
Restricted Path Consistency Revisited

Kostas Stergiou

Department of Informatics and Telecommunications Engineering,
University of Western Macedonia, Greece.

Abstract. Restricted path consistency (RPC) is a strong local consistency for bi-
nary constraints that was proposed 20 years ago and was identified as a promising
alternative to arc consistency (AC) in an early experimental study of local con-
sistencies for binary constraints. However, and in contrast to other strong local
consistencies such as SAC and maxRPC, it has been neglected since then. In this
paper we revisit RPC. First, we propose RPC3, a new lightweight RPC algorithm
that is very easy to implement and can be efficiently applied throughout search.
Then we perform a wide experimental study of RPC3 and a light version that
achieves an approximation of RPC, comparing them to state-of-the-art AC and
maxRPC algorithms. Experimental results clearly show that restricted RPC is by
far more efficient than both AC and maxRPC when applied throughout search.
These results strongly suggest that it is time to reconsider the established percep-
tion that MAC is the best general purpose method for solving binary CSPs.

1 Introduction

Restricted path consistency (RPC) is a local consistency for binary constraints that is
stronger than arc consistency (AC). RPC was introduced by Berlandier [4] and was
further studied by Debruyne and Bessiere [7, 8]. An RPC algorithm removes all arc
inconsistent values from a domain D(x), and in addition, for any pair of values (a, b),
with a ∈ D(x) and b ∈ D(y) s.t. b is the only support for a in a D(y), it checks if
(a, b) is path consistent. If it is not then a is removed from D(x). In this way some of
the benefits of path consistency are retained while avoiding its high cost.

Although RPC was identified as a promising alternative to AC as far back as 2001
[8], it has been neglected by the CP community since then. In contrast, stronger local
consistencies such as max restricted path consistency (maxRPC) [7] and singleton arc
consistency (SAC) [8] have received considerable attention in the past decade or so [13,
9, 3, 11, 14, 5, 1, 2]. However, despite the algorithmic developments on maxRPC and
SAC, none of the two outperforms AC when maintained during search, except for spe-
cific classes of problems. Therefore, MAC remains the predominant generic algorithm
for solving binary CSPs.

In this paper we revisit RPC and make two contributions compared to previous
works that bring the state-of-the-art regarding RPC up to date. The first is algorithmic
and the second experimental.

The two algorithms that have been proposed for RPC, called RPC1 [4] and RPC2
[7], are based on the AC algorithms AC4 and AC6 respectively. As a result they suffer
from the same drawbacks as their AC counterparts. Namely, they use heavy data struc-
tures that are too expensive to maintain during search. In recent years it has been shown



that in the case of AC lighter algorithms which sacrifice optimality display a better per-
formance when used inside MAC compared to optimal but heavier algorithms such as
AC4, AC6, AC7, and AC2001/3.1. Hence, the development of the residue-based version
of AC3 known as AC3r [10, 12]. A similar observation has been made with respect to
maxRPC [1]. Also, it has been noted that cheap approximations of local consistencies
such as maxRPC and SAC are more cost-effective than the full versions. In the case of
maxRPC, the residue-based algorithm lmaxRPC3r, which achieves an approximation
of maxRPC, is the best choice when applying maxRPC [1].

Following these trends, we propose RPC3, an RPC algorithm that makes use of
residues in the spirit of ACr and lmaxRPCr and is very easy to implement. As we will
explain, for each constraint (x, y) and each value a ∈ D(x), RPC3 stores two residues
that correspond to the two most recently discovered supports for a in D(y). This enables
the algorithm to avoid many redundant constraint checks. We also consider a restricted
version of the algorithm (simply called rRPC3) that achieves a local consistency prop-
erty weaker than RPC, but still stronger than AC, and is considerably faster in practice.

Our second and most important contribution concerns experiments. Given that the
few works on RPC date from the 90s, the experimental evaluations of the proposed al-
gorithms were carried out on limited sets of, mainly random, problems. Equally impor-
tantly, there was no evaluation of the algorithms when used during search to maintain
RPC. We carry out a wide evaluation on benchmark problems from numerous classes
that have been used in CSP solver competitions. Surprisingly, results demonstrate that
an algorithm that applies rRPC3 throughout search is not only competitive with MAC,
but it clearly outperforms it on the overwhelming majority of tested instances, espe-
cially on structured problems. Also, it clearly outperforms lmaxRPC3r. This is because
RPC, and especially its restricted version, achieves a very good balance between the
pruning power of maxRPC and the low cost of AC.

Our experimental results provide strong evidence of a local consistency that is
clearly preferable to AC when maintained during search. Hence, perhaps it is time to re-
consider the common perception that MAC is the best general purpose solver for binary
problems.

2 Background

A Constraint Satisfaction Problem (CSP) is defined as a triplet (X ,D, C) where: X =
{x1, . . . , xn} is a set of n variables, D = {D(x1), . . . , D(xn)} is a set of domains,
one for each variable, with maximum cardinality d, and C = {c1, . . . , ce} is a set of e
constraints. In this paper we are concerned with binary CSPs. A binary constraint cij
involves variables xi and xj .

At any time during the solving process if a value ai has not been removed from the
domain D(xi), we say that the value is valid. A value ai ∈ D(xi) is arc consistent
(AC) iff for every constraint cij there exists a value aj ∈ D(xj) s.t. the pair of values
(ai, aj) satisfies cij . In this case aj is called an support of ai. A variable is AC iff all its
values are AC. A problem is AC iff there is no empty domain in D and all the variables
in X are AC.



A pair of values (ai, aj), with ai ∈ D(xi) and aj ∈ D(xj), is path consistent PC
iff for any third variable xk constrained with xi and xj there exists a value ak ∈ D(xk)
s.t. ak is a support of both ai and aj . In this case aj is a PC-support of ai in D(xj) and
ak is a PC-witness for the pair (ai, aj) in D(xk).

A value ai ∈ D(xi) is restricted path consistent (RPC) iff it is AC and for each
constraint cij s.t. ai has a single support aj ∈ D(xj), the pair of values (ai, aj) is path
consistent (PC) [4]. A value ai ∈ D(xi) is max restricted path consistent (maxRPC) iff
it is AC and for each constraint cij there exists a support aj for ai in D(xj) s.t. the pair
of values (ai, aj) is path consistent (PC) [7]. A variable is RPC (resp. maxRPC) iff all
its values are RPC (resp. maxRPC). A problem is RPC (resp. maxRPC) iff there is no
empty domain and all variables are RPC (resp. maxRPC).

3 The RPC3 Algorithm

The RPC3 algorithm is based on the idea of seeking two supports for a value, which
was first introduced in RPC2 [7]. But in contrast to RPC2 which is based on AC6, it
follows an AC3-like structure, resulting in lighter use of data structures, albeit with
a loss of optimality. As explained below, we can easily obtain a restricted but more
efficient version of the algorithm that only approximates the RPC property. Crucially,
the lack of heavy data structures allows for the use of the new algorithms during search
without having to perform expensive restorations of data structures after failures.

Algorithm 1 RPC3:boolean
1: while Q 6= ∅ do
2: Q← Q−{(xi, xj)};
3: Deletion← FALSE;
4: for each ai ∈ D(xi) do
5: if both R1

xi,ai,xj
and R2

xi,ai,xj
are valid then

6: continue;
7: else
8: if only one of R1

xi,ai,xj
and R2

xi,ai,xj
is valid then

9: R← the valid residue;
10: else
11: R← NIL;
12: if findTwoSupports(xi, ai, xj , R) = FALSE then
13: remove ai from D(xi);
14: Deletion← TRUE;
15: if D(xi) = ∅ then
16: return FALSE;
17: if Deletion = TRUE then
18: for each (xk, xi) ∈ C s.t. (xk, xi) /∈ Q do
19: Q← Q ∪ {(xk, xi)};
20: for each (xl, xk) ∈ C s.t. xl 6= xi and (xl, xi) ∈ C and (xl, xk) /∈ Q do
21: Q← Q ∪ {(xl, xk)};
22: return TRUE;



In the spirit of ACr, RPC3 utilizes two data structures, R1 and R2, which hold resid-
ual data used to avoid redundant operations. Specifically, for each constraint cij and
each value ai ∈ D(xi), R1

xi,ai,xj
and R2

xi,ai,xj
hold the two most recently discovered

supports of ai in D(xj). Initially, all residues are set to a special value NIL, considered
to precede all values in any domain.

Function 2 findTwoSupports(xi, ai, xj , R):Boolean
1: if R = NIL then oneSupport← FALSE;
2: else oneSupport← TRUE;
3: for each aj ∈ D(xj) do
4: if isConsistent(ai, aj) then
5: if oneSupport = FALSE then
6: oneSupport← TRUE;
7: R1

xi,ai,xj
← aj ;

8: else
9: if aj 6= R then

10: R2
xi,ai,xj

← aj ;
11: return TRUE;
12: if oneSupport = FALSE then
13: return FALSE
14: else
15: for each xk ∈ X , xk 6= xi and xk 6= xj , s.t. (xk, xi) ∈ C and (xk, xj) ∈ C do
16: if there is a valid residue R∗

xi,ai,xk
and isConsistent(R∗

xi,ai,xk
, aj) or if there is a valid

residue R∗
xj ,aj ,xk

and isConsistent(R∗
xj ,aj ,xk

, ai)
17: then continue;
18: PCwitness← FALSE;
19: for each ak ∈ D(xk) do
20: if isConsistent(ai, ak) and isConsistent(aj , ak) then
21: PCwitness← TRUE;
22: break;
23: if PCwitness = FALSE then
24: return FALSE;
25: return TRUE;

The pseudocode of RPC3 is given in Algorithm 1 and Function 2. Being coarse-
grained like AC3, Algorithm 1 uses a propagation list Q, typically implemented as a
fifo queue. We use a constraint-oriented description, meaning that Q handles pairs of
variables involved in constraints. A variable-based one requires minor modifications.

Once a pair of variables (xi, xj) is removed from Q, the algorithm iterates over
D(xi) and for each value ai first checks the residues R1

xi,ai,xj
and R2

xi,ai,xj
(line 5). If

both are valid then ai has at least two supports in D(xj). Hence, the algorithm moves
to process the next value in D(xi). Otherwise, function findTwoSupports is called. This
function will try to find two supports for ai in D(xj). In case it finds none then ai is not
AC and will thus be deleted (line 13). In case it finds only one then it will check if ai
is RPC. If it is not then it will be deleted. Function findTwoSupports takes as arguments



the variables xi and xj , the value ai, and a parameter R, which is set to the single valid
residue of ai in D(xj) (line 9) or to NIL if none of the two residues is valid.

Function findTwoSupports iterates over the values in D(xj) (line 3). For each value
aj ∈ D(xj) it checks if the pair (ai, aj) satisfies constraint cij (this is what function
isConsistent does). If both residues of ai in D(xj) are not valid then after a support is
found, the algorithm continues to search for another one. Otherwise, as soon as a sup-
port is found that is different than R, the function returns having located two supports
(lines 9-11).

If only one support aj is located for ai then the algorithm checks if the pair (ai, aj)
is path consistent. During this process it exploits the residues to save redundant work,
if possible. Specifically, for any third variable xk that is constrained with both xi and
xj , we first check if one of the two residues of ai is valid and if aj is consistent with
that residue (line 16). If this is the case then we know that there is a PC-witness for the
pair (ai, aj) in D(xk) without having to iterate over D(xk). If it is not the case then the
check is repeated for the residues of aj in D(xk). If we fail to verify the existense of a
PC-witness in this way then we iterate over D(xk) checking if any value ak is consistent
with both ai and aj . If a PC-witness is found, we proceed with the next variable that is
constrained with both xi and xj . Otherwise, the function returns false, signaling that ai
is not RPC.

Moving back to Algorithm 1, if at least one value is deleted from a domain D(xi),
some pairs of variables must be enqueued so that the deletions are propagated. Lines
18-19 enqueue all pairs of the form (xk, xi). This ensures that if a value in a domain
D(xk) has lost its last support in D(xi), it will be processed by the algorithm when the
pair (xk, xi) is dequeued, and it will be removed. In addition, it ensures that if a value in
D(xk) has been left with only one support in D(xi), that is not a PC-support, it will be
processed and deleted once (xk, xi) is dequeued. This means that if we only enqueue
pairs of the form (xk, xi), we can achieve stronger pruning than AC. However, this is
not enough to achieve RPC. We call the version of RPC3 that only enqueues such pairs
restricted RPC3 (rRPC3).

To achieve RPC, for each pair (xk, xi) that is enqueued, we also enqueue all pairs
of the form (xl, xk) s.t. xl is constrained with xi. This is because after the deletions
from D(xi) the last PC-witness in D(xi) for some pair of values for variables xk and
xl may have been deleted. This may cause further deletions from D(xl).

The worst-case time complexity of RPC3, and rRPC3, is O(ned3)1. The space com-
plexity is determined by the space required to store the residues, which is O(ed). The
time complexities of algorithms RPC1 and RPC2 are O(ned3) and O(ned2) respec-
tively, while their space complexities, for stand-alone use, are O(ed2) and O(end).
RPC3 has a higher time complexity than RPC2, and a lower space complexity than
both RPC1 and RPC2. But most importantly, RPC3 does not require the typically quite
expensive restoration of data structures after failures when used inside search. In ad-
dition, this means that its space complexity remains O(ed) when used inside search,
while the space complexities of RPC1 and RPC2 will be even higher than O(ed2) and
O(end).

1 The proof is quite simple but it is omitted for space reasons.



4 Experiments

We have experimented with 17 classes of binary CSPs taken from C.Lecoutre’s XCSP
repository: rlfap, graph coloring, qcp, qwh, bqwh, driver, job shop, haystacks, hanoi,
pigeons, black hole, ehi, queens, geometric, composed, forced random, model B ran-
dom. A total of 1142 instances were tested. Details about these classes of problems
can be found in C.Lecoutre’s homepage. All algorithms used the dom/wdeg heuristic
for variable ordering [6] and lexicographic value ordering. The experiments were per-
formed on a FUJITSU Server PRIMERGY RX200 S7 R2 with Intel(R) Xeon(R) CPU
E5-2667 clocked at 2.90GHz, with 48 GB of ECC RAM and 16MB cache.

We have compared search algorithms that apply rRPC3 (resp. RPC3) during search
to a baseline algorithm that applies AC (i.e. MAC) and also to an algorithm that applies
lmaxRPC. AC and lmaxRPC were enforced using the ACr and lmaxRPC3 algorithms
respectively. For simplicity, the four search algorithms will be denoted by AC, rRPC,
RPC, and maxRPC hereafter. Note that a MAC algorithm with ACr and dom/wdeg for
variable ordering is considered as the best general purpose solver for binary CSPs.

A timetout of 3600 seconds was imposed on all four algorithms for all the tested
instances. Importantly, rRPC only timed out on instances where AC and maxRPC
also timed out. On the other hand, there were several cases where rRPC finished search
within the time limit but one (or both) of AC and maxRPC timed out. There were a few
instances where RPC timed out while rRPC did not, but the opposite never occured.

Table 1 summarizes the results of the experimental evaluation for specific classes of
problems. For each class we give the following information:

– The mean node visits and run times from non-trivial instances that were solved by
all algorithms within the time limit. We consider as trivial any instance that was
solved by all algorithms in less than a second.

– Node visits and run time from the single instance where AC displayed its best
performance compared to rRPC.

– Node visits and run time from the single instance where maxRPC displayed its best
performance compared to rRPC.

– Node visits and run time from a representative instance where rRPC displayed good
performance compared to AC, excluding instances where AC timed out.

– The number of instances where AC, RPC, maxRPC timed out while rRPC did not.
This information is given only for classes where at least one such instance occured.

– The number of instances where AC, rRPC, RPC, or maxRPC was the winning
algorithm, excluding trivial instances.

Comparing AC to rRPC we can note the following. rRPC is more efficient in terms
of mean run time performance on all classes of structured problems with the exception
of queens. The difference in favor of rRPC can be quite stunning, as in the case of qwh
and qcp. The numbers of node visits in these classes suggest that rRPC is able to achieve
considerable extra pruning, and this is then reflected on cpu times.

Importantly, in all instances of 16 classes (i.e. all classes apart from queens) AC
was at most 1.7 times faster than rRPC. In contrast, there were 7 instances from rlfap
and 12 from graph coloring where AC timed out while rRPC finished within the time
limit. The mean cpu time of rRPC on these rlfap instances was 110 seconds while on



Table 1. Node visits (n), run times in secs (t), number of timeouts (#TO) (if applicable), and
number of wins (winner) in summary. The number in brackets after the name of each class gives
the number of instances tested.

class AC rRPC RPC maxRPC
(n) (t) (n) (t) (n) (t) (n) (t)

rlfap (24)
mean 29045 64.1 11234 32.3 10878 39.0 8757 134.0
best AC 12688 9.3 11813 14.5 10048 18.2 5548 33.2
best maxRPC 8405 10.1 3846 4.4 3218 6.86 1668 4.8
good rRPC 19590 28.8 5903 8.2 5197 10.4 8808 23.7
#TO 7 3 6
winner 1 18 1 0
qcp (60)
mean 307416 345.4 37725 44.8 43068 167.1 49005 101.3
best AC 36498 63.5 36286 73.7 57405 354.3 63634 173.5
best maxRPC 20988 16.8 7743 7.6 4787 11.9 1723 1.8
good rRPC 1058477 761 65475 53.5 67935 162.9 54622 63.1
winner 2 8 0 4
qwh (40)
mean 205232 1348.2 20663 46.2 28694 177.9 24205 64.7
best AC 6987 4.5 3734 3.0 5387 11.9 3174 3.2
best maxRPC 231087 461.4 30926 72.3 30434 187.6 13497 35.8
good rRPC 445771 859.6 35923 79.5 56965 375.4 37582 103.9
winner 0 9 0 6
bqwh (200)
mean 28573 7.6 7041 2.4 5466 2.9 6136 2.7
best AC 5085 1.2 4573 1.4 4232 2.0 3375 1.3
best maxRPC 324349 85.3 122845 46.1 56020 33.8 64596 29.3
good rRPC 83996 22.5 7922 2.6 10858 5.6 9325 4.2
winner 2 36 13 20
graph coloring (177)
mean 322220 88.6 261882 60.4 192538 73.7 263227 138.79
best AC 1589650 442.5 1589650 743.8 1266416 930.8 1589650 1010.0
best maxRPC 1977536 647.9 1977536 762.4 1265930 613.7 1977536 759.8
good rRPC 31507 189.1 3911 15.6 2851 18.2 10477 62.7
#TO 12 1 5
winner 8 35 17 0
geometric (100)
mean 111611 58.4 54721 58.6 52416 97.3 38227 190.9
best AC 331764 203.1 169871 218.1 160428 358.1 113878 696.2
best maxRPC 67526 28.1 31230 28.1 30229 53.5 20071 73.6
good rRPC 254304 123.3 119248 117.4 117665 203.0 84410 363.3
winner 12 11 1 0
forced random (20)
mean 348473 143.5 197994 177.2 191114 309.8 154903 455.4
best AC 1207920 491.5 677896 596.7 654862 1040.4 538317 1551.4
best maxRPC 26729 7.6 12986 9.0 12722 13.5 9372 22.4
good rRPC 455489 201.6 270345 258.5 262733 462.0 207267 651.2
winner 20 0 0 0
model B random (40)
mean 741124 194.3 383927 224.5 361926 346.5 28871 1044.9
best AC 2212444 669.8 1197369 805.7 1136257 1283.8 - TO
best maxRPC 345980 81.2 181127 94.4 171527 142.7 130440 405.8
good rRPC 127567 32.4 43769 24.4 41328 39.1 51455 171.5
#TO 0 0 14
winner 39 1 0 0
queens (14)
mean 2092 14.2 797 59.2 2476 1032.2 953 2025.2
best AC 150 9.2 149 43.0 149 499.1 149 3189.2
best maxRPC 7886 10.8 2719 11.5 9425 910.5 3341 367.9
good rRPC 7886 10.8 2719 11.5 9425 910.5 3341 367.9
#TO 0 0 1
winner 4 0 0 0



the 12 graph coloring instances the cpu time of rRPC ranged from 1.8 to 1798 seconds.
In addition, there were numerous instances where rRPC was orders of magnitude faster
than AC. This is quite common in qcp and qwh, as the mean cpu times demonstrate, but
such instances also occur in graph coloring, bqwh, haystacks and ehi.

Regarding random problems, rRPC achieves similar performance to AC on geomet-
ric (which is a class with some structure) and is slower on forced random and model
B random. However, the differences in these two classes are not significant. The only
class where there are significant differences in favour of AC is queens. Specifically,
AC can be up to 5 times faster than rRPC on some instances, and orders of magnitude
faster than both RPC and maxRPC. This is because all algorithms spend a lot of time
on propagation but evidently the strong local consistencies achieve little extra pruning.
Importantly, the low cost of rRPC makes its performance reasonable compared to the
huge run times of RPC and maxRPC.

The comparison between RPC and AC follows the same trend as that of rRPC and
AC, but importantly the differences in favour of RPC are not as large on structured
problems where AC is inefficient, while AC is clearly faster on random problems, and
by far superior on dense structured problems like queens and pigeons.

Comparing the mean performance of rRPC to RPC and maxRPC we can note that
rRPC is more efficient on all classes. There are some instances where RPC or/and
maxRPC outperform rRPC due to their stronger pruning, but the differences in favour
of RPC and maxRPC are rarely significant. In contrast, rRPC can often be orders of
magnitude faster. An interesting observation that requires further investigation is that
in some cases the node visits of rPRC are fewer than RPC and and/or maxRPC de-
spite the weaker pruning. This usually occurs on soluble instances and suggests that the
interaction with the dom/wdeg heuristic can guide search to solutions faster.

Finally, the classes not shown in Table 1 mostly include instances that are either
very easy or very hard (i.e. all algorithms time out). Specifically, instances in composed
and hanoi are all trivial, and the ones in black hole and job shop are either trivial or
very hard. Instances in ehi typically take a few seconds for AC and under a second for
the other three algorithms. Instances in haystacks are very hard except for a few where
AC is clearly outperformed by the other three algorithms. For example, in haystacks-04
AC takes 8 seconds and the other three take 0.2 seconds. Instances in pigeons are either
trivial or very hard except for a few instances where rRPC is the best algorithm followed
by AC. For example on pigeons-12 AC and rRPC take 709 and 550 seconds respectively,
while RPC and maxRPC time out. Finally, driver includes only 7 instances. Among
them, 3 are trivial, rRPC is the best algorithm on 3, and AC on 1.

5 Conclusion
RPC was recognized as a promising alternative to AC but has been neglected for the
past 15 years or so. In this paper we have revisited RPC by proposing RPC3, a new
algorithm that utilizes ideas, such as residues, that have become standard in recent years
when implementing AC or maxRPC algorithms. Using RPC3 and a restricted variant we
performed the first wide experimental study of RPC when used inside search. Perhaps
surprisingly, results clearly demostrate that rRPC3 is by far more efficient than state-
of-the-art AC and maxRPC algorithms when applied during search. This challenges the
common perception that MAC is the best general purpose solver for binary CSPs.



References

1. T. Balafoutis, A. Paparrizou, K. Stergiou, and T. Walsh. New algorithms for max restricted
path consistency. Constraints, 16(4):372–406, 2011.

2. A. Balafrej, C. Bessiere, E. Bouyakh, and G. Trombettoni. Adaptive Singleton-Based Con-
sistencies. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,
pages 2601–2607, 2014.

3. R. Barták and R. Erben. A New Algorithm for Singleton Arc Consistency. In Proceedings
of the Seventeenth International Florida Artificial Intelligence, pages 257–262, 2004.

4. P. Berlandier. Improving Domain Filtering Using Restricted Path Consistency. In Proceed-
ings of IEEE CAIA’95, pages 32–37, 1995.

5. C. Bessiere, S. Cardon, R. Debruyne, and C. Lecoutre. Efficient Algorithms for Singleton
Arc Consistency. Constraints, 16:25–53, 2011.

6. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by weighting
constraints. In Proceedings of ECAI’04, Valencia, Spain, 2004.

7. R. Debruyne and C. Bessière. From restricted path consistency to max-restricted path con-
sistency. In Proceedings of CP’97, pages 312–326, 1997.

8. R. Debruyne and C. Bessière. Domain Filtering Consistencies. JAIR, 14:205–230, 2001.
9. F. Grandoni and G. Italiano. Improved Algorithms for Max-Restricted Path Consistency. In

Proceedings of CP’03, pages 858–862, 2003.
10. C. Lecoutre and F. Hemery. A study of residual supports in arc cosistency. In Proceedings

of IJCAI’07, pages 125–130, 2007.
11. C. Lecoutre and P. Prosser. Maintaining Singleton Arc Consistency. In 3rd International

Workshop on Constraint Propagation And Implementation (CPAI’06), pages 47–61, 2006.
12. C. Likitvivatanavong, Y. Zhang, J. Bowen, S. Shannon, and E. Freuder. Arc Consistency

during Search. In Proceedings of IJCAI’07, pages 137–142, 2007.
13. P. Prosser, K. Stergiou, and T. Walsh. Singleton consistencies. In Proceedings of CP’00,

pages 353–368, 2000.
14. J. Vion and R. Debruyne. Light Algorithms for Maintaining Max-RPC During Search. In

Proceedings of SARA’09, 2009.


