the hard insoluble ones. The
random probing preprocessing phase consumes a significant portion of the ex-
ecution time for easier instances, but in most cases this becomes negligible as
the problems become harder. Comparing heuristic H∨

12 to LPP we can see that
the methods are competitive with LPP often being faster despite the time spent
on preprocessing. LPP, as well as H∨

12, is not competitive with MAC on random



274 E. Stamatatos and K. Stergiou

Table 3. Nodes (n) and cpu times (t) in seconds from insoluble problems. The LPP
column gives the total cpu time of preprocessing + search and in brackets the time
required for preprocessing (i.e. random probing and clustering). A time out limit of 2
hours was set.

type instance MAC H∨
12 LPP

RLFAP scen11-f6 n 74,879 7,895 4,871
t 58 14 66 (50)

RLFAP scen11-f5 n 321,435 52,750 12,501
t 254 94 99 (53)

RLFAP scen11-f4 n 1,110,401 167,786 22,112
t 856 266 110 (61)

RLFAP scen11-f3 n 4,995,046 167,596 23,334
t 3917 274 111 (62)

GC homer-8 n 228,495 11,770 201,023
t 102 7 118 (3)

GC myciel5-5 n 22,640,358 22,640,358 22,640,358
t 638 2021 842 (1)

GC myciel6-5 n 6,915,618 6,915,618 6,915,618
t 654 2815 896 (5)

GC miles-500-10 n 19,996,866 9,693 18,048
t 3596 3 15 (9)

H haystacks-5 n 1,203,768 3,256 942
t 13 0.5 0.2 (0.1)

H haystacks-6 n - 23,328 25,732
t >2h. 2 2 (0.2)

QCP qcp15-120-10 n 8,580,800 2,747,682 113,487
t 1860 1340 50 (5)

QCP qcp15-120-13 n 1,007,089 155,971 230,591
t 235 71 108 (4)

problems, which gives further evidence that the absence of structure hinders the
accuracy of the learning process.

Interestingly, on the myciel graph coloring problems maxRPC and BSAC do
not offer any more pruning than AC. LPP discovers this during preprocessing and
does not select these two consistencies for any constraint. Hence the same node
visits but reduced cpu times compared to H∨

12 which “blindly” switches between
AC and maxRPC during search. However, the second rule of Section 4.2 selects
to propagate some constraints using H∨

12 which accounts for the increased times
compared to MAC. On a negative note, problem homer-8 is an example where
LPP fails to interpret the random probing results in an efficient way. Although
the leftmost cluster created includes constraints with low ratio of fruitful revi-
sions, this is the only cluster that includes constraints where the maxRPC stage
makes value deletions. Despite this, all constraints in this cluster are selected to
be propagated with AC or BC which accounts for the significant difference in
node visits and cpu time compared to H∨

12.
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Table 4. Nodes (n) and cpu times (t) in seconds from various soluble problems

type instance MAC H∨
12 LPP

QCP qcp15-120-9 n 135,267 29,812 29,383
t 30 12 31 (4)

QCP qcp20-187-1 n 189,942 344,418 172,574
t 102 262 149 (10)

QWH qwh20-166-7 n 88,429 10,945 22,023
t 206 19 49 (9)

QWH qwh20-166-8 n 70,945 12,565 29,199
t 160 23 72 (10)

GC homer-10 n - 3,505 2,994
t >2h. 3 6 (4)

R frb35-17-0 n 59,910 10,155 4,320
t 14 13 20 (10)

R frb40-19-0 n 170,345 46,596 94,722
t 45 80 238 (10)

R frb45-21-0 n 1,028,028 767,550 1,205,280
t 320 1862 1844 (10)

6 Related Work

Random probing has been used in constraint programming before, albeit in dif-
ferent contexts. Grimes and Wallace have used probing to initialize the scores
of the dom/wdeg heuristic and in this way make it more informed at the initial
stages of search [12]2. Ruml proposed an adaptive probing scheme that itera-
tively adapts the search guiding heuristic in subsequent searches [16]. Beck used
probing in the context of multi-point constructive search [2]. Probes are used
to initialize a set of “elite” partial solutions some of which are thereafter used
as starting points for subsequent searches. Finally, probing has been to measure
the promise of variable ordering heuristics [3].

There have been several efforts, which are mainly related to the modelling
of specific CSPs, on deciding which propagator to apply on certain constraints
based on static features of the problem. As most of these works are not general
but rather problem-specific, we will not review them in detail. Instead, we will
focus on approaches that try to select the propagation method using dynamic
features of the problem.

Adaptive constraint propagation has attracted interest in the past. The most
common manifestation of adaptive propagation is the use of different propagators
for different types of domain reductions in arithmetic constraints. When handling
arithmetic constraints most solvers differentiate between events such as removing
a value from the middle of a domain, or from a bound of a domain, or reducing
a domain to a singleton, and apply suitable propagators accordingly.

2 Note that we did not do this in our experiments to avoid adding bias to the results.
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Works on adaptive propagation for general constraints include the following.
El Sakkout et al. proposed a scheme called adaptive arc propagation for dynam-
ically deciding whether to process individual constraints using AC or forward
checking [10]. Freuder and Wallace proposed a technique, called selective relax-
ation which can be used to restrict AC propagation based on two criteria; the
distance in the constraint graph of any variable from the currently instantiated
one, and the proportion of values deleted [11]. Chmeiss and Sais presented a
backtrack search algorithm, MAC (dist k), that also uses a distance parameter
k as a bound to maintain a partial form of AC [8].

Schulte and Stuckey proposed techniques for dynamically selecting which
propagator to apply to a given constraint using priorities and staged propa-
gators [17]. Their proposed methods either select a single propagator from a
given set or propagators or choose the order in which the propagator stages will
be applied [17]. These methods are based on interpreting the event that triggers
propagation for a constraint at any point in time, such as the reduction of a do-
main to a singleton or the removal of a value from a bound of a domain. Similar
ideas are also implemented in constraint solvers such as Choco [13].

Probabilistic arc consistency is a scheme that can help avoid some consistency
checks and constraint revisions that are unlikely to cause any domain pruning
[15]. As in [10], the scheme is based on information gathered by examining the
supports of values in constraints which can be very expensive for non-binary con-
straints. Szymanek and Lecoutre studied ways to select values on which to apply
“shaving” (i.e. make the values SAC) using the semantics of global constraints
(e.g. alldifferent) to suggest values that are most likely to be removed by shaving
[20]. Finally, Stergiou proposed heuristics for dynamically switching between two
propagators on individual constraints during search [19]. These heuristics take
advantage of the fact that in structured problems propagation events usually
occur in clusters, but it is difficult to see how they can be generalized to work
with more than two propagators.

As discussed, our work makes a static selection of propagator for individual
constraints, but it can be combined with most dynamic approaches as we demon-
strated for [19]. Combining with such approaches is an interesting direction for
future work. Also, we can extend LPP to a dynamic version where constraint
propagation data acquired during search is taken into account to perhaps read-
just the initial static propagator choices if necessary.

7 Conclusions

Choosing the right propagator for specific constraints prior to search is a diffi-
cult task for CP modelers. We have presented LPP, a simple approach toward
automating this task. Our approach is based on gathering data concerning the
pruning behavior of the constraints in a random probing preprocessing phase.
A case study on binary constraints was presented, and as experimental results
demonstrated, decisions taken using the random probing results can be quite
accurate in many cases, resulting in improved cpu times during search. In ad-
dition, we believe that our work emphasizes the largely untapped potential of
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using machine learning techniques, such as clustering, to boost the performance
of CP systems.

A drawback of LPP is that the preprocessing phase can be too expensive on
very large problems with many variables and constraints. To overcome this we
may lift the requirement that all stages of the propagator used are applied at
each node and for each constraint. In the future we plan to extend the work
presented here to include a wider range of local consistencies for binary as well
as non-binary constraints. Also, we would like to investigate the use of machine
learning techniques to automatically build the decision tree which exploiting
random probing results will be able to propose propagators for the constraints.
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