Solution Directed Backjumping for QCSP

Fahiem Bacchusand Kostas Stergidu

I Department of Computer Science, University of Toronto, Canada.
fbacchus@cs.toronto.edu
2 Department of Information and Communication Systems Engineering,
University of the Aegean, Greece.
konsterg@aegean.gr

Abstract. In this paper we present new techniques for improving backtracking
based Quantified Constraint Satisfaction Problem (QCSP) solvers. GC&P
generalization of CSP in which variables are either universally or existigntia
quantified and these quantifiers can be alternated in arbitrary ways. &or m
new technique is solution directed backjumping (SBJ). In analogue toictonfl
directed backjumping, SBJ allows the solver to backtrack out of soledrses
without having to find all of the distinct solutions normally required to validate
the universal variables. Experiments with the solver QCSP-Solve derata
that SBJ can improve its performance on random instances by orfleragp
nitude. In addition to this contribution, we demonstrate that performingmngry
levels of propagation for universal vs. existential variables can aagsbful for
enhancing performance. Finally, we discuss some techniques thathrecally
interesting but do not yet yield empirical improvements.

1 Introduction

In this paper we present new techniques for improving théopmance of solvers for
Quantified Constraint Satisfaction Problems (QCSPs). GG®an extension of stan-
dard constraint satisfaction problems (CSPs) that can eotlyrepresent a wider range
of problems than the standard CSP formalism. Whereas alkofahiables of a CSP are
implicitly existentially quantified, QCSPs also allow \ales to be universally quanti-
fied. Furthermore, universal and existential variablesxsaalternated in arbitrary ways
in a QCSP. From a theoretical point of view, these added featmake QCSPs PSPACE
complete; any problem in PSPACE can be encoded as a polytpsimed (poly-sized)
QCSP. CSPs, on the other hand, are NP complete; any problm@an be encoded as
a poly-sized CSP. It is known that both NPPSPACE and co-NE PSPACE, and it is
widely believed that these containments are proper, hat there are problems outside
of NP and co-NP that still lie in PSPACE. Such problems wilt have a poly-sized
CSP representation, but will have a poly-sized QCSP reptaten.

From a practical point of view, this difference means thaffiéctive QCSP solvers
can be developed they would enable a wide range of practigdications that lie be-
yond the reach of CSP solvers. Even though CSP and QCSPsbbtérhave the same
exponential worst case complexity, experience has shoatrsttvers can often achieve
reasonable run times in practice. The real issue separ@@iyand QCSP solvers lies
in size of the problem representation, i.e., the size ofripet. If NP+# PSPACE, then
there will exist problems for which a CSP formalization vélivays be exponentially

larger than the equivalent QCSP representation. Thus a GI8€ sould not even get

started on the problem—the problem would contain too manglkas and constraints.
The QCSP representation, on the other hand, would still bgpmial in size and thus

potentially solvable by a QCSP solver if that solver was ablachieve reasonable run
times in practice.

A good illustration of this point comes from the area of citaliagnosis. In [1]
an innovative application of quantified boolean formula8kQs a restricted form of
QCSP), for diagnosing hardware circuits is given. The keyjuie of the approach is
that the QBF encoding is many times smaller than the equiv&AT encoding (SAT is
a restricted form of CSP). In fact, in experiments the SAToelirog grew so large that it
could no longer be solved by existent SAT solvers, wherea®®F encoding remained
compact and was solvable by existent QBF solvers. Otheicapioins of QCSP come
from areas like conditional planning and planning undeoimplete knowledge [14],
non-monotonic reasoning [9], and hardware verification @egign [1, 7].

In this paper we present new techniques for improving backing based QCSP
solvers. Our main contribution is to demonstrate how thang&pie of cubes, utilized
in QBF solvers [12, 16], can be extended to QCSPs in a technigucall solution di-
rected backjumping (SBJ). SBJ allows the solver to backtir@elligently after having
encountered a solution. SBJ subsumes and improves on theidae of solution di-
rected pruning (SDP) [11], in an manner analogous to how iobdiftected backjump-
ing (CBJ) extends ordinary backjumping. In particular, $Bthputes information that
can be used at internal nodes of the tree rather than just &afnodes. Experiments
demonstrate that SBJ can improve performance by orders giiiae.

In addition to SBJ, we demonstrate that performing varyawgls of propagation for
universal vs. existential variables can enhance perfocmadn particular, we show that
enforcing very high levels of consistency on universalafalés can pay off, as detect-
ing a locally inconsistent value of a universal variable ieliately forces a backtrack.
We also discuss validity pruning, a technique that can bd tsgrune the domains
of universally quantified variables. Our current empiricalestigations with random
problems indicate that validity pruning does not yield #igant improvements. Nev-
ertheless, it has the potential to be useful in other typgsaflems.

This paper is structured as follows. Section 2 gives the sgarg definitions and
background on QCSPs. Section 3 describes methods to enbrapagation in QCSPs,
while in Section 4 we present SBJ, a method to enhance gaeliibacktracking in QC-
SPs. Section 5 gives experiments results demonstratingffibeency of the proposed
methods. Finally, in Section 6 we conclude.

2 Background

We are concerned here with QCSPs defined over finite valuagdbles. LetV =
{v1,...,v,} be a set of variables. Each variahlghas an associated finite domain
of valuesdom|v;]. We writev = d if the variablev has been assigned the valdial-
ways requiring thatl € dom/[v], i.e., a variable can only be assigned a value from its
domain. A constraint is a function from a subset of the variabledirto {true, false}
(1/0). This subset of variables is called $wopeof ¢, scope(c), and the cardinality of
this set is tharity of the constraint. Any tuple of values for the variables iscope(c)

will be mapped by to true or false If ¢(r) = true, 7 is said to be &atisfying tuple
of ¢, elsec(r) = falseandr is a falsifying tuple ofc. We will considerr to be a set,
and writev = d € 7 if v has the valud in .

A conjunction of constraint§’ = ¢; A - -+ A ¢y, their associated variablés =
Uj=, scope(c;), and domains for these variablés = {dom[v] : v € V} define a
standard CSR;[D], which forms thebody of a QCSP. Let be a tuple of values for all
of the variables ifi/, and for each constraint € C let 7; be the subset af containing
the values assigned to variablessitwpe(c;). 7 is asolution of the bodyC[D] if each
T, IS a satisfying tuple of;.

Definition 1 (QCSP) Given a bodyC[D] a Quantified Constraint Satisfaction Problem
(QCSP) is a formula of the forn).C[D] whereQ is a quantifier prefix consisting of

the variables OcheC scope(c;) arranged in some sequence and each proceeded by
either an existential{) or universal quantifier).

For example
Yy, Jua, Yus, Jug.c1(v1,v2) A co(v1,v3,v4) A c3(v2, V3, Vy)
[{dom[v1] = {a, b}, dom[vs] = {a,b,c}, dom[vs] = {a}]

is a QCSP with the quantifier prefi%;, Jvs, Vs, Jvs. This QCSP asserts that for all
values ofv; there exists a value af; (perhaps dependent on the particular value of
v1) such that for all values of; there exists a value af; (perhaps dependent on the
particular values of, vo andvs) such that all the constraints, co andcs are satisfied.

A quantifier block ¢b of @) is a maximal contiguous subsequence&lb$uch that
every variable inyb has the same quantifier type. For two quantifier blogksand gb,
we say thaigb, < gbs iff ¢b, is equal to or appears befogé, in Q). Each variable in
@ appears in some quantifier blogk(v) and we say that; <, v if ¢b(v1) < gb(ve)
andv; <, vg if gb(v1) < ¢b(ve). We also say that is universal (existential) if its
quantifier inQ is v (3).

A QCSP makes an assertion that is either true or false. Thertess made by
Q.C[D] is true iff Q.C[D] has a Q-Model. A Q-Model for §.C[D] is a tree in which
each node except for the root is labeled by a variable assighand that is subject to
the following conditions. Let andm be any two nodes in the tree such th& label
isz = a while m’s label isy = b.

1. If nis an ancestor af, then it must be the case that<, y. That is, the sequence
of assignments along any path from the root to a leaf musentspe ordering of
the quantifier blocks.

2. If z is universally quantified, them must have: — 1 siblings whereék is the size of
dom|x]. For each valu€ € dom|[z], n or one of itsk — 1 siblings must be labeled
by x = d. On the other hand if is existentially quantified, then has no siblings.

3. The tuple of assignments along any path from the root tafirlede must be a
solution toC'[D].

Hence in a Q-Model there is a path for every possible settingeouniversal vari-
ables inQ each of which is a CSP solution to the body of the QCSP. Thudvin@el of
a QCSP containing universal variables will contai2®(*) solutions to the body. From
this definition it can be seen that any CSP can be viewed as #@@B all its variable

existentially quantified. The Q-Models of such existentialy QCSPs contain only a
single path, and determining the truth of such QCSPs (ttetende of a Q-Model) is
equivalent to determining if the CSP has a solution.

Thereduction of C[D] by an assignment = d, C’[D]|v:d is the new body ob-
tained by removing from the domain ofll values not equal td (i.e., reducinglom [v]
set to the singleton séti}). We can also reduce the body by pruning a value from the
domain of a variabIeC[DHU#d = C[(D(dom[v])/(dom[v]—d))]. The reduction by
a set of assignments or value prunings is defined as the d&gwplication of these
reductions. Note that if any variable domain is reduced ¢ostimpty set, then the QCSP
is false. It cannot have a Q-Model as every Q-Model must assigry variable a value
from its domain along each path.

Proposition 1 Letv be a variable and be some value in its domain. ifis universal
thenQ.C[D] = Q.C’[D]|U¢d. If v is existential ther@.C[DHU#d = Q.C[D].

Proof: If v is universal andl.C[D] has a Q-Model then so do@.C[DHU#d: we

simply remove all subtree rooted by nodes labeled d from Q.C[D]'s Q-Model. If
v is existential then any Q-Model 6§.C[D] |v¢d is a Q-Model of@.C[D].

A common way of solving a QCSP is via backtracking searchtdnmost basic
form such a search works much like CSP backtracking seadpéfor two additional
conditions: (1) the variable ordering along any branch mespect the ordering of the
quantifier blocks (although it is free to dynamically reartlee variables within each
block), and (2) for every universal variablethe search needs to solve for every value
in dom|v].

The search tries to find a Q-Model: a successful run verifiasatQ-Model exists
by traversing a Q-Model during its search while a failed ras tried to traverse all
possible Q-Models thus verifying that one does not exispdrticular, at any node
the search tree that has been reached by making the sequemesignmentsr, =
(v1 = dy,...,v = dg), the search in the subtree belavattempts to find a Q-Model
for Q.C[D] ’m' Thus at the root the search attempts to find a Q-Model for tiggnal
problem@.C[D].

The key to making backtracking search for QCSPs effectiby ideveloping tech-
niques that allow unsuccessful subtrees to be refuted nificeeptly, and successful
subtrees to be verified more efficiently. Efficient refutatad unsuccessful subtrees is
also the goal in backtracking CSP solvers, but here we ainxpioi the additional
structure of QCSPs to develop better methods for achieviisggpal. Efficient verifi-
cation of successful subtrees, on the other hand, has noguegin CSP solvers which
typically can stop as soon as a single solution is found. Wi@CSP however, a suc-
cessful subtree has an exponential number of solutions aididj each of these would
be very slow. Here again our aim is to exploit the additiomalcture of QCSPs to de-
velop methods for verifying that all of these solutions exighout having to actually
find each one.

In the sequel we report on some new methods for achieving ttves goals as
well as on our empirical evaluation of their effectivendaam here on we will confine
our attention to QCSPs with constraints of arity at most tiwoan be noted that any
QCSP with non-binary constraints can be converted to arvalgmt QCSP containing

only binary constraints by applying the hidden variables$farmation (see e.g., [2]) to
convert the body to a binary CSP and then adding all of theyewiloduced hidden
variables as new existential variables to the end of thetifiearprefix. Whether or not
this is a effective way of dealing with non-binary consttaiis a topic for future work.
The alternative of dealing directly with non-binary coastits poses some considerable
additional formal and practical challenges and is also & timp future work.

3 Propagation

Ouir first techniques arise from the standard idea of comstpabpagation. These tech-
niques use the constraints of the QCSP body to provide additinformation that can
simplify the task of searching the subtree below the cumedte.

3.1 Detecting Inconsistent Values

An assignment = d is inconsistentfor Q.C[D] if it does not appear iany Q-Model
of Q.C[D]. If v = dis inconsistent and is existential ther).C[D] = Q.O[D]{#d:
any Q-model forQ.C[D] must also be a Q-Model fo@.C[D]]U;éd since it cannot
containv = d, while Prop. 1 supplies the opposite direction. On the oftaerd ifv is
universal ther).C[D] is false any Q-Model must contain = d.

Of course itis in general hard to detect inconsistent valugisas with CSPs various
local checks can be performed that detect some but not alhsistent values. Such
checks can be done at every nadef the search (including prior to search at the root).
In particular, if an inconsistent existential value is d¢te it can be pruned before
searching the subtree belaw and if an inconsistent universal value is detected the
search can immediately backtrack fram

Since every path in a Q-Model is a standard CSP solution tbdidg, any standard
CSP technique for detecting inconsistent values can be asgdvalue inconsistent
for the body cannot appear in any Q-Model. Additionally, vea @o better than this
by exploiting the additional structure of QCSPs. In pattcuas shown in [6,13], arc
consistency (AC) can be extended to QCSPs to support thetibetef values that are
inconsistent for the QCSP even though they are not incamgifdr the CSP body. AC
for binary QCSPs has been implemented in the QCSP-Solversythat we employ in
our empirical evaluations. QCSP-Solve uses AC only as arpcepsing step (i.e., at
the root), as FC (forward checking) seems to be more cositiefeduring search [11].

The key feature of AC for QCSPs is that it allows many of thest@ints of the
body to be removed at the root. In particular, the only caistsc(x, y) that remain in
the problem after AC preprocessing are those where bathdy are existential, and
those where: is universaly is existential, and: <, y (see [11] for more details).

Pruning inconsistent values improves the efficiency ofdear the subtree below,
but local consistency checking has its greatest impact vith@fows us to avoid that
search altogether. This happens when either all values ekistential are pruned or
a single value of a universal is pruned. It is more likely thetal propagation can
prune a single universal value than all values for some extistl. Hence, it can be
worth while to expend more effort checking for inconsistenmiversal values. This
intuition already appears to some extent in the QCSP-Solste via its FC1 and
MAC1 propagation. In these propagation methods, whenevarivgersal variabler
is to be branched on, before descending deeper in the searchlt of its possible

values are tried and FC or AC performed after each trial assit. If any of these
assignments yield a contradiction the algorithm can imatetli backtrack. This extra
work on universals was shown to be cost effective in the éwpets of [11].

Ouir first new technique is to further investigate the techaiof doing more work on
the consistency checking of universals. In particular, westigate applying a different
and stronger level of consistency checking on universalsameaker, and thus cheaper,
level of consistency on existentials, in addition to théntéque of checking all universal
values prior to descending deeper, used in [11].

3.2 Strong Levels of Consistency on Universals

Like QCSP-Solve after any existential is assigned we perfeC. But further to QCSP-
Solve we also check all future universal variables to enthatthey are arc consistent
in all of the constraints they participate in. Like QCSPx&af a universal is about to
be assigned we check each of its values first. But further t8BSolve we check each
value with a much higher level of local consistency than F@e Pparticular form of
local consistency we found to be effective is a mixture ohpadnsistency (PC) and
max restricted path consistency (maxRPC). If any value eiihiversal fails this local
consistency test we backtrack. If they all pass this testthea assign the universal
a value and then perform FC followed by enforcing AC on allstaaints involving a
future universal. Hence, we have two changes from QCSPeS(ly after each instan-
tiation we check that the future universals are AC in theirstmints, and (2) checking
a higher level of consistency on all values of a universalmio assigning it a specific
value.

Now we specify more precisely the local consistency testmpley on the values
of an about to be assigned universal. A pair of valigsd;), d; € dom[v;] andd; €
dom[v;], is path consisten{PC) iff the two values are compatible and for any third
variablevy, there exists a valué, € dom|v;] that is compatible with botH; andd;. A
valued; € dom|v;] is max Restricted Path ConsistdmaxRPC) [8] iff for any variable
v; constrained withy; there exists a valué; € dom|v;] that is compatible withl; and
has the following property: for any third variablg, there exists a valué, € dom[vg]
that is compatible with botH; andd;. In this case we say thdj is a maxRPC-support
of d;. In other wordsd; is maxRPC if it is a member cfomepath consistent pair in
every constraint it participates in while path consisteaogures that every paif; of
is path consistent. When during search we are about the absigmiversab;, after
having some set of assignmemntsthe local consistency test we employ is specified in
Figure 1.

In Figure 1 when a universal is reached during search we check that each of its
valuesd; has a maxRPC support in the domain of each existential itistcained with,
and thatd; is path consistent with all future universals. AC prepreags ensures there
are no constraints over two universals, thus to check theistemcy of pairs of universal
values we must consider the existentials they are jointhsttained with; hence our use
of path consistency.

The following example demonstrates how the application®aRd maxRPC prunes
the search space upon reaching a universal variable.

function maxRPC+PC_Pr opagat i on (Q.C[D], 7, v;)
1:for each valuel; € dom[v;]

2: for each unassigned existential variabjeconstrained withy;
3: if d; has no maxRPC-support ifvm[v;]

4: thenreturn FAI L

5: for each unassigned universal variabje

6: for each valuel; € dom|v;]

7: if (ds, d;) is not path consistent

8: then return FAI L

Fig. 1. Strong propagation on universal variables.

Example 1 Consider the QCSP

Fuy, Vg, Jus, Yoy, Jus.(v1 # vs — 2 Ave = U3 Avg # U5 Avg # v5 — 1 Avg = v5)
[dom[vi] = dom[vs] = dom[vs] = dom[vs] = {0, 1}, dom[vs] = {0, 1,2}]

A chronological backtracking algorithm that applies PC arekRPC upon reaching a
universal will solve the problem as follows. Variahle is assigned value 0. Forward
checking removes 2 frondom [vs]. The next variable, is a universal. We will now call
the function of Figure 1 to apply PC and maxRPCuwgis values.vs is existential and
is constrained withi,. Therefore, we check if value 0 of has a maxRPC-support in
dom|vs] (line 3). The only value compatible with 0 ifom [vs] is 0 and there is no value
in dom[vs] that is compatible with botld € dom[ve] and0 € dom[vs]. Therefore,
value 0 ofv, is not maxRPC and the algorithm immediately backtracks asijas 1 to
v1. Again the function of Figure 1 is called. Value 0®@f now has a maxRPC-support
in dom[vs] (value 0), because 2 has been restoreébta[vs] and it is compatible with
both0 € dom[vs] and0 € dom[vs]. vy is @ universal so we now apply PC on its values.
That is, we check if the values of have a support in; that is also a support for value
0 of v, (lines 6-8). This is not the case for value 0:qf and therefore the algorithm
backtracks and determines that the problem is false.

3.3 Detecting Valid Values

In QCSPs a duality exists between universal and existewdidgables that manifests
itself in various aspects of the processing that can be ddmwolving a QCSP. With
respect to detecting inconsistent values the dual notidetiscting valid values.

An assignment = d is valid for a constraint if for every tupler of assignments
to the variables irscope(d) with v = d € 7 we havec(r) = true. In other words the
assignment = d rendersc vacuous. We say that an assignment d is valid for
a conjunction of constraint§' if it is valid for every constraint irC' that hasv in its
scope.

This notion of validity corresponds both to that defined ihg8d to the notion of
purity defined in [11]. It is also related to notions described in [Suseful fact from
[3] is that validity is the dual of inconsistency with respéx GAC. That ispy = d is
valid for a constraint if and only if v = d is GAC inconsistent for-c, where—c is
the negation of. That is,scope(—c) = scope(c) and for any tuple of assignments
—c(1) = true iff ¢(r) = false

If v = dis valid for C in the QCSPQ.C[D] andv is existential therQ.C[D] =
Q.C[D]|,_,: we can assigm the valued. In particular, ifQ.C[D] has a Q-Model, then

we can replace every assignmenttm that Q-Model byv = d. Sincev = d is valid
this change cannot cause any constraint to be violatedehtberanodified Q-Model is
still a Q-Model forQ.C[D] |v:d. Prop.1 provides the opposite direction. On the other
hand ifv is universal therQ.C[D] = Q.C[D]|v¢d: we can prunel from dom[v]. In

this case ifQ.C[DHU#d has a Q-Model we can add the node= d as a new sibling

to all sets of siblings labeled by the other assignments aod then simply copy the
subtree below one of these other assignments to createsuitiowy = d. Since

v = d is valid the other assignment’s subtree will continue to lieea of solutions
underv = d. This modified Q-Model is a Q-Model a.C[D]. Prop.1 provides the
opposite direction.

Validity was previously utilized in QCSP-Solve by waitingtil a variable was
about to be assigned. At that point the values of the variabldd be checked to see if
any of them were valid (pure). For an existential the valithgavould immediately be
assigned, and for a universal the valid values would be ghlineccord with the above
observations.

An alternative to the approach of QCSP-Solve is to do valipibpagation. In par-
ticular, instead of waiting until a variable is about to beigeed one could detect valid
values of future variables and prune or assign them depedetheir type. Validity
propagation can be achieved by exploiting the relationshgrl above between GAC
(AC) on the negation of a constraint and validity. That idsifairly easy to alter AC
lookahead to detect valid values of future variables by inm@&C on the negations of
the constraints.

It should be noted that validity propagation does not afthetsize of the search
tree: a valid value of a future variable will still be expkait even if it is only detected
at the time the variable is about to be assigned. Potentiattgn be more efficient to
determine that a value is valid once near the top of the se¢gehrather than each time
the variable is to be assigned. On the other hand, one coudtkwiene detecting valid
values for variables that are never reached because arsistancy is found before they
are instantiated. The main potential benefit of validitygargation over future variables
lies in the fact that it dynamically alters the size of theiable domains; potentially dif-
ferently along different branches of the search tree. Asdhabove, although the order
in which variables are instantiated is restricted by theeord of the quantifier blocks,
within a quantifier block the variable ordering can be seéddteuristically. Hence, va-
lidity propagation could potentially provide “within a kik” dynamic ordering with
useful information about varying domains sizes.

We implemented validity propagation and used it in conjiomctvith dynamic vari-
able ordering within quantifier blocks. Our experimentalilés were disappointing, but
we only tested random problems. Potentially this technicudd be useful on other
QCSPs.

4 Intelligent Backtracking

Our second set of techniques arises from the idea of keeyziok of the reasons a path
failed or succeeded so that irrelevant variables can betizatied over. QCSP-Solve
already utilizes conflict directed backjumping (CBJ), asadibed in [11]. Hence, when
backtracking from a failure node irrelevant variables caskipped over. However, CBJ

does not support intelligent backtracking from successfules. Extending intelligent
backtracking so that it can be applied after success is\asthigy our new technique of
solution directed backjumping (SBJ).

4.1 Solution Directed Backjumping (SBJ)

In QBF solvers cube learning is an technique used to badkfram successful nodes
[12, 16]. Cubes are computed at solution leaves of the s¢i@ehy identifying a subset
of the assigned literals sufficient to satisfy all clausethefQBF. The aim is to identify
universal variables whose setting was irrelevant to theadisred solution. Potentially
those variables can be backtracked over without havingdbitt¢heir other value is
solvable.

In a QBF solver the leaf cubes (cubes computed as solutidmtates) support
backtrack to the deepest universal they contain, and anhmiteodes cubes computed
for each setting of a universal can be combined to suppatidamnon-chronological
backtracking. Since a successful subtree in QBF (or QCSP3@atain an exponential
number of solutions, backtracking out of such subtrees ygusubes can provide a
considerable performance improvement. For example, ibayanode a cube consisting
entirely of existential literals is computed, then the sharan immediately terminate.

In QCSPs however a straight forward application of this idenot effective. In
particular it is hardly ever the case that a universal végiab completely irrelevant
to the solution found. Rather, the solution found at a leafenmight continue to be a
solution under some other settings of the universal vagjdhlt not under other settings.
Hence the idea behind SBJ is to keep track of the values of thensals that are
verified by the current solution so that on backtrack thedeeganeed not be verified
again. Itis however slightly easier to formalize SBJ as kagtrack of the complement
of the verified values.

Definition 2 (QCSP Cube) Let gbe be a set containing (a) a set of existential assign-
ments(v = a) and (b) for each universal variablea set of valuesincovered[v] C
dom|v]. LetC [D]]qbe be the reduction of'[D] by v = a for each existential assign-
ment(v = a) € gbe and byv # d for eachd € uncovered[v] for each universal
variablev. The setjbe is acubeiff QQ.C [D]|qbe is true (i.e., has a Q-Model).

We use the convention of omitting mention of the getovered[v] from a cube if it is
empty, and we say that the universal variahlds in a cube gbe, if uncovered|v,] €
qbe (i.e.,uncovered|v,] # 0). An existential assignment = a € gbe is calledtailing
if for all universal variables,, € ¢be we havev,, <, v..

Observation 1 If v. = a is a tailing existential in a cubgbe thengbe — {v. = a} is
also a cube. That is, tailing existential assignments caelmeved from a cube.
Proof: Q.O[D]|qbe is true (by definition) andQ.C[D]|qbe = Q.C[D]|qbe_{v:a}
(Prop 1). Hence;).C[Dquei{v —a) is alsotrue andgbe — {v. = a} is a cube.

Figure 2 gives the algorithm for computing a QCSP cube at @atisal leaf. Letr
be the sequence of assignments made on the path to this ldaf (osatisfies all of
the constraints of the body). In this algorithrfw;=d) denotes the set of assignments
modified so thav; is now assigned the valuk The algorithm computesncovered[v;]
for each universal variable ; this is the set of values af; that are incompatible with

function Conput eLeaf Cube (Q.C[D],)
1: gbe = the assignments to the existential variables in
2: for each universal variable
3: uncovered[v;] = {}
for eachd € dom|[v;]
if m(v;=d) does not satisfy’
6 uncovered[v;] = uncovered|v;] U {d}
7. gbe = gbe U { uncovered|v;] }
8: gbe = remove tailing existentials frompe

ISR

Fig. 2. Computing a QCSP cube at a solution leaf node.

the current solution. Note thatcovered|v;] can never contain;’s current value (the
condition on line 5 cannot be satisfied sinceatisfies all constraints).

Proposition 2 The setgbe returned byConput eLeaf Cube is a cube.

Proof: Considerqgbe before tailing existentials are removed (line 8). At thisrpaybe
contains an assignment for every existential variable. Wetrehow that).C' [D]]qbe
has a Q-Model. Such a Q-Model will be a tree with paths for ywambination of
assignments to the universal variables not indheovered sets. Construct such a tree
by assigning the existential variables along every pathatse in gbe. Due to our re-
striction to binary constraints and preprocessing of theblem C[D] only contains
constraints:(v,, v.) between a universal and an existential and constrajuts, v.,)
between two existentials. Since the existential assigtsnian;be came from a solu-
tion 7 all constraints between two existentials are satisfiedh@uamore, line 5 ensures
that all constraints between a universal and an existeatiasatisfied by any universal
value not in theuncovered sets. Hence each path in this tree is a solutiof'tB], and
Q'C[D”qbe has a Q-model (itrue). By the previous observatiogbe remains a cube
after its tailing existentials have been removed.

Letv be the deepest universalhe, i.e., the universal assigned at the deepest level
along the path to the current solution leaf withcovered[v] # (. Letn be the node
assigning its current value. The fact thabe is a cube tells us that the subtree under
n has been solved: this subtree is attempting to s@\(é[DHﬂ wherem, is set of
assignments in the path ta 7, agrees withgbe on the assignment to its existential
variables but further restricts its universal variableassignments that lie in the do-
mains ofC[D]| .. By Prop. 1Q.C[D]| , = Q.C[D]|_, and thusQ.C[D]| ~ must
betrue sincegbe is a cube. Furthermorgpe also verifies that the subtrees of the other
assignments to not in uncovered|[v] are also solved: by the same reasoning all of these
subproblems are aldoue. Hence, the search can backtrack to the node that assigned
and from that point only attempt to solve the valuesdan uncovered|v] that have not
been previously verified.

Each time the search backtracks to a universal variableew cube is returned, and
at least one more value froos domain has been verified’s current assignment must
be verified by the cube). Say that the search backtracksatdotal of & times before
all of v's domain has been verified, in the process returiicgbesqgbe,, . . ., gbe;,. At
that point, the function in Figure 3 is invoked to compute w meilbe (wherer, is the
sequence of assignments made befonas selected to be assigned).

function Conput el nt er nal Cube (Q.C[D],v, v, gbe,, ..., gbe,)
1: gbe = the assignments to the existential variables,jn

2: for each universal variable, # v

3. wuncovered|v;] = Ule uncovered[v;] € qbe;

4: gbe = gbe U { uncovered[v] }

5: gbe = remove tailing existentials frongbe

Fig. 3. Computing a QCSP cube at an internal node where the universal leasialas assigned.

In Conput el nt er nal Cube each universal’'s uncovered values is the union of its
uncovered values in thecubesgbe, . . ., gbe;,. Note also thatincovered[v] is omitted
from the new cube (i.eyncovered[v] is implicitly empty). Sincev was the deepest
universal in each of the cubese,, we see that the newly computed cube also contains
no universals deeper thatNor does it contain any existential assignments deepar tha
v due to line 5 and the fact that eaetbe; also previously had their tailing existentials
removed.

Once gbe is has been computed the search can once again backtrack node
assigning the deepest universain gbe, and at that point continue by solving all values
of v" in uncovered[v'] € gbe that have not be previously verified. If all of these values
were previously verifieonput el nt er nal Cube will be invoked again on the set
of cubes that were returned 6 (i.e., ghe and any other cubes returned by earlier
backtracks ta’). The new cube it returns will then generate yet another toack.

Proposition 3 Assume thabe, ..., qbe, are all cubes, have been existentially re-
duced, agree on all existential assignments, hage their deepest universal, and to-
gether verify all of the values idom|v] (i.e., for eachu € dom[v] there existg such
thata ¢ uncovered[v] € qbe;). Then the sejbe returned byConput el nt er nal Cube
is a cube.

This proposition can be proved by constructing a Q—Modch(b‘[D]]qbe using parts

of the £ Q-Models known to exist foQ.C[Dquei. Subject to the assumed condi-
tions these Q-Models are sufficiently compatible that thpssts can be put together to
cover all values for the universal variahleand all values in the universal domains of

C[D] ’qbe-

The above propositions demonstrate that SBJ computestotiges and that these
cubes verify that the backtracking described above is soumgarticular, SBJ will
backtrack to the root of the search tree if and only if it hadfiesl that the empty set is
acube. Thatisp.C[D] \0 = Q.C[D] istrue. Finally, two more observations about SBJ
can be made. First, SBJ's space requirements are boundedday), whered is the
maximal sized variable domain ands the number of variables. In particular, at each
node along the current path (maxnodes) we need only store the union of the cubes
that have been returned to that node so far. Furthermosesé¢hcan be deleted when we
backtrack from the node. Second, at each node the cubesrcalitaf the previously
assigned existentials, so we need not explicitly storeetliegube. These existentials
would be needed however if we wanted to store the cubes toloisg future paths of
the search tree (i.e., if we were to perform cube learning).

5 Empirical Study

The random QCSP instances used in our empirical study wewrged following the
generation model introduced in [11]. As in [15] we added aimeegarameter that de-
notes the number of universal blocks. The generator takesa@neters{n, ng, ny, d,

P, qv3, 433, by) > wheren is the number of variables is the number of existentials
in each blockpny is the number of universals in each bloekis the uniform domain
size,p is the number of binary constraints as a fraction of all gdestonstraints, and
by is the number of universal blockgas is the fraction of satisfying tuples in con-
straints between existentials. The satisfying tuples inrsstraint between a universal
and an existential later in the variable sequence are speteifi follows. A random total
bijection is generated from the domain of the universal éodbmain of the existential.
All 2-tuples not in the bijection satisfy the constraintr&aeterqgys is the fraction of
satisfying tuples from thé tuples in the bijection.

Constraints between universals or an existential and atsallater in the variable
sequence are not generated as these can be removed by pssprg¢l1]. With certain
parameter settings the randomly generated instancesesrdrérm the flaw described
in [10]. Variables are quantified in blocks with alternatopgantification starting with a
block of ng existentials.

5.1 SBJand Strong Consistency on Universals

To evaluate the effects of SBJ and the constraint propagatathods for universals, we
have compared QCSP-Solve against three solvers obtainextéyding QCSP-Solve
with these features. The first solver (QCSP-Solve prop) angsnQCSP-Solve with
strong propagation on universals. The second one (QCSE-§ohugments QCSP-
Solve with SBJ. The third one (QCSP-Solve++) applies botl &l strong propaga-
tion on universals. We used random problems with a variepaoimeter settings. The
results presented hereafter are averages over 100 instg@cerated at each data point.
In each figure the value afs5 is varied in steps of 0.05. For the experiments of this
section variables were instantiated according to the dfiemsequence. Values were
always ordered lexicographically.

Figure 4 shows cpu times and node visits from problems whete24, ng = ny =
8 by =1,d=9,p = 0.15, ¢y3 = 0.44. Under these parameter settings all instances
are guaranteed to be flaw-free.

The results given in Figure 5 are from problems generatatjusimilar parameter
settings as in [15]. The left plot in Figure 5 shows cpu timesrf problems where
n=25mn3=mn =5b =2,d=8,p=0.20,qgy3 = 0.50. The right plot in
Figure 5 shows cpu times from problems where- 28, n3 = ny = 4, by = 3, d = §,

p = 0.20, gv3 = 0.50. Note that neither of these parameter settings guaranseedrite
instances.

In all sets of problems QCSP-Solve++ is considerably fakgm QCSP-Solve. For
high values ofj33, where most instances are soluble, the speed-up obtainduecap
to two orders of magnitude. This is because, through the US848, the solver avoids
repeatedly searching for solutions involving all sequsrafeassignments to universals.
For low values ofgs3, where most problems are insoluble, SBJ has little effedt an
the computation/maintainance of solution cubes is an @aatthat slows down search.

100

; T T 1e+008 T T T T T
QCSP-Solve —+— QCSP-Solve ——
QCSP-Solve prop - QCSP-Solve prop -
QCSP-Solve+ -~ 1e+007 | 7N QCSP-Solve+ = E
QCSP-Solve++ N A QSP—SoIveH

10 ¢

1e+006 |

100000 +

cpu time (seconds)
-
nodes

10000 e
01} ¢

1000 +

0.01

A 100
03 04 05 06 07 08 09 1 03 04 05 06 07 08 09 1

q q

Fig. 4. Cpu times (left) and node visits (right).

1000 1000

QCSP-Solve —+—
QCSP-Solve prop -

QCSP-Solve+
100 - QCSP-Solve++

QCSP-Solve —+— =

QCSP-Solve prop - 4
QCSP-Solve+ -

100 ¢ QCSP-Solve++

10 ¢ 10 +

cpu time (seconds)
cpu time (seconds)

0.1¢ 0.1

. A . . . 0.01 . - . . .
0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 0.5 0.6 0.7 0.8 0.9 1

q q
Fig. 5. Cpu times on problems with 25 variables (left) and 28 variables (right).

0.01

However, the early failure detection offered by the stroogsistencies applied on uni-
versals outweighs this and speed-ups compared to QCSR-&@\obtained. Compar-
ing QCSP-Solve to QCSP-Solve prop and QCSP-Solve+ to Q@BR-G+ shows that
the effects of SBJ and strong propagation on universals are or less orthogonal.

As is evident from the results shown in the figures, a smaltieiase in the number
of variables and quantifier alternations can have a significapact on the difficulty of
the problem.

Other Approaches to QCSP Solving.Apart from QCSP-Solve, two direct solvers
for QCSPs have been developed and a number of encodings d? @B5QBF have
been proposed. The two solvers are BlockSolve [15] and Qe@4jd BlockSolve is
a bottom-up solver that displays very good performance tubswminstances, but as a
downside requires exponential space. QeCode is built omftépecode and hence is
equipped with many advanced CSP techniques. However ki$ Isypecialized features
for QCSPs, such as pure value handling.

Although we have not directly compared our work to these erslvwe can make
some conjectures by observing the performance of the sotreinstances generated
with similar parameters. SBJ makes QCSP-Solve far more etitive with BlockSolve
than before on soluble instances. However, BlockSolvelsiids an advantage, as it
can achieve a speed-up of up to four orders of magnitude o8&FRSolve; albeit with
an exponential memory cost. At the phase transition andstteft, where problems
are insoluble, BlockSolve is outperformed by our techniqdenis conjecture is based

on the observation that BlockSolve displays roughly theesparformance as QCSP-
Solve at the phase transition while it is slower in the inbt#uegion [15]. Experiments

with QeCode showed that it displays roughly similar perfante as QCSP-Solve [4].
Therefore, we conjecture that SBJ makes QCSP-Solve coabigienore efficient than

QeCode on soluble instances. QBF solvers that run on theeeffiadapted and en-
hanced log encodings are typically slower than QCSP-Sahiasmluble instances and
faster on soluble ones [10,11]. We conjecture that SBJ mgKeSP-Solve at least
competitive with the encodings on soluble instances.

5.2 Validity Pruning and Dynamic Variable Ordering

We now study the effect of validity pruning and dynamic vhkaordering (DVO)
within blocks. In Figure 6 we compare three variations of @E®lve++ augmented
with validity pruning. The first one (QCSP-Solve++.1) applivalidity pruning to achieve
early detection of valid values and uses a static varialderarg. Its performance is very
close to that of QCSP-Solve++ (it is negligibly slower). Tdexond variation (QCSP-
Solve++.2) dynamically reorders variables within bothssxntial and universal blocks.
The third variation (QCSP-Solve++.3) applies DVO only witkexistential blocks and
orders the universals statically. The heuristic used is/degy The left plot in Figure 6
gives results from the problems of Figure 4 while the riglut glives results from the
problems of Figure 5 (the ones with 25 variables).

T T T 30 T T T T
QCSP-Solve++.1 —+— QCSP-Solve++.1 —+—
QCSP-Solve++.2 - QCSP-Solve++.2 -
5t QCSP-Solve++.3 4 L QCSP-Solve++.3 -

n N
=] a

-
o

cpu time (seconds)
w

cpu time (seconds)
P
(&

0.9 1 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 6. Cpu times on problems with 25 variables (left) and 28 variables (right).

Not surprisingly, DVO is effective on insoluble problemsthviarge existential
blocks. However, is has little effect on soluble problenrg] aven slows down search
in some cases. Again unsurprisingly, problems with blodksneall size do not bene-
fit from DVO. Finally, since QCSP-Solve++.2 and QCSP-Solv&tyield similar re-
sults, it seems that the reordering of universals does nutive the performance of the
solver. However, fail-first heuristics like dom/deg may betideal for universal vari-
ables, so it is possible that better heuristics, which exgih@ information offered by
validity pruning, will be designed in the future.

6 Conclusions

We have presented new techniques for improving the perfocmaf backtracking
based QCSP solvers. Our main contribution is the developwfesolution directed

backjumping for QCSPs. In analogue to conflict directed hamging, SBJ allows the
solver to backtrack out of solved sub-trees without havimdirtd all of the distinct
solutions normally required to validate that all sequenaieassignments to the uni-
versal variables lead to solutions. We also demonstratdchirforming varying levels
of propagation for universal vs. existential variables baruseful for enhancing per-
formance. Experiments with the solver QCSP-Solve dematesthat both these tech-
niques, and especially SBJ, can significantly improve théopmance of backtracking
solvers. Finally, we discussed validity pruning, a potahtiuseful technique that can
be used to prune the domains of universally quantified veesatiuring search.

References

1.

10.

11.

12.

13.

14.

15.

16.

M.F. Ali, S. Safarpour, A. Veneris, M.S. Abadir, and R. Drechskost-verification debug-
ging of hierarchical designs. limternational Conf. on Computer Aided Design (ICCAD)
pages 871-876, 2005.

. F. Bacchus and P. van Beek. On the conversion between nory-kindminary constraint

satisfaction problems. IRroceedings of AAAI-9$ages 311-318, 1998.

. F. Bacchus and T. Walsh. Propagating logical combinations of eamistr InProc. of 19th

IJCAI, pages 35-40, 2005.

. M. Benedetti, A. Lallouet, and J. Vautard. Reusing CSP propagato@3SPs. IProceed-

ings of CSCLP-20062006.

. L. Bordeaux, M. Cadoli, and T. Mancini. CSP Properties for Quadtifienstraints: Defini-

tions and Complexity. IProceedings of AAAI-200pages 360—-365, 2005.

. L. Bordeaux and E. Monfroy. Beyond NP: Arc-consistency fora@tified Constraints. In

Proceedings of CP-200pages 371-386, 2002.

. R.Bryant, S. Lahiri, and S. Seshia. Convergence testing in terrhdlemaded model check-

ing. In Correct Hardware Design and Verification Methods (CHARM&)Iume 2860 of
LNCS pages 348-362. Springer-Verlag, 2003.

. R. Debruyne and C. Bessiere. From restricted path consistencyxtoestaicted path con-

sistency. InProceedings of CP-9pages 312-326, 1997.

. Uwe Egly, Thomas Eiter, Hans Tompits, and Stefan Woltran. Solvingrasd reasoning

tasks using quantified boolean formulas. Rroceedings of AAAI-200(ages 417-422,
2000.

I. Gent, P. Nightingale, and A. Rowley. Encoding Quantified CSPsuasitified Boolean
Formulae. InProceedings of ECAI-2004ages 176-180, 2004.

I. Gent, P. Nightingale, and K. Stergiou. QCSP-Solve: A Solver fear@ified Constraint
Satisfaction Problems. IRroceedings of IJCAI-2002005.

E. Giunchiglia, M. Narizzano, and A. Tacchella. Learning for djfiad boolean logic satis-
fiability. In Eighteenth national conference on Atrtificial intelligenpages 649—654, 2002.
N. Mamoulis and K. Stergiou. Algorithms for Quantified Constraint &atieon Problems.
In Proceedings of CP-2004éages 752—-756, 2004.

Jussi Rintanen. Constructing conditional plans by a theorem+prdwearnal of Artificial
Intelligence Resear¢ti0:323-352, 1999.

G. Verger and C. Bessiéere. Blocksolve: a Bottom-Up Approac8dtving Quantified CSPs.
In Proceedings of CP-200®ages 635-649. Springer, 2006.

L. Zhang and S. Malik. Towards symmetric treatment of conflictssatidfaction in quanti-
fied boolean satisfiability solver. lroceedings of CP200pages 185-199, 2002.

