
Improving the Performance of maxRPC

Thanasis Balafoutis1, Anastasia Paparrizou2, Kostas Stergiou1,2⋆, and Toby Walsh3

1 Department of Information and Communication Systems Engineering,
University of the Aegean, Greece.

2 Department of Informatics and Telecommunications Engineering, University of Western
Macedonia, Greece.

3 NICTA, University of New South Wales, Australia.

Abstract. Max Restricted Path Consistency (maxRPC) is a local consistency for
binary constraints that can achieve considerably stronger pruning than arc con-
sistency. However, existing maxRPC algorithms suffer from overheads and re-
dundancies as they can repeatedly perform many constraint checks without trig-
gering any value deletions. In this paper we propose techniques that can boost
the performance of maxRPC algorithms. These include the combined use of two
data structures to avoid many redundant constraint checks, and heuristics for the
efficient ordering and execution of certain operations. Based on these, we pro-
pose two closely related maxRPC algorithms. The first one has optimal O(end3)
time complexity, displays good performance when used stand-alone, but is ex-
pensive to apply during search. The second one has O(en2d4) time complex-
ity, but a restricted version with O(end4) complexity can be very efficient when
used during search. Both algorithms have O(ed) space complexity when used
stand-alone. However, the first algorithm has O(end) space complexity when
used during search, while the second retains the O(ed) complexity. Experimental
results demonstrate that the resulting methods constantly outperform previous al-
gorithms for maxRPC, often by large margins, and constitute a more than viable
alternative to arc consistency.

1 Introduction
maxRPC is a strong domain filtering consistency for binary constraints introduced in
1997 by Debruyne and Bessiere [5]. maxRPC achieves a stronger level of local consis-
tency than arc consistency (AC), and in [6] it was identified, along with singleton AC
(SAC), as a promising alternative to AC. Although SAC has received considerable at-
tention since, maxRPC has been comparatively overlooked. The basic idea of maxRPC
is to delete any value a of a variable x that has no arc consistency (AC) or path consis-
tency (PC) support in a variable y. A value b is an AC support for a if the two values
are compatible, and it is also a PC support for a if this pair of values is path consistent.
A pair of values (a, b) is path consistent iff for every third variable there exists at least
one value, called a PC witness, that is compatible with both a and b.

The first algorithm for maxRPC was proposed in [5], and two more algorithms
have been proposed since then [7, 10]. The algorithms of [5] and [10] have been evalu-
ated on random problems only, while the algorithm of [7] has not been experimentally
⋆ Part of this work was carried out when the 3rd author was at NICTA, Australia.



evaluated at all. Despite achieving considerable pruning, existing maxRRC algorithms
suffer from overhead and redundancies as they can repeatedly perform many constraint
checks without triggering any value deletions. These constraint checks occur when a
maxRPC algorithm searches for an AC support for a value and when, having located
one, it checks if it is also a PC support by looking for PC witnesses in other variables.
As a result, the use of maxRRC during search often slows down the search process
considerably compared to AC, despite the savings in search tree size.

In this paper we propose techniques to improve the applicability of maxRPC by
eliminating some of these redundancies while keeping a low space complexity. We also
investigate approximations of maxRPC that only make slightly fewer value deletions
in practice, while being significantly faster. We first demonstrate that we can avoid
many redundant constraint checks and speed up the search for AC and PC supports
through the careful and combined application of two data structures already used by
maxRPC and AC algorithms [7, 10, 2, 8, 9]. Based on this, we propose a coarse-grained
maxRPC algorithm called maxRPC3with optimal O(end3) time complexity. This algo-
rithm displays good performance when used stand-alone (e.g. for preprocessing), but is
expensive to apply during search. We then propose another maxRPC algorithm, called
maxRPC3rm. This algorithm has O(en2d4) time complexity, but a restricted version
with O(end4) complexity can be very efficient when used during search through the
use of residues. Both algorithms have O(ed) space complexity when used stand-alone.
However, maxRPC3 has O(end) space complexity when used during search, while
maxRPC3rm retains the O(ed) complexity.

Similar algorithmic improvements can be applied to light maxRPC (lmaxRPC), an
approximation of maxRPC [10]. This achieves a lesser level of consistency compared
to maxRPC but still stronger than AC, and is more cost-effective than maxRPC when
used during search. Experiments confirm that lmaxRPC is indeed a considerably better
option than maxRPC.

We also propose a number of heuristics that can be used to efficiently order the
searches for PC supports and witnesses. Interestingly, some of the proposed heuristics
not only reduce the number of constraint checks but also the number of visited nodes.

We make a detailed experimental evaluation of new and existing algorithms on vari-
ous problem classes. This is the first wide experimental study of algorithms for maxRPC
and its approximations on benchmark non-random problems. Results show that our
methods constantly outperform existing algorithms, often by large margins. When ap-
plied during search our best method offers up to one order of magnitude reduction in
constraint checks, while cpu times are improved up to four times compared to the best
existing algorithm. In addition, these speed-ups enable a search algorithm that applies
lmaxRPC to compete with or outperform MAC on many problems.

2 Background and Related Work
A Constraint Satisfaction Problem (CSP) is defined as a tuple (X,D,C) where: X =
{x1, . . . , xn} is a set of n variables, D = {D(x1), . . . , D(xn)} is a set of domains,
one for each variable, with maximum cardinality d, and C = {c1, . . . , ce} is a set of e
constraints. Each constraint c is a pair (var(c), rel(c)), where var(c) = {x1, . . . , xm}
is an ordered subset of X , and rel(c) is a subset of the Cartesian product D(x1)× . . .×



D(xm) that specifies the allowed combinations of values for the variables in var(c). In
the following, a binary constraint c with var(c) = {xi, xj} will be denoted by cij , and
D(xi) will denote the current domain of variable xi. Each tuple τ ∈ rel(c) is an ordered
list of values (a1, . . . , am) such that aj ∈ D(xj),j = 1, . . . ,m. A tuple τ ∈ rel(ci)
is valid iff none of the values in the tuple has been removed from the domain of the
corresponding variable.

The process which verifies whether a given tuple is allowed by a constraint c is
called a constraint check. A binary CSP is a CSP where each constraint involves at
most two variables. We assume that binary constraint checks are performed in constant
time. In a binary CSP, a value ai ∈ D(xi) is arc consistent (AC) iff for every constraint
cij there exists a value aj ∈ D(xj) s.t. the pair of values (ai, aj) satisfies cij . In this
case aj is called an AC-support of ai. A variable is AC iff all its values are AC. A
problem is AC iff there is no empty domain in D and all the variables in X are AC.

2.1 maxRPC
A value ai ∈ D(xi) is max restricted path consistent (maxRPC) iff it is AC and for
each constraint cij there exists a value aj ∈ D(xj) that is an AC-support of ai s.t. the
pair of values (ai, aj) is path consistent (PC) [5]. A pair of values (ai, aj) is PC iff for
any third variable xk there exists a value ak ∈ D(xk) s.t. ak is an AC-support of both
ai and aj . In this case aj is a PC-support of ai in xj and ak is a PC-witness for the
pair (ai, aj) in xk. A variable is maxRPC iff all its values are maxRPC. A problem is
maxRPC iff there is no empty domain and all variables are maxRPC.

To our knowledge, three algorithms for achieving maxRPC have been proposed
in the literature so far. The first one, called maxRPC1, is a fine-grained algorithm
based on AC6 and has optimal O(end3) time complexity and O(end) space complex-
ity [5]. The second algorithm, called maxRPC2, is a coarse-grained algorithm having
O(end3) time and O(ed) space complexity [7]. Finally, maxRPCrm is a coarse-grained
algorithm based on AC3rm [10]. The time and space complexities of maxRPCrm are
O(en2d4) and O(end) but it has some advantages compared to the other two because
of its lighter use of data structures. Among the three algorithms maxRPC2 seems to
be the most promising for stand-alone use as it has a better time and space complexity
than maxRPCrm without requiring heavy data structures or complex implementation
as maxRPC1 does. On the other hand, maxRPCrm can be better suited for use during
search as it avoids the costly maintainance of data structures.

Central to maxRPC2 is the LastPC data structure, as we call it here. For each con-
straint cij and each value ai ∈ D(xi), LastPCxi,ai,xj gives the most recently discov-
ered PC-support of ai in D(xj). maxRPC2 maintains this data structure incrementally.
This means that the data structure is copied when moving forward during search (i.e.
after a successfully propagated variable assignment) and restored when backtracking
(after a failed variable assignment). This results in the following behavior: When look-
ing for a PC-support for ai in D(xj), maxRPC2 first checks if LastPCxi,ai,xj is valid.
If it is not, it searches for a new PC-support starting from the value immediately after
LastPCxi,ai,xj in D(xj). In this way a good time complexity bound is achieved. On
the other hand, maxRPCrm uses a data structure similar to LastPC to store residues,
i.e. supports that have been discovered during execution and stored for future use, but



does not maintain this structure incrementally4. When looking for a PC-support for ai
in D(xj), if the residue LastPCxi,ai,xj is not valid then maxRPCrm searches for a
new PC-support from scratch in D(xj). This results in higher complexity, but crucially
does not require costly maintainance of the LastPC data structure during search.

A major overhead of both maxRPC2 and maxRPCrm is the following. When search-
ing for a PC-witness for a pair of values (ai, aj) in a third variable xk, they always start
the search from scratch, i.e. from the first available value in D(xk). As these searches
can be repeated many times during search, there can be many redundant constraint
checks. In contrast, maxRPC1 manages to avoid searching from scratch through the
use of an additional data structure. This saves many constraint checks, albeit resulting
in O(end) space complexity and requiring costly maintainance of this data structure
during search. The algorithms we describe below largely eliminate these redundant
constraint checks with lower space complexity, and in the case of maxRPC3rm with
only light use of data structures.

3 New Algorithms for maxRPC
We first recall the basic ideas of algorithms maxRPC2 and maxRPCrm as described in
[7] and [10]. Both algorithms use a propagation list L where variables whose domain
is pruned are added. Once a variable xj is removed from L all neighboring variables
are revised to delete any values that are no longer maxRPC. For any value ai of such
a variable xi there are two possible reasons for deletion. The first, which we call PC-
support loss hereafter, is when the unique PC-support aj ∈ D(xj) for ai has been
deleted. The second, which we call PC-witness loss hereafter, is when the unique PC-
witness aj ∈ D(xj) for the pair (ai, ak), where ak is the unique PC-support for ai on
some variable xk, has been deleted. In both cases value ai is no longer maxRPC.

We now give a unified description of algorithms maxRPC3 and maxRPC3rm. Both
algorithms utilize data structures LastPC and LastAC which have the following func-
tionalities: For each constraint cij and each value ai ∈ D(xi), LastPCxi,ai,xj and
LastACxi,ai,xj give (point to) the most recently discovered PC and AC supports of ai
in D(xj) respectively. Initially, all LastPC and LastAC pointers are set to a special
value NIL, considered to precede all values in any domain. Algorithm maxRPC3 up-
dates the LastPC and LastAC structures incrementally like maxRPC2 and AC2001/3.1
respectively do. In contrast, algorithm maxRPC3rm uses these structures as residues
like maxRPCrm and ACrm do.

The pseudocode for the unified description of maxRPC3 and maxRPC3rm is given
in Algorithm 1 and Functions 2, 3, 4. We assume the existence of a global Boolean vari-
able RM which determines whether the algorithm presented is instantiated to maxRPC3
or to maxRPC3rm. If RM is true, the algorithm used is maxRPC3rm. Otherwise, the
algorithm is maxRPC3.

Being coarse-grained, Algorithm 1 uses a propagation list L where variables that
have their domain filtered are inserted. If the algorithm is used for preprocessing then,
during an initialization phase, for each value ai of each variable xi we check if ai is
maxRPC. If it is not then it is deleted from D(xi) and xi is added to L. The initialization

4 maxRPCrm also uses residues in a different context.



function is not shown in detail due to limited space. If the algorithm is used during
search then L is initialized with the currently assigned variable (line 3).

In the main part of Algorithm 1, when a variable xj is removed from L, each vari-
able xi constrained with xj must be made maxRPC. For each value ai ∈ D(xi) Algo-
rithm 1, like maxRPC2 and maxRPCrm, establishes if ai is maxRPC by checking for
PC-support loss and PC-witness loss at lines 8 and 12.

Algorithm 1 maxRPC3/maxRPC3rm

1: if preprocessing then
2: if ¬initialization(L, LastPC, LastAC) then return FAILURE;
3: else L = {currently assigned variable};
4: while L ̸= Ø do
5: L=L−{xj};
6: for each xi ∈ X s.t. cij ∈ C do
7: for each ai ∈ D(xi) do
8: if ¬searchPCsup(ai, xj) then
9: delete ai;
10: L=L ∪ {xi};
11: else
12: if ¬checkPCwit(ai, xj) then
13: delete ai;
14: L=L ∪ {xi};
15: if D(xi) is empty then return FAILURE;
16: return SUCCESS;

First, function searchPCsup is called to check if a PC-support for ai exists in D(xj).
If value LastPCxi,ai,xj is still in D(xj), then searchPCsup returns TRUE (lines 1-
2). If LastPCxi,ai,xj is not valid, we search for a new PC-support. If maxRPC3 is
used, we can take advantage of the LastPC and LastAC pointers to avoid starting
this search from scratch. Specifically, we know that no PC-support can exist before
LastPCxi,ai,xj , and also none can exist before LastACxi,ai,xj , since all values before
LastACxi,ai,xj are not AC-supports of ai. Lines 5-6 in searchPCsup take advantage of
these to locate the appropriate starting value bj . Note that maxRPC2 always starts the
search for a PC-support from the value after LastPCxi,ai,xj . If the algorithm is called
during search, in which case we use maxRPC3rm then the search for a new PC-support
starts from scratch (line 8), just like maxRPCrm does.

For every value aj ∈ D(xj), starting with bj , we first check if is an AC-support of ai
(line 10). This is done using function isConsistent which simple checks if two values are
compatible. If it is, and the algorithm is maxRPC3, then we can update LastACxi,ai,xj

under a certain condition (lines 12-13). Specifically, if LastACxi,ai,xj
was deleted

from D(xj), then we can set LastACxi,ai,xj to aj in case LastACxi,ai,xj > LastPCxi,ai,xj .
If LastACxi,ai,xj

≤ LastPCxi,ai,xj
then we cannot do this as there may be AC-

supports for ai between LastACxi,ai,xj and LastPCxi,ai,xj in the lexicographical
ordering. We then move on to verify the path consistency of (ai, aj) through function
searchPCwit.

If no PC-support for ai is found in D(xj), searchPCsup will return FALSE, ai
will be deleted and xi will be added to L. Otherwise, LastPCxi,ai,xj is set to the
discovered PC-support aj (line 15). If maxRPC3rm is used then we update the residue
LastACxi,ai,xj since the discovered PC-support is also an AC-support. In addition, to



Function 2 searchPCsup(ai, xj):boolean
1: if LastPCxi,ai,xj

∈ D(xj) then
2: return true;
3: else
4: if ¬ RM then
5: if LastACxi,ai,xj

∈ D(xj) then bj = max(LastPCxi,ai,xj
+1,LastACxi,ai,xj

);

6: else bj = max(LastPCxi,ai,xj
+1,LastACxi,ai,xj

+1);

7: else
8: bj = first value in D(xj);
9: for each aj ∈ D(xj), aj ≥ bj do
10: if isConsistent(ai, aj) then
11: if ¬RM then
12: if LastACxi,ai,xj

/∈ D(xj) AND LastACxi,ai,xj
> LastPCxi,ai,xj

then
13: LastACxi,ai,xj

= aj ;

14: if searchPCwit(ai, aj) then
15: LastPCxi,ai,xj

= aj ;

16: if RM then LastACxi,ai,xj
= aj ; LastPCxj,aj,xi

= ai;

17: return true;
18: return false;

exploit the multidirectionality of residues, maxRPC3rm sets LastPCxj ,aj ,xi to ai, as
in [10].

Function searchPCwit checks if a pair of values (ai,aj) is PC by doing the fol-
lowing for each variable xk constrained with xi and xj

5. First, it checks if either
LastACxi,ai,xk

is valid and consistent with aj or LastACxj ,aj ,xk
is valid and consis-

tent with ai (line 3). If one of these conditions holds then we have found a PC-witness
for (ai,aj) without searching in D(xk) and we move on to the next variable constrained
with xi and xj . Note that neither maxRPC2 nor maxRPCrm can do this as they do not
have the LastAC structure. Experimental results in Section 5 demonstrate that these
simple conditions can eliminate a very large number of redundant constraint checks.

Function 3 searchPCwit(ai, aj):boolean
1: for each xk ∈ V s.t. cik ∈ C and cjk ∈ C do
2: maxRPCsupport=FALSE;
3: if (LastACxi,ai,xk

∈ D(xk) AND isConsistent(LastACxi,ai,xk
, aj)) OR (LastACxj,aj,xk

∈
D(xk) AND isConsistent(LastACxj,aj,xk

, ai)) then continue;

4: if ¬ RM then
5: if ¬seekACsupport(xi, ai, xk) OR ¬seekACsupport(xj , aj , xk) then return false;
6: bk = max(LastACxi,ai,xk

, LastACxj,aj,xk
);

7: else bk = first value in D(xk);
8: for each ak ∈ D(xk), ak ≥ bk do
9: if isConsistent(ai, ak) AND isConsistent(aj , ak) then
10: if RM then LastACxi,ai,xk

= LastACxj,aj,xk
= ak;

11: maxRPCsupport=TRUE; break;
12: if ¬maxRPCsupport then return false;
13: return true;

If none of the conditions holds then we have to search in D(xk) for a PC-witness. If
the algorithm is maxRPC3 then we can exploit the LastAC structure to start this search

5 Since AC is enforced by the maxRPC algorithm, we only need to consider variables that form
a 3-clique with xi and xj .



from bk = max{LastACxi,ai,xk
, LastACxj ,aj ,xk

} (line 6). But before doing this,
we call function seekACsupport (not shown for space reasons), first with (xi, ai, xk)
and then with (xj , aj , xk) as parameters, to find the lexicographically smallest AC-
supports for ai and aj in D(xk) (line 5). If such supports are found, LastACxi,ai,xk

and LastACxj ,aj ,xk
are updated accordingly. In case no AC-support is found for either

ai or aj then seekACsupport returns FALSE, and subsequently searchPCwit() will also
return FALSE.

If the algorithm used is maxRPC3rm then we start search for a PC-witness from
scratch (line 7), as maxRPC2 and maxRPCrm always do. If a PC-witness ak is found
(line 9) and we are using maxRPC3rm then both residues LastACxi,ai,xk

and LastACxj ,aj ,xk

are set to ak as they are the most recently discovered AC-supports. If no PC-witness is
found then we have determined that the pair (ai,aj) is not PC and as a result FALSE will
be returned and searchPCsup will move to check if the next available value in D(xj) is
a PC-support for ai.

Function 4 checkPCwit(ai, xj):boolean
1: for each xk ∈ V s.t. cik ∈ C and ckj ∈ C do
2: witness=FALSE; findPCsupport=FALSE;
3: if ak = LastPCxi,ai,xk

∈ D(xk) then
4: if (LastACxi,ai,xj

∈ D(xj) AND isConsistent(LastACxi,ai,xj
, ak)) OR (LastACxk,ak,xj

∈
D(xj) AND isConsistent(LastACxk,ak,xj

, ai)) then
5: witness=TRUE;
6: else
7: if ¬ RM then
8: if seekACsupport(xi, ai, xj) AND seekACsupport(xk, ak, xj) then
9: bj = max(LastACxi,ai,xj

, LastACxk,ak,xj
);

10: else findPCsupport=TRUE;
11: else bj = first value in D(xj);
12: if ¬findPCsupport then
13: for each aj ∈ D(xj), aj ≥ bj do
14: if isConsistent(ai, aj) AND isConsistent(ak, aj) then
15: if RM then LastACxi,ai,xj

= LastACxk,ak,xj
= aj ;

16: witness=TRUE; break;
17: if ¬witness AND exists ak > LastPCxi,ai,xk

∈ D(xk) then
18: if ¬ RM then
19: if LastACxi,ai,xk

∈ D(xk) then bk = max(LastPCxi,ai,xk
+1,LastACxi,ai,xk

);
20: else bk = max(LastPCxi,ai,xk

+1,LastACxi,ai,xk
+1

21: else
22: bk = first value in D(xk);
23: for each ak ∈ D(xk), ak ≥ bk do
24: if isConsistent(ai, ak) then
25: if ¬ RM then
26: if LastACxi,ai,xk

/∈ D(xk) AND LastACxi,ai,xk
> LastPCxi,ai,xk

then
27: LastACxi,ai,xk

= ak;
28: if searchPCwit(ai, ak) then
29: LastPCxi,ai,xk

= ak;
30: if RM then LastACxi,ai,xk

= ak ; LastPCxk,ak,xi
= ai;

31: witness=TRUE; break;
32: if ¬witness then return false;
33: return true;



If value ai is not removed by searchPCsup in Algorithm 1, function checkPCwit
is called to check for PC-witness loss. This is done by iterating over the variables
that are constrained with both xi and xj . For each such variable xk, we first check
if ak = LastPCxi,ai,xk

is still in D(xk) (line 3). If so then we check if there still
is a PC-witness in D(xj). This is done by first checking if either LastACxi,ai,xj

is valid and consistent with ak or LastACxk,ak,xj is valid and consistent with ai
(line 4). If neither of these conditions holds then we search for a PC-witness starting
from bj = max{LastACxi,ai,xj

, LastACxk,ak,xj
} in case of maxRPC3 (line 9), after

checking the existence of AC-supports for ai and ak in D(xj), by calling seekACsup-
port (line 8). If there is no AC-support in D(xj) for either ai or ak we set the auxiliary
Boolean variable findPCsupport to TRUE to avoid searching for a PC-witness.

If maxRPC3rm is used, we start searching for a PC-witness from scratch (line 11).
Note that maxRPC2 does not do the check of line 4 and always starts the search for
a PC-witness from the first value in D(xj). In contrast, maxRPCrm avoids some re-
dundant checks through the use of special residues, albeit resulting in O(end) space
complexity. When using maxRPC3rm, for each value aj ∈ D(xj) we check if it is
compatible with ai and ak and move the LastAC pointers accordingly (lines 14-15),
exploiting the multidirectionality of residues,

If LastPCxi,ai,xk
has been removed or ai has no PC-witness in D(xj), we search

for a new PC-support for ai in D(xk). As in function searchPCsup, when maxRPC3 is
used this search starts at an appropriate value calculated taking advantage of LastPCxi,ai,xk

and LastACxi,ai,xk
(lines 18-20). When maxRPC3rm is used we start from scratch. If

an AC-support for ai is found (line 24), we check if it is also a PC-support by calling
function searchPCwit (line 28). If maxRPC3 is used then LastACxi,ai,xk

is updated
when necessary (lines 26-27). If a PC-support is found, LastPCxi,ai,xk

is set accord-
ingly (line 29). If maxRPC3rm is used then the residue LastACxi,ai,xk

is also updated,
as is LastPCxk,ak,xi (bidirectionality). If the search for a PC-support fails then FALSE
will be returned, ai will be deleted, and xi will be added to L.

3.1 Light maxRPC
Light maxRPC (lmaxRPC) is an approximation of maxRPC that only propagates the
loss of AC-supports and not the loss of PC-witnesses [10]. This ensures that the obtained
algorithm enforces a consistency property that is at least as strong as AC.

lmaxRPC is a procedurally defined local consistency, meaning that its description
is tied to a specific maxRPC algorithm. Light versions of algorithms maxRPC3 and
maxRPC3rm, simply noted lmaxRPC3 and lmaxRPC3rm respectively, can be ob-
tained by omitting the call to the checkPCwit function (lines 11-14 of Algorithm 1). In
a similar way, we can obtain light versions of algorithms maxRPC2 and maxRPCrm.

As already noted in [10], the light versions of different maxRPC algorithms may
not be equivalent in terms of the pruning they achieve. To give an example, a brute
force algorithm for lmaxRPC that does not use any data structures can achieve more
pruning than algorithms lmaxRPC2, lmaxRPC3, and lmaxRPCrm, albeit being much
slower in practice. Consider that any of these three algorithms will return TRUE in case
LastPCxi,ai,xj is valid. However, although LastPCxi,ai,xj is valid, it may no longer
be a PC-support because the PC-witness in some third variable may have been deleted,



and it may be the last one. In a case where LastPCxi,ai,xj was the last PC-support in
xj for value ai, the three advanced algorithms will not delete ai while the brute force
one will. This is because it will exhaustively check all values of xj for PC-support,
concluding that there is none.

The worst-case time and space complexities of algorithm lmaxRPC2 are the same
as maxRPC2. Algorithm lmaxRPCrm has O(n3d4) time and O(ed) space complexi-
ties, which are lower than those of maxRPCrm. Experiments with random problems us-
ing algorithms lmaxRPCrm and maxRPCrm showed that the pruning power of lmaxRPC
is only slightly weaker than that of maxRPC [10]. At the same time, it can offer signifi-
cant gains in run times when used during search. These results were also verified by us
through a series of experiments on various problem classes.

3.2 Correctness and Complexities
We now prove the correctness of algorithms maxRPC3 and maxRPC3rm.

Proposition 1. Algorithm maxRPC3 is correct.

Proof. Soundness. To prove the soundness of maxRPC3 we must prove that any value
that is deleted by maxRPC3 is not maxRPC. The algorithm can delete a value only
when, having removed a variable xj from Q, it examines the variables constrained with
xj to remove any inconsistent values from their domains. Let ai ∈ D(xi) be a value
that is deleted by maxRPC3. It is either removed from D(xi) in line 8 of Algorithm 1,
after searchPCsup has returned false or in line 12, after searchPCsup has returned true
and checkPCwit has returned false.

In the first case, LastPCxi,ai,xj is not valid so we have to search for an new PC-
support in D(xj), lines 9-17 of Function searchPCsup. This search will start with
the value at max(LastPCxi,ai,xj +1, LastACxi,ai,xj ) or at max(LastPCxi,ai,xj +1,
LastACxi,ai,xj

+1), depending on whether LastACxi,ai,xj
is valid or not. This is cor-

rect since any value before LastPCxi,ai,xj +1 and any value before LastACxi,ai,xj is
definitely not an AC-support for ai (similarly for the other case). searchPCsup will
return false either because no AC-support for ai can be found in D(xj) (line 10),
or because for any AC-support found, searchPCwit returned false (line 13). In the
former case there is no PC-support for ai in D(xj) since there is no AC-support.
In the latter case, for any AC-support aj found there must be some third variable
xk for which no PC-witness for the pair (ai, aj) exists. searchPCwit accesses all xk

variables and searches for a PC-witness in D(xk) starting from max(LastACxi,ai,xk
,

LastACxj ,aj ,xk
) (line 6), as ak value must satisfy concurrently both ai and aj . That is

also why the condition holds in line 3, to check if LastACxi,ai,xk
and LastACxj ,aj ,xk

point to the same value in D(xk) and thus to avoid search. If there is no such value
in D(xk) for any neighbour variable of xi and xj , searchPCwit will return false (line
12). On the contrary, ai is maxRPC if searchPCwit finds a PC-support for all variables
constrained with xi and xj .

In both cases aj is not a PC-support for ai. Therefore, if searchPCsup returns false,
no PC-support for ai can be found in D(xj) and is thus correctly deleted.

Now assume that the call to searchPCsup returned true and ai was removed after
checkPCwit returned false (line 32). checkPCwit iterates over the variables that are



constrained with both xi and xj and there are two cases where the function fails. One
case is that the unique PC-support for ai in D(xk), stored in LastPCxi,ai,xk

does not
exist or in case it exists, there is no witness in D(xj) for the pair (ai, ak) (lines 3-16).
The search for witness starts from max(LastACxi,ai,xj , LastACxj ,aj ,xj ) in line 9,
after checking the validity of values by seekACsupport. The condition in line 4 does the
same check as the condition in searchPCwit and thus we override the search for witness.
At this point, checkPCwit returns false, as in line 17 there is no ak > LastPCxi,ai,xk

in D(xk).
The other occasion occures when LastPCxi,ai,xk

does not exist in D(xk) and no
other PC-support can be found in lines 23-31. The search starts from max(LastPCxi,ai,xk

+1,
LastACxi,ai,xk

) or max(LastPCxi,ai,xk
+1, LastACxi,ai,xk

+1), depending on the ex-
istence of LastACxi,ai,xk

. If there is no consistent (ai, ak) pair in line 24 or search-
PCwit returns false for all consistent pairs found for any xk variable, then checkPCwit
returns false in line 32. Both cases guarantee that ai is not maxRPC and will be re-
moved.

Completeness. To prove the completeness of maxRPC3 we need to show that if
a value is not maxRPC then the algorithm will delete it. The initialization function
checks all values of all variables one by one and removes any value that is not maxRPC.
Thereafter, the effects of such removals are propagated by calling Algorithm 1 and as
a result new value deletions may occur. Now consider a value ai ∈ D(xi) that was not
removed by the initialization function but after propagation is no longer maxRPC. This
is either because of PC-support or PC-witness loss.

In the first case assume that xj is the variable in which ai no longer has a PC-
support. Since the previously found PC-support of ai has been deleted, xj xi must have
been added to Q at some point. When xj is removed from Q all neighboring variables,
including xi will be checked. Function searchPCsup will find that LastPCxi,ai,xj is
no longer valid and will search for a new PC-support concluding that there is none.
Therefore, it will return false and ai will be deleted.

In the second case assume that the pair of values (ai,aj), where aj is the last PC-
support of ai in D(xj), has lost its last PC-witness ak in variable xk. If LastPCxi,ai,xj

is not valid, which means that xj was added to Q, then we have the same case as above.
Therefore, after xj is removed from Q, searchPCsup will find out that there is no PC-
support for ai in D(xj) and will delete it. If LastPCxi,ai,xj is valid then searchPCsup
will return true (line 2). Since ak was deleted, xk was added to Q at some point. When
xk is removed from Q all neighboring variables, including xi will be checked. If ai has
no longer a PC-support in D(xk) this will be detected by searchPCsup and ai will be
deleted. Otherwise, function checkPCwit will be called. The for loop in line 1 will go
through every variable constrained with both xi and xk, including xj . If LastPCxi,ai,xj

is valid, a new PC-witness for (ai,aj) in D(xk) will be seeked (lines 4-16). Since ak
was the last PC-witness, none will be found and as a result a new PC-support for ai in
D(xk) will be seeked (lines 17-31). Since aj was the last PC-support for ai in D(xk),
none will be found, checkPCwit will return false, and ai will be deleted. ⊓⊔

We now discuss the complexities of algorithms maxRPC3 and maxRPC3rm and
their light versions. To directly compare with existing algorithms for (l)maxRPC, the



time complexities give the asymptotic number of constraint checks6. Folllowing [9],
the node time (resp. space) complexity of a (l)maxRPC algorithm is the worst-case
time (resp. space) complexity of invoking the algorithm after a variable assignment.
The corresponding branch complexities of an (l)maxRPC algorithm are the worst-case
complexities of any incremental sequence of k ≤ n invocations of the algorithm. That
is, the complexities of incrementally running the algorithm down a branch of the search
tree until a fail occurs.

Proposition 2. The node and branch time complexity of (l)maxRPC3 is O(end3).

Proof. The complexity is determined by the total number of calls to function isCon-
sistent in searchPCsup, checkPCwit, and mainly searchPCwit where most checks are
executed.

Each variable can be inserted and extracted from L every time a value is deleted
from its domain, giving O(d) times in the worst case. Each time a variable xj is ex-
tracted from L, searchPCsup will look for a PC-support in D(xj) for all values ai ∈
D(xi), s.t. cij ∈ C. For each variable xi, O(d) values are checked. Checking if a
value aj ∈ D(xj) is a PC-support involves first checking in O(1) if it is an AC-
support (line 10 in Function 2) and then calling searchPCwit. The cost of searchPCwit
is O(n+ nd) since there are O(n) variables constrained with both xi and xj and, after
making the checks in line 3, their domains must be searched for a PC-witness, each
time from scratch with cost O(nd). Through the use of LastPC no value of xj will
be checked more than once over all the O(d) times xj is extracted from L, meaning
that for any value ai ∈ D(xi) and any variable xj , the overall cost of searchPCwit will
be O(dn+ nd2) = O(nd2). Hence, searchPCsup will cost O(nd2) for one value of xi,
giving O(nd3) for d values. Since, in the worst case, this process will be repeated for
every pair of variables xi and xj that are constrained, the total cost of searchPCsup will
be O(end3). This is the node complexity of lmaxRPC3.

In checkPCwit the algorithms iterate over the variables in a triangle with xj and xi.
In the worst case, for each such variable xk, D(xj) will be searched from scratch for
a PC-witness of ai and its current PC-support in xk. As xj can be extracted from L
O(d) times and each search from scratch costs O(d), the total cost of checking for a
PC-witness in D(xj), including the checks of line 4 in Function 4, will be O(d + d2).
For d values of xi this will be O(d3). As this process will be repeated for all triangles
of variables, whose number is bounded by en, its total cost will be O(end3). If no PC-
witness is found then a new PC-support for ai in D(xk) is seeked through searchPCwit.
This costs O(nd2) as explained above but it is amortized with the cost incurred by the
calls to searchPCwit from searchPCsup. Therefore, the cost of checkPCwit is O(end3).
This is also the node complexity of maxRPC3.

The branch complexity of (l)maxRPC3 is also O(end3). This is because the use
of LastPC ensures that for any constraint cij and a value ai ∈ D(xi), each value of xj

will be checked at most once for PC-support while going down the branch. Therefore,
the cost of searchPCwit is amortized. ⊓⊔

6 However, constraint checks do not always reflect run times as other operations may have an
equal or even greater effect.



Proposition 3. The node and branch time complexities of lmaxRPC3rm and
maxRPC3rm are O(end4) and O(en2d4) respectively.

Proof. The proof is not given in detail due to lack of space. The main difference with
lmaxRPC3 is that since lastPC is not updated incrementally, each time we seek a PC-
support for a value ai ∈ D(xi) in xj , D(xj) will be searched from scratch in the worst
case. This incurs an extra O(d) cost to searchPCsup and searchPCwit. Hence, the node
complexity of lmaxRPC3rm is O(end4). Also, the total cost of searchPCwit in one
node cannot be amortized. This means that the cost of searchPCwit within checkPCwit
is O(nd2). Hence, the node complexity of maxRPC3rm is O(en2d4). The branch com-
plexities are the same because the calls to searchPCwit are amortized. ⊓⊔

The space complexities of the algorithms are determined by the space required for
data structures LastPC and LastAC. Since both require O(ed) space, this is the node
space complexity of (l)maxRPC3 and (l)maxRPC3rm. (l)maxRPC3 has O(end)
branch space complexity because of the extra space required for the incremental update
and restoration of the data structures. As (l)maxRPC3rm avoid this, its branch space
complexity is O(ed).

4 Heuristics for maxRPC Algorithms
Numerous heuristics for ordering constraint or variable revisions have been proposed
and used within AC algorithms [11, 3, 1]. Heuristics such as the ones used by AC al-
gorithms can be also used within a maxRPC algorithm to efficiently select the next
variable to be removed from the propagation list (line 5 of Algorithm 1). In addition
to this, maxRPC and lmaxRPC algorithms can benefit from the use of heuristics else-
where in their execution. Once a variable xj has been removed from the propagation
list, heuristics can be applied as follows in either a maxRPC or a lmaxRPC algorithm
(we use algorithm (l)maxRPC3 for illustration):

1. After a variable xj is removed from L all neighboring variables xi are revised.
lmaxRPC (resp. maxRPC) will detect a failure if the condition of PC-support loss
(resp. either PC-support or PC-witness loss) occurs for all values of xi. In such sit-
uations, the sooner xi is considered and the failure is detected, the more constraint
checks will be saved. Hence, the order in which the neighboring variables of xj are
considered can be determined using a fail-first type of heuristic.

2. Once an AC-support aj ∈ D(xj) has been found for a value ai ∈ D(xi), search-
PCsup tries to establish if it is a PC-support. If there is no PC-witness for the pair
(ai, aj) in some variable xk then aj is not a PC-support. Therefore, we can again
use fail-first heuristics to determine the order in which the variables forming a tri-
angle with xi and xj are considered.

The above cases apply to both lmaxRPC and maxRPC algorithms. In addition, a
maxRPC algorithm can employ heuristics as follows:

3. For each value ai ∈ D(xi) and each variable xk constrained with both xi and xj ,
Function 4 checks if the pair (ai, ak) still has a PC-witness in D(xj). If there is no



PC-witness or LastPCxi,ai,xk
is not valid then a new PC-support in xk is seeked.

If none is found then ai will be deleted. Again heuristics can be used to determine
the order in which the variables constrained with xi and xj are considered.

4. In Function 4 if LastPCxi,ai,xk
is not valid then a new PC-support for ai in D(xk)

is seeked. The order in which variables constrained with both xi and xk are consid-
ered can be determined heuristically as in Case 2 above.

As explained, the purpose of such ordering heuristic will be to “fail-first”. That is,
to quickly discover potential failures (Case 1 above), refute values that are not PC-
supports (Cases 2 and 4) and delete values that have no PC-support (Case 3). Such
heuristics can be applied in any coarse-grained maxRPC algorithm to decide the order
in which variables are considered in Cases 1-4. Examples are the following:

dom Consider the variables in ascending domain size. This heuristic can be applied in
any of the four cases.

del ratio Consider the variables in ascending ratio of the number of remaining values
to the initial domain size. This heuristic can be applied in any of the four cases.

wdeg In Case 1 consider the variables xi in descending weight for the constraint cij . In
Case 2 consider the variables xk in descending average weight for the constraints
cik and cjk. Similarly for Cases 3 and 4.

dom/wdeg Consider the variables in ascending value of dom/wdeg. This heuristic can
be applied in any of the four cases.

Experiments demonstrated that applying heuristics in Cases 1 and 3 are particularly
effective, while doing so in Cases 2 and 4 saves constraint checks but only marginally
reduces cpu times. All of the heuristics mentioned above for Cases 1 and 3 offer cpu
gains, with dom/wdeg being the most efficient. Although the primal purpose of the
heuristics is to save constraint checks, it is interesting to note that some of the heuristics
can also divert search to different areas of the search space when a variable ordering
heuristic like dom/wdeg is used, resulting in fewer node visits. For example, two dif-
ferent orderings of the variables in Case 1 may result in different constraints causing
a failure. As dom/wdeg increases the weight of a constraint each time it causes a fail-
ure and uses the weights to select the next variable, this may later result in different
branching choices. This is explained for the case of AC in [1].

5 Experiments
We have experimented with several classes of structured and random binary CSPs taken
from C.Lecoutre’s XCSP repository. Excluding instances that were very hard for all
algorithms, our evaluation was done on 200 instances in total from various problem
classes. More details about these instances can be found in C.Lecoutre’s homepage.
All algorithms used the dom/wdeg heuristic for variable ordering [4] and lexicographic
value ordering. In case of a failure (domain wipe-out) the weight of constraint cij is
updated (right before returning in line 15 of Algorithm 1). The suffix ’+H’ after any
algorithm’s name means that we have applied the dom/wdeg heuristic for ordering the
propagation list [1], and the same heuristic for Case 1 described in Section 4. In absense



Table 1. Average stand-alone performance in all 200 instances grouped by problem class. Cpu
times (t) in secs and constraint checks (cc) are given.

Problem class maxRPC2 maxRPC3 lmaxRPC2 lmaxRPC3 lmaxRPCrm lmaxRPC3rm lmaxRPC3+H
RLFAP t 6.786 2.329 4.838 2.043 4.615 2.058 2.148
(scen,graph) cc 31M 9M 21M 8M 21M 9M 8M
Random t 0.092 0.053 0.079 0.054 0.078 0.052 0.056
(modelB,forced) cc 0.43M 0.18M 0.43M 0.18M 0.43M 0.18M 0.18M
Geometric t 0.120 0.71 0.119 0.085 0.120 0.086 0.078

cc 0.74M 0.35M 0.74M 0.35M 0.74M 0.35M 0.35M
Quasigroup t 0.293 0.188 0.234 0.166 0.224 0.161 0.184
(qcp,qwh,bqwh) cc 1.62M 0.59M 1.28M 0.54M 1.26M 0.54M 0.54M
QueensKnights, t 87.839 47.091 91.777 45.130 87.304 43.736 43.121
Queens,QueenAttack cc 489M 188M 487M 188M 487M 188M 188M
driver,blackHole t 0.700 0.326 0.630 0.295 0.638 0.303 0.299
haystacks,job-shop cc 4.57M 1.07M 4.15M 1.00M 4.15M 1.00M 1.00M

of the suffix, the propagation list was implemented as a FIFO queue and no heuristic
from Section 4 was used.

Table 1 compares the performance of stand-alone algorithms used for preprocess-
ing. We give average results for all the instances, grouped into specific problem classes.
We include results from the two optimal coarse-grained maxRPC algorithms, maxRPC2
and maxRPC3, from all the light versions of the coarse-grained algorithms, and from
one of the most competitive algorithms (maxRPC3) in tandem with the dom/wdeg
heuristics of Section 4 (lmaxRPC3+H). Results show that in terms of run time our
algorithms have similar performance and are superior to existing ones by a factor of
two on average. This is due to the elimination of many redundant constraint checks as
the cc numbers show. Heuristic do not seem to make any difference.

Tables 2 and 3 compare the performance of search algorithms that apply lmaxRPC
throughout search on RLFAPs and an indicative collection of other problems respec-
tively. The algorithms compared are lmaxRPCrm and lmaxRPC3rm with and without
the use of heuristic dom/wdeg for propagation list and for Case 1 of Section 4. We also
include results from MACrm which is considered the most efficient version of MAC [8,
9].

Experiments showed that lmaxRPCrm is the most efficient among existing algo-
rithms when applied during search, which confirms the results given in [10]. Accord-
ingly, lmaxRPC3rm is the most efficient among our algorithms. It is between two and
four times faster than maxRPC3rm on hard instances, while algorithms lmaxRPC3
and lmaxRPC2 are not competitive when used during search because of the data struc-
tures they maintain. In general, when applied during search, any maxRPC algorithm
is clearly inferior to the corresponding light version. The reduction in visited nodes
achieved by the former is relatively small and does not compensate for the higher run
times of enforcing maxRPC.

Results from Tables 2 and 3 demonstrate that lmaxRPC3rm always outperforms
lmaxRPCrm, often considerably. This was the case in all 200 instances tried. The use of
heuristics improves the performance of both lmaxRPC algorithms in most cases. Look-
ing at the columns for lmaxRPCrm and lmaxRPC3rm+H we can see that our methods
can reduce the numbers of constraint checks by as much as one order of magnitude (e.g.
in quasigroup problems qcp and qwh). This is mainly due to the elimination of redun-



Table 2. Cpu times (t) in secs, nodes (n) and constraint checks (cc) from RLFAP instances.
Algorithms that use heuristics are denoted by their name + H. The best cpu time among the
lmaxRPC methods is highlighted.

instance ACrm lmaxRPCrm lmaxRPC3rm lmaxRPCrm + H lmaxRPC3rm + H
scen11 t 5.4 13.2 4.6 12.5 4.3

n 4,367 1,396 1,396 1,292 1,292
cc 5M 92M 29M 90M 26M

scen11-f10 t 11.0 29.0 12.3 22.3 9.8
n 9,597 2,276 2,276 1,983 1,983
cc 11M 141M 51M 114M 41M

scen2-f25 t 27.1 109.2 43.0 79.6 32.6
n 43,536 8,310 8,310 6,179 6,179
cc 44M 427M 151M 315M 113M

scen3-f11 t 7.4 30.8 12.6 17.3 7.8
n 7,962 2,309 2,309 1,852 1,852
cc 9M 132M 46M 80M 29M

scen11-f7 t 4,606.5 8,307.5 3,062.8 6,269.0 2,377.6
n 3,696,154 552,907 552,907 522,061 522,061
cc 4,287M 35,897M 9,675M 22,899M 6,913M

scen11-f8 t 521.1 2,680.6 878.0 1,902.4 684.7
n 345,877 112,719 112,719 106,352 106,352
cc 638M 10,163M 3,172M 7,585M 2,314M

graph8-f10 t 16.4 16.8 9.1 11.0 6.3
n 18,751 4,887 4,887 3,608 3,608
cc 14M 71M 31M 51M 21M

graph14-f28 t 31.4 4.1 3.1 2.6 2.1
n 57,039 2,917 2,917 1,187 1,187
cc 13M 17M 8M 13M 6M

graph9-f9 t 273.5 206.3 101.5 289.5 146.9
n 273,766 26,276 26,276 49,627 49,627
cc 158M 729M 290M 959M 371M

dant checks inside function searchPCwit. Cpu times are not cut down by as much, but
a speed-up of more than 3 times can be obtained (e.g. scen2-f25 and scen11-f8).

Importantly, the speed-ups obtained can make a search algorithm that efficiently
applies lmaxRPC competitive with MAC on many instances. For instance, in scen11-
f10 we achieve the same run time as MAC while lmaxRPCrm is 3 times slower while
in scen11-f7 we go from 2 times slower to 2 times faster. In addition, there are several
instances where MAC is outperformed (e.g. the graph RLFAPs and most quasigroup
problems). Of course, there are still instances where MAC remains considerably faster
despite the improvements.

Table 4 summarizes results from the application of lmaxRPC during search. We
give average results for all the tested instances, grouped into specific problem classes.
As can be seen, our best method improves on the existing best one considerably, mak-
ing lmaxRPC outperform MAC on the RFLAP and quasigroup problem classes. Over-
all, our results demonstrate that the efficient application of a maxRPC approximation
throughout search can give an algorithm that is quite competitive with MAC on many
binary CSPs. This confirms the conjecture of [6] about the potential of maxRPC as an
alternative to AC. In addition, our results, along with ones in [10], show that approxi-
mating strong and complex local consistencies can be very beneficial.

6 Conclusion
We presented maxRPC3 and maxRPC3rm, two new algorithms for maxRPC, and their
light versions that approximate maxRPC. These algorithms build on and improve ex-



Table 3. Cpu times (t) in secs, nodes (n) and constraint checks (cc) from various instances.

instance ACrm lmaxRPCrm lmaxRPC3rm lmaxRPCrm + H lmaxRPC3rm + H
rand-2-40-8 t 4.0 47.3 21.7 37.0 19.0
-753-100-75 n 13,166 8,584 8,584 6,915 6,915

cc 7M 289M 82M 207M 59M
geo50-20 t 102.7 347.7 177.5 273.3 150.3
d4-75-1 n 181,560 79,691 79,691 75,339 75,339

cc 191M 2,045M 880M 1,437M 609M
qcp150-120-5 t 52.1 89.4 50.2 80.0 55.3

n 233,311 100,781 100,781 84,392 84,392
cc 27M 329M 53M 224M 36M

qcp150-120-9 t 226.8 410.7 238.1 239.9 164.3
n 1,195,896 583,627 583,627 315,582 315,582
cc 123M 1,613M 250M 718M 112M

qwh20-166-1 t 52.6 64.3 38.9 21.2 14.9
n 144,653 44,934 44,934 13,696 13,696
cc 19M 210M 23M 53M 6M

qwh20-166-6 t 1,639.0 1,493.5 867.1 1,206.2 816.5
n 4,651,632 919,861 919,861 617,233 617,233
cc 633M 5,089M 566M 3,100M 351M

qwh20-166-9 t 41.8 41.1 25.0 39.9 28.5
n 121,623 32,925 32,925 26,505 26,505
cc 15M 135M 15M 97M 11M

blackHole t 1.8 14.4 3.8 12.1 3.6
4-4-e-8 n 8,661 4,371 4,371 4,325 4,325

cc 4M 83M 12M 68M 10M
queens-100 t 15.3 365.3 106.7 329.8 103.0

n 7,608 6,210 6,210 5,030 5,030
cc 6M 1,454M 377M 1,376M 375M

queenAttacking5 t 34.3 153.1 56.7 136.0 54.8
n 139,534 38,210 38,210 33,341 33,341
cc 35M 500M 145M 436M 128M

queensKnights t 217.0 302.0 173.6 482.0 283.5
-15-5-mul n 35,445 13,462 13,462 12,560 12,560

cc 153M 963M 387M 1,795M 869M

isting maxRPC algorithms, achieving the elimination of many redundant constraint
checks. We also investigated heuristics that can be used to order certain operations
within maxRPC algorithms. Experimental results from various problem classes demon-
strate that our best method, lmaxRPC3rm, constantly outperforms existing algorithms,
often by large margins. Significantly, the speed-ups obtained allow lmaxRPC3rm to
compete with and outperform MAC on many problems. In the future we plan to adapt
techniques for using residues from [9] to improve the performance of our algorithms
during search. Also, it would be interesting to investigate the applicability of similar
methods to efficiently achieve or approximate other local consistencies.

References

1. T Balafoutis and K. Stergiou. Exploiting constraint weights for revision ordering in Arc
Consistency Algorithms. In ECAI-08 Workshop on Modeling and Solving Problems with
Constraints, 2008.

2. C. Bessière, J.C. Régin, R. Yap, and Y. Zhang. An Optimal Coarse-grained Arc Consistency
Algorithm. Artificial Intelligence, 165(2):165–185, 2005.

3. F. Boussemart, F. Hemery, and C. Lecoutre. Revision ordering heuristics for the Constraint
Satisfaction Problem. In CP-2004 Workshop on Constraint Propagation, 2004.

4. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by weighting
constraints. In Proceedings of ECAI-2004, 2004.



Table 4. Average search performance in all 200 instances grouped by class.

Problem class ACrm lmaxRPCrm lmaxRPC3rm lmaxRPCrm + H lmaxRPC3rm + H
RLFAP t 242.8 556.7 199.3 416.3 157.3
(scen,graph) cc 233M 2,306M 663M 1,580M 487M
Random t 8.4 28.0 14.8 28.5 17.1
(modelB,forced) cc 14M 161M 60M 137M 51M
Geometric t 21.5 72.2 37.2 57.6 32.1

cc 39M 418M 179M 297M 126M
Quasigroup t 147.0 162.5 94.9 128.9 89.6
(qcp,qwh,bqwh) cc 59M 562M 68M 333M 40M
QueensKnights, t 90.2 505.2 180.3 496.4 198.1
Queens,QueenAttack cc 74M 1,865M 570M 1,891M 654M
driver,blackHole t 3.2 17.1 9.1 11.9 7.0
haystacks,job-shop cc 1.8M 55M 6.4M 36.7M 5.1M

5. R. Debruyne and C. Bessière. From restricted path consistency to max-restricted path con-
sistency. In CP-97, pages 312–326, 1997.

6. R. Debruyne and C. Bessière. Domain Filtering Consistencies. JAIR, 14:205–230, 2001.
7. F. Grandoni and G. Italiano. Improved Algorithms for Max-Restricted Path Consistency. In

Proceedings of CP’03, pages 858–862, 2003.
8. C. Lecoutre and F. Hemery. A study of residual supports in arc cosistency. In Proceedings

of IJCAI-2007, pages 125–130, 2007.
9. C. Likitvivatanavong, Y. Zhang, J. Bowen, S. Shannon, and E. Freuder. Arc Consistency

during Search. In Proceedings of IJCAI-2007, pages 137–142, 2007.
10. J. Vion and R. Debruyne. Light Algorithms for Maintaining Max-RPC During Search. In

Proceedings of SARA-2009, 2009.
11. R. Wallace and E. Freuder. Ordering heuristics for arc consistency algorithms. In AI/GI/VI,

pages 163–169, Vancouver, British Columbia, Canada, 1992.


