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Abstract. Constraint Satisfaction Problems and Propositional Satisfi-
ability, are frameworks widely used to represent and solve combinato-
rial problems. A concept of primary importance in both frameworks is
that of constraint propagation. In this paper we study and compare the
amount of propagation that can be achieved, using various methods,
when translating a problem from one framework into another. Our re-
sults complement, extend, and tie together recent similar studies. We
provide insight as to which translation is preferable, with respect to the
strength of propagation in the original problem and the encodings.

1 Introduction

CSPs and SAT are closely related frameworks that are widely used to represent
and solve combinatorial problems. It is well known that there exist several ways
to translate a problem expressed in one framework into the other framework (for
example [2,14]).

One of the most important concepts in CSP and SAT is the concept of con-
straint propagation. Solvers in both frameworks utilize propagation algorithms
both prior to and during search to prune the search space and save search effort.
Recently there have been several studies exploring and comparing the amount of
propagation that can be achieved in each framework using standard techniques,
such as arc consistency (in CSPs) and unit propagation (in SAT), under vari-
ous encodings from one framework to another [3,4,9,14]. A general lesson learned
from these studies is that the choice of encoding is very important when compar-
ing propagation methods in different frameworks. For example, arc consistency
in a binary CSP is equivalent to unit propagation in the support encoding of the
CSP into SAT [9,10]. On the other hand, arc consistency is stronger than unit
propagation under the direct encoding [14].

Apart from the variety of ways to translate problems from one framework into
another, a second source of complexity (and confusion) when comparing propa-
gation techniques in different frameworks is the large number of such techniques
that have been proposed. So far, the comparisons between propagation methods
in CSPs and SAT have only considered standard techniques like arc consistency
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and forward checking, on one hand, and unit propagation on the other hand.
Although these techniques remain at the core of most CSP and SAT solvers re-
spectively, other stronger propagation methods are also attracting considerable
interest in both communities in recent years. For example, some SAT solvers
(e.g. kcnfs, march dl, Dew Satz, 2CLS+EQ) employ strong reasoning techniques
such as failed literal detection and variants of binary resolution [1,6,11]. Also,
strong consistencies such as singleton and inverse consistencies are beginning to
emerge as possible alternatives to arc consistency in CSPs [5,8].

In this paper we make a detailed theoretical investigation of the relationships
between strong propagation techniques in CSPs and SAT. We consider various
encodings of SAT into CSP and binary CSPs into SAT. In some cases we prove
that, under certain encodings, there is a direct correspondence between a prop-
agation method for CSPs and another one for SAT. For example, failed literal
detection applied to a SAT problem achieves the same pruning as singleton arc
consistency applied to the literal encoding of the problem into a CSP. In other
cases, where no direct correspondence can be established, we identify conditions
that must hold so that certain consistencies can achieve pruning in a SAT or CSP
encoding, and/or place bounds in the pruning achieved by a propagation tech-
nique in one framework in terms of the other framework. For example, we show
that failed literal detection applied to the direct encoding of a CSP is strictly
stronger than restricted path consistency and strictly weaker than singleton arc
consistency applied to the original CSP. Finally, we introduce new propagation
techniques for SAT that capture the pruning achieved by certain CSP consis-
tencies. For example, we introduce subset resolution; a form of resolution that
captures the pruning achieved by arc consistency in the dual encoding of a SAT
problem into a CSP.

Our results provide insight and better understanding of propagation in CSPs
and SAT and complement recent similar studies. Also, we give indications as to
when encoding a problem is beneficial and which encoding should be preferred,
with respect to the strength of propagation in the original problem and the
encodings. Note that, due to space restrictions, we only give some of the proofs
(or sketches of proofs) for our theoretical results.

2 Preliminaries

A CSP, P , is defined as a triple (X, D, C), where: X = {x1, . . . , xn} is a finite
set of n variables, D = {D(x1), . . . , D(xn)} is a set of domains, and C is a set of
constraints. Each constraint C ∈ C is defined over a set of variables {xj1 , . . . , xjk

}
and specifies the allowed combinations of values for these variables.

A binary constraint C on variables {xi, xj} is Arc Consistent (AC) iff ∀a ∈
D(xi) ∃ b ∈ D(xj) such that the assignments (xi, a) and (xj , b) are compatible. In
this case we say that b is a support for a on constraint C. A non-binary constraint
is Generalized Arc Consistent (GAC) iff for every variable in the constraint and
each one of its values there exist compatible values in all other variables involved
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in the constraint. A CSP is (G)AC iff all constraints are (G)AC and there are
no empty domains.

Several consistencies have been defined for binary CSPs. Most can be de-
scribed as specializations of (i, j)-consistency. A problem is (i, j)-consistent iff
it has non-empty domains and any consistent instantiation of i variables can
be extended to a consistent instantiation involving j additional variables [7].
Under this definition, a problem is AC iff it is (1, 1)-consistent. A problem is
path-consistent (PC) iff it is (2, 1)-consistent. A problem is path inverse consis-
tent (PIC) iff it is (1, 2)-consistent. In addition, a number of consistencies that
cannot be described as (i, j)-consistencies have been defined. A problem P is
singleton arc consistent (SAC) iff it has non-empty domains and for any instan-
tiation (x, a) of a variable x, the resulting subproblem, denoted by P(x,a), can be
made AC. A problem is restricted path consistent (RPC) iff any pair of instan-
tiations (x, a), (y, b) of variables x and y, such that (y, b) is the only support of
(x, a) on the constraint between x and y, can be consistently extended to any
third variable.

Following [5], we call a consistency property A stronger than B iff in any
problem in which A holds then B holds, and strictly stronger iff it is stronger
and there is at least one problem in which B holds but A does not. We call a
local consistency property A incomparable with B iff A is not stronger than B
nor vice versa. Finally, we call a local consistency property A equivalent to B iff
A is stronger than B and vice versa.

A propositional theory T is a set (conjunction) of CNF clauses of the form
l1 ∨ l2 ∨ . . . ∨ ln, where each li, 1 ≤ i ≤ n, is a literal, ie. an atom or its negation.
A clause can be alternatively denoted as {l1, l2, . . . , ln}. Finally the notation
x1x2 . . . xnL denotes the clause {x1} ∪ {x2} ∪ . . . ∪ {xn} ∪ L. If c is a clause,
at(c) denotes the set of atoms of c. We assume that the reader is familiar with
the basics of propositional satisfiability.

The most common propagation method used in SAT algorithms is Unit Prop-
agation (UP) that repeatedly applies unit resolution (UR) to the clauses of the
input theory. Among stronger propagation methods, one of the earliest is the
Failed Literal Detection rule [6] denoted as FL rule or simply FL. Given a literal
l in T , s.t. {¬l} �∈ T and {l} �∈ T , the FL rule assigns the value true (false) to l
iff UP (T ∪ {¬l}) (UP (T ∪ {l})) derives the empty clause. We call FL-prop the
propagation scheme that repeatedly applies the FL rule until no more variable
values can be inferred or the empty clause is derived.

Another class of methods that are employed in state-of-the-art SAT solvers
and preprocessing algorithms is binary resolution, in its general or various re-
stricted forms. Binary resolution resolves two clauses of the form xy and ¬xZ
and generates the clause yZ. A restricted form of binary resolution, called Bin-
Res, has been introduced in [1], that requires that both resolvents are binary.
The application of BinRes as a propagation method, denoted by BinRes-prop,
consists of repeatedly adding to the theory all new binary and unit clauses pro-
duced by resolving pairs of binary clauses and performing UP on any unit clauses
that appear until nothing new is produced (or a contradiction is achieved). Note
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that BinRes-prop is a weaker propagation method than FL-prop [1]. Another re-
stricted form of binary resolution is Krom-subsumption resolution (KromS) [13]
that takes as input two clauses of the form xy and ¬xyZ and generates the clause
yZ. Note that yZ subsumes ¬xyZ, therefore ¬xyZ can be deleted. Generalized
Subsumption resolution (GSubs) takes two clauses xY and ¬xY Z and generates
Y Z. The propagation methods derived by repeatedly applying KromS or GSubs
are denoted by KromS-prop and GSubs-prop respectively.

3 Encodings

From CSP to SAT We restrict our study to binary CSPs. Many ways to translate
a binary CSP into SAT have been proposed [10,14,9,12]. We focus on two of the
most widely studied ones; the direct and the support encodings.

Direct Encoding: In the direct encoding a propositional variable xia is in-
troduced for each value a of a CSP variable xi. For each xi ∈ X , there is an
at-least-one clause xi1 ∨ . . . ∨ xid to ensure that xi takes a value. We optionally
add at-most-one clauses that ensure that each CSP variable takes at most one
value: for each i, a, b with a �= b, we add ¬xia∨¬xib. Finally, for each constraint C
on variables {xi, xj} and for each a, b, s.t. tuple <(xi, a), (xj , b)> is not allowed,
we add ¬xia ∨ ¬xjb.

Support Encoding: The support encoding also introduces a propositional
variable xia for each value a of a CSP variable xi. We also have all the at-least-
one clauses and (optionally) the at-most-one clauses. To capture the constraints,
there are clauses that express the supports that values have in the constraints.
For each binary constraint C on variables {xi, xj} and for each a ∈ D(xi), we
add xjb1 ∨ . . . ∨ xjbs ∨ ¬xia, where xjb1 , . . . , xjbs are the propositional variables
that correspond to the s supporting values that a has in D(xj).

From SAT to CSP The following three are standard ways to translate a SAT
instance into a CSP.

Literal Encoding: In the literal encoding of a SAT problem T a variable vi

is introduced for each clause ci in T . D(vi) consists of those literals that satisfy
ci. A binary constraint is posted between two variables vi and vj iff clause ci

contains a literal l whose complement is contained in clause cj . This constraint
rules out incompatible assignments for the two variables (e.g. (vi, l) and (vj , ¬l)).

Dual Encoding: In the dual encoding of a SAT problem T a dual variable vi is
introduced for each clause ci in T . D(vi) consists of those tuples of truth values
that satisfy ci. A binary constraint is posted between any two dual variables
which correspond to clauses that share propositional variables. Such a constraint
ensures that shared propositional variables take the same values in the tuples of
both dual variables, if they appear with the same sign in the original clauses,
and complementary values if they appear with opposite signs.

Non-Binary Encoding: In the non-binary encoding of a SAT problem T
there is 0-1 variable for each propositional variable. A non-binary constraint
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is posted between variables that occur together in a clause. This constraint
disallows the tuples that fail to satisfy the clause.

4 Encoding SAT as CSP

4.1 Literal Encoding

We denote by L(T ) the translation of a propositional theory T under the literal
encoding. From [3,14] we know that there is a direct correspondence between
UP and AC. We now study stronger consistency levels.

From [5] we know that PIC and RPC are stronger than AC for general CSP
problems. Below we provide a characterization of the cases where these consis-
tency methods lead to domain reductions in the literal encoding of a proposi-
tional theory.

Proposition 1. Value l in the domain of a variable in the literal encoding L(T )
of a propositional theory T is not PIC iff T either contains the unit clause ¬l or
the unit clauses m and ¬m or the clauses m and ¬l ∨ ¬m or the clauses ¬l ∨ m
and ¬l ∨ ¬m.

Proof. The ”if” part is straightforward. We will prove the ”only if” part. Assume
that the value l from the domain of variable vi, corresponding to the clause ci in
T , is not PIC because it can not be extended to the variables vj and vk. If the
value l has no support in any of the variables vj or vk, T must contain the unit
clause {¬l}. Assume now that this is not the case. Suppose that the domain of
variable vj contains only the value m (ie. corresponds to a unit clause in T ). If
the pair of values l and m can not be extended to variable vk, it must be the case
that the domain of vk is either {¬m}, or {¬l}, or {¬l, ¬m}. Consider the case
now where the domain of vj contains more than one value. Furthermore, assume
that it does not contain the value ¬l. Then, l can form a consistent triple of
values involving variables vi, vj and vk. Therefore, for l to be not PIC, vj must
contain the value ¬l. Moreover, if vj has more than two values in its domain
(including ¬l) the value assignment of l to vi can be extended to the other two
variables. Therefore, vj must have exactly two values in its domain, one of which
is ¬l, ie., it is of the form {¬l, m}. Since the values l and m cannot be extended
to vk, we conclude that the domain of vk is of the form {¬l, ¬m}. 	

A similar result holds for RPC. The proof is similar to the above.

Proposition 2. Value l in the domain of a variable in the literal encoding L(T )
of a propositional theory T is not RPC iff T either contains the unit clause ¬l or
the unit clauses m and ¬m or the clauses m and ¬l ∨ ¬m or the clauses ¬l ∨ m
and ¬l ∨ ¬m.

From the above analysis we conclude that on the literal encoding of a SAT
problem, PIC collapses down to RPC. Note that in general binary CSPs with
more than 3 variables, PIC is strictly stronger than RPC [5]. These results also
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imply that BinRes-prop applied to T is at least as strong as enforcing PIC (and
therefore RPC) on L(T ):

Proposition 3. If enforcing PIC on the literal encoding L(T ) of a propositional
theory T deletes the value l form the domain of a variable of L(T ) then BinRes-
prop in T generates the unit clause ¬l or determines that T is unsatisfiable.

Proof. Inductively on the values l1, l2, . . . , ln deleted by PIC enforcement.
Base case: From proposition 1 follows that if l1 is not PIC, BinRes either derives
¬l1 or determines that T is unsatisfiable (in the case where T contains m and ¬m).
Inductive Hypothesis: Assume that the proposition holds for all deletions li,
1 ≤ i < k < n. That is, if PIC on L(T ) deletes the values {l1, l2, . . . , lk−1},
BinRes-prop on T derives the unit clauses {¬l1, ¬l2, . . . , ¬lk−1}.
Inductive Step: Assume that lk is not PIC in L(T ). By analysis of the cases of
proposition 1 we conclude that BinRes-prop either generates ¬lk, or determines
that T is unsatisfiable.
Assume that lk is PIC in L(T ), but is not PIC in the problem resulting after the
deletion of the values {l1, l2, . . . , lk−1}. There are two cases.
First, there is a variable vj such that all the supports of value lk have been
deleted from the domain of vj by PIC. The domain of variable vj is either
{¬lk, l′1, l

′
2, . . . , l

′
n} or {l′1, l

′
2, . . . , l

′
n}, and {l′1, l

′
2, . . . , l

′
n} ⊆ {l1, l2, . . . , lk−1}. From

the inductive hypothesis follows that BinRes-prop entails the unit clauses ¬l′1,
¬l′2, . . . , ¬l′n. Then, BinRes-prop, either derives the unit clause ¬lk, or determines
that T is unsatisfiable.

Assume now that lk has support in domain of vj after the deletions {l1, l2, . . . ,
lk−1} performed by PIC. This means that cj , the clause of T that correspond
to vj , is of the form A ∪ D ∪ R, where A ⊆ {¬lk}, D ⊆ {l1, l2, . . . , lk−1},
R = cj − (A ∪ D), with |R| > 0. Assume that R = {m}. If m has no support
in the initial domain of variable vk, then this domain must be {¬m}. Then,
BinRes-prop, either derives the unit clause ¬lk, if A = {¬lk}, or determines that
T is unsatisfiable, if A = ∅.
Assume now that |R| > 1, and let R = {m1, m2, . . . , mn}, with n ≥ 2. Observe
that all elements of R are supports for lk in vj . Suppose now that lk is not PIC
because none of the pairs of values (lk, mf ), 1 ≤ f ≤ n, can be extended to a
consistent triple involving a value from some variable vg. Let the domain of vg

be of the form B ∪ S where B ⊆ {¬l}. Note that any value of S is support for
some value mf , 1 ≤ f ≤ n. Since lk is not PIC after the deletions of values
{l1, l2, . . . , lk−1}, we conclude that S ⊆ {l1, l2, . . . , lk−1}. From the inductive hy-
pothesis we know that BinRes-prop entails the unit clauses ¬l1, ¬l2, . . . , ¬lk−1.
Therefore, BinRes-prop will generate, using the clause that corresponds to vari-
able vg, either the unit clause ¬lk or the empty clause. 	

The following example shows that BinRes-prop is strictly stronger than PIC.

Example 1. Consider the propositional theory T = {l1∨ l2, ¬l1 ∨ l3, ¬l2 ∨ l3, ¬l3∨
l4}. BinRes derives the unit clause l3, but enforcing PIC on L(T ) does not lead
to any domain reductions.
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Not surprisingly, we can exploit the direct correspondence between AC and UP
shown in [14] to prove that FL-prop on T is equivalent to enforcing SAC in L(T ).
The proof proceeds by induction on the number of deletions performed by SAC
and the number of assignments made by FL.

Proposition 4. Enforcing SAC on the literal encoding L(T ) of a propositional
T deletes value l from the domains of all variables of L(T ) iff FL-prop on T
assigns false to l.

4.2 Dual Encoding

We denote by D(T ) the translation of a propositional theory T under the dual
encoding. From [14] we know that AC applied to the dual encoding can achieve
more propagation than UP in the original SAT instance.

As we will show, AC on the dual encoding can achieve a very strong level
of consistency that cannot be captured by known propagation methods in the
original SAT problem. For instance, the following example demonstrates that
FL on T and AC on D(T ) are incomparable.

Example 2. Consider the theory T = {l1 ∨ l4, ¬l1 ∨ l2, ¬l1 ∨ l3, ¬l2 ∨ ¬l3}. Note
that FL will assign the value F to l1. The problem D(T ) is AC, therefore no
domain reduction is performed by AC.
Consider now the theory T that contains all possible clauses in three variables,
ie., l1 ∨ l2 ∨ l3, l1 ∨ l2 ∨¬l3, . . . , ¬l1 ∨¬l2 ∨¬l3. AC on D(T ) will lead to a domain
wipeout, whereas FL does not lead to any simplifications.

It is not difficult to show that FL on T is weaker than SAC on D(T ).

Proposition 5. If FL assigns true to literal l of a propositional theory T , then
all variable values of D(T ) that correspond to valuations that assign false to l
are not SAC.

To precisely identify the propagation achieved by AC on the dual encoding,
we first provide two characterizations of propositional theories that are not AC
under the dual encoding. The first is a general characterization based on the
form of the propositional theory T , whereas the second describes the form of the
values that are not AC.

Proposition 6. A value in the domain of a variable xi of D(T ) that corresponds
to the clause ci in T is not AC iff T contains a clause cj such that at(cj) ⊆ at(ci)
and there exists l such that l ∈ cj and ¬l ∈ ci.

Let xi be a variable in the dual encoding D(T ) of a propositional theory T ,
that corresponds to a clause ci of T defined on the set of atoms at(ci) =
{a1, a2, . . . , an}. We assume an order on the set of elements of at(ci) which,
if not otherwise stated, corresponds to the order of appearance of the atoms
in ci. We denote this by at(ci) = (a1, a2, . . . , an). We use this order to refer to
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the values of variable xi of D(T ) as follows. A value in the domain of xi is a
tuple v = (v1, v2, . . . , vn), where vi ∈ {T, F} denotes the value of atom ai, with
1 ≤ i ≤ n. Alternatively a value for variable xi is a tuple v = (l1, l2, . . . , ln),
where li = ai if ai is assigned true in v and li = ¬ai if ai is assigned false in v.

Proposition 7. Value v = (l1, l2, . . . , ln) in the domain of variable xi in the
dual encoding D(T ) of a propositional theory T is not AC iff T contains a clause
cj = l′1 ∨ l′2 ∨ . . . ∨ l′m such that for each l′k, 1 ≤ k ≤ m it holds that l′k = ¬lp for
some 1 ≤ p ≤ n.

Note that the above results are valid for a CSP D(T ) that is the dual encoding
of a propositional theory T . Enforcing AC on D(T ) may lead to a sequence of
domain reductions, leading to a CSP that does not necessarily correspond to the
dual encoding of an associated simplification of theory T .

We now introduce subset resolution, a form of resolution that is stronger
than GSubs, and is intended to capture the domain reductions performed when
enforcing AC.

Definition 1. Subset resolution resolves two clauses ci and cj of a theory T iff
T contains a clause c such that at(ci) ⊆ at(c) and at(cj) ⊆ at(c).

We denote by SubRes-prop the propagation algorithm obtained by repeatedly
applying subset resolution. The following result shows that SubRes-prop is at
least as strong as enforcing AC.

Proposition 8. Let xi be a variable in the dual encoding D(T ) of a propositional
theory T that corresponds to clause ci of T such that at(ci) = (a1, a2, . . . , an).
If enforcing AC deletes the value v = (l1, l2, . . . , ln) from the domain of variable
xi, then either T contains or SubRes-prop generates the clause l′1 ∨ l′2 ∨ . . . ∨ l′m
such that for each l′k, 1 ≤ k ≤ m it holds that l′k = ¬lp for some 1 ≤ p ≤ n.

Proof. By induction on the sequence of values v1, v2, . . . , vf deleted by the AC
enforcing algorithm.
Base Case: Follows from Proposition 7.
Inductive Hypothesis: Assume that the proposition holds for all vi ,1 ≤ i < k < f .
Inductive Step: Assume that the AC enforcing algorithm, after deleting the values
v1, v2, . . . , vk−1, deletes the value vk from the domain of variable xi of D(T )
because it has no support in the domain of variable xj , that corresponds to
clause cj in T . The case where the original domain of xj contained no support
for vk is covered by Proposition 7. Consider now the case where value vk has the
supports S = {s1, s2, . . . , sr} in the original domain xj , but these supports are
deleted by AC. Define A = at(ci) ∩ at(cj). Consider first the case where A = ∅.
Then, S coincides with the domain of xj , ie. it contains all possible valuations on
at(cj), except the valuation that falsifies cj . The fact that vk has no support in
xj means that the domain of xj is empty. Therefore, the AC enforcing algorithm
must have been terminated, which contradicts the assumption that it deletes vk.
Hence, this situation can never arise.



Propagation in CSP and SAT 145

Consider now the case where A �= ∅, and let vA
k be the projection of value

vk on the atoms of A, defined as vA
k = (l1, l2, . . . , lm). The set S contains all

possible valuations on the set of atoms at(cj) that assign the same values as vk to
the variables of A, except the valuation that falsifies cj . Since the AC enforcing
algorithm deletes value vk, all the supports of vk in the domain of variable xj (ie.
the elements of S) must have been deleted by the algorithm, and therefore belong
to the set of values v1, v2, . . . , vk−1. From the inductive hypothesis we know that
SubRes-prop derives a set of clauses R = {c′1, c′2, . . . , c′q}, q ≤ r, that satisfy the
properties stated in the proposition. Therefore, for each possible assignment on
the atoms of at(cj) that assigns the same value as vk on the atoms of A, the set
R∪{cj} contains a clause c′ such that the assignment is not a model of c′. Hence,
R ∪ {cj} has no models where all the atoms of A are assigned the same values
as in vk. Therefore, R ∪ {cj} |= ¬l1 ∨ ¬l2 ∨ . . . ∨ ¬lm. Since for each clause cR of
R ∪ {cj} it holds that at(cR) ⊆ at(cj), SubRes-prop is able to derive, from the
set of clauses R∪{cj}, a prime implicant that subsumes ¬l1 ∨¬l2 ∨ . . .∨¬lm. 	

The next result is the reciprocal of the previous proposition and both together
imply that enforcing AC on D(T ) is equivalent to SubRes-prop in T .

Proposition 9. Given a propositional theory T , if SubRes-prop on T derives a
clause l1∨l2∨. . .∨lm, then enforcing AC on D(T ) deletes all values (l′1, l′2, . . . , l′n)
from the domains of the variables of D(T ) such that for each li, 1 ≤ i ≤ m there
is some l′j, 1 ≤ j ≤ n, such that l′j = ¬li.
Proof. By induction on the the set of clauses S = {c1, c2, . . . , ck} defined induc-
tively as follows: ci ∈ S if ci ∈ T or ci is the subset resolvent of two clauses
ca, cb ∈ S.
Base Case: The proposition follows for all clauses of T from proposition 7.
Inductive Step: Let c = c1 ∪ c2 be the clause that is generated by subset resolu-
tion from the clauses c′1 = {l}∪ c1 and c′2 = {¬l} ∪ c2. Our inductive hypothesis
is that the proposition holds for clauses c′1 and c′2. Let c1 = {l11, l

1
2, . . . , l

1
x} and

c2 = {l21, l
2
2, . . . , l

2
y}. Since c′1 and c′2 are resolved by subset resolution, it must hold

that T contains a clause cg such that at(c′1) ⊆ at(cg) and at(c′2) ⊆ at(cg). Let xg

be the corresponding variable of D(T ). From the inductive hypothesis we know
that enforcing AC deletes all values of xg with projection (¬l, ¬l11, ¬l12, . . . , ¬l1x)
and (l, ¬l21, ¬l22, . . . , ¬l2y) on at(c′1) and at(c′2) respectively. Therefore, xg can not
contain a value in its domain with projection1 (¬l11 , ¬l12, . . .¬l1x, ¬l21, ¬l22, . . . , ¬l2y)
(no value at all if c1 = c2 = ∅). Moreover, no domain of the other variables can
include a value with projection (¬l11, ¬l12, . . . , ¬l1x, ¬l21, ¬l22, . . . , ¬l2y) on the set
at(c′1) ∪ at(c′2), as it has no support in the domain of xg. 	

Having introduced a new resolution technique to that is equivalent to AC on the
dual encoding, we can also define similar methods that capture even higher con-
sistency levels. We now introduce extended subset resolution, a slightly extended
form of subset resolution, that is intended to capture the domain reductions per-
formed by PIC on the dual encoding. Note that if c = {l1, l2, . . . , ln} is a clause,
c = {¬l1, ¬l2, . . . , ¬ln}.
1 To facilitate the discussion we assume that c1 ∩ c2 = ∅.
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Definition 2. Extended Subset resolution (ESR) resolves two clauses ci and cj

of a theory T if either T contains a clause c such that at(ci) ⊆ at(c) and at(cj) ⊆
at(c) or ci ∩cj = {l} and T contains a clause c such that at(ci)−at({l}) ⊆ at(c)
and at(cj) − at({l}) ⊆ at(c).

We now characterize the cases where PIC performs domain reductions.

Proposition 10. Value v = (l1, l2, . . . , ln) in the domain of a variable x of the
dual encoding D(T ) of a theory T is not PIC iff T either contains a clause
l′1 ∨ l′2 ∨ . . .∨ l′m or a pair of clauses l′1 ∨ l′2 ∨ . . . l′a ∨ l′ and l′a+1 ∨ l′a+2 ∨ . . . l′m ∨¬l′

such that for each l′i, 1 ≤ i ≤ m there is some lj, 1 ≤ j ≤ n, such that l′i = ¬lj.

Based on the above, the following result shows the relation between the clauses
generated by the propagation algorithm ESR-prop that repeatedly applies ESR
on T , and the domain reductions performed by a PIC enforcing algorithm on
D(T ). The proof proceeds in a similar fashion as the proof of Proposition 9.

Proposition 11. If ESR-prop on a propositional theory T derives a clause l1 ∨
l2 ∨ . . . ∨ ln, then enforcing PIC on D(T ) deletes all values (l′1, l

′
2, . . . , l′m) from

the domains of the variables of D(T ) such that for each li, 1 ≤ i ≤ n there is
some l′j, 1 ≤ j ≤ m, such that l′j = ¬li.

4.3 Non-binary Encoding

We denote by N(T ) the translation of a propositional theory T under the non-
binary encoding. Note that in N(T ) all clauses of T involving the same set of
variables are encoded together in one constraint. From [14] we know that under
the non-binary encoding, GAC is stronger than UP. We first show thatif the
propositional theory T does not contain clauses that are on the same variables,
GAC on N(T ) can do no more pruning than UP on T . The proof uses induction
in the number of deletions performed by GAC.

Proposition 12. Let T be a propositional theory that does not contain two
clauses ci and cj such that at(ci) = at(cj), and let x be a variable in T . If
GAC deletes the value a from D(x) in N(T ) then UP assigns the value ¬a to x
in T .

If the above restriction does not hold then GAC enforced on N(T ) can achieve
a high level of consistency. The following example shows that FL-prop, BinRes-
prop, and KromS-prop are all incomparable to enforcing GAC.

Example 3. Let T be the theory containing all possible clauses in three variables:
l1 ∨ l2 ∨ l3, l1 ∨ l2 ∨ ¬l3, . . . , ¬l1 ∨ ¬l2 ∨ ¬l3. FL-prop, BinRes-prop and KromS-
prop on this theory do not lead to any simplifications, whereas GAC on N(T )
shows that the problem is not solvable. Note that GSubs-prop applied to T also
determines insolubility.

Now consider the theory l1∨l4, ¬l1∨l2, ¬l1∨l3, ¬l2∨¬l3. FL-prop and BinRes-
prop determine that l1 must be assigned false, whereas GAC leads to no reduc-
tions. Finally, consider the theory l1 ∨ l2 ∨ l3, ¬l1 ∨ l2, ¬l2 ∨ l3. KromS-prop
determines that l3 must be assigned true, whereas GAC leads to no reductions.
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To put an upper bound in the pruning power of GAC, we first characterize the
cases where a value is not GAC in N(T ).

Proposition 13. Value 0 (1) of a variable xi in the non-binary encoding N(T )
of a propositional theory T is not GAC iff T contains either the unit clause xi

(¬xi) or all possible clauses in variables xi, x1, . . . , xk (k ≥ 1) that include literal
xi (¬xi).

Using the above proposition, we can prove that GSubs-prop applied to T is
strictly stronger than enforcing GAC on N(T ).

Proposition 14. Let T be a propositional theory. If enforcing GAC deletes the
value 0 (1) from the domain of a variable in N(T ) then GSubs-prop assigns the
value 1 (0) to the corresponding variable in T .

Proof. Suppose GAC makes a sequence of value deletions (x1, a1), (x2, a2), . . . ,
(xj , aj). The proof uses induction on j.
Base Case: The first value a1 ∈ x1 will be deleted because it has no support in
some constraint C in N(T ). From Proposition 13 we know that either T con-
tains the unit clause x1, if a1 = 0 (¬x1 if a1 = 1), or all possible clauses in the
variables of the constraint that include literal x1, if a1 = 0, and ¬x1 if a1 = 1.
In both cases, if we apply GSubs-prop on the clauses, we will entail x1 (¬x1).
Inductive Hypothesis: We assume that for any 1 ≤ m < j the proposition holds.
Inductive Step: Consider the final deletion of value aj from D(xj). This value
is deleted because it has no supporting tuple in some constraint C on variables
xj , y1, . . . , yk, which corresponds to one or more clauses on the corresponding
propositional variables in T . This means that for each tuple τ that supported
value aj, at least one of the values in τ has been deleted from a variable among
y1, . . . , yk. According to the hypothesis, for every such deletion, the correspond-
ing propositional variable was set to the opposite value by GSubs-prop, and the
associated literals were set to false in all the associated clauses. Now consider
the subset yl, . . . , ym of y1, . . . , yk which consists of the variables that have not
been set. Assume that the (reduced) clauses associated with constraint C do not
contain all possible combinations of literals for variables yl, . . . , ym. Then C will
contain at least one supporting tuple for aj which contradicts the fact that aj is
deleted. Therefore, the clauses associated with constraint C contain all possible
combinations of literals for variables yl, . . . , ym. If we apply GSubs-prop on these
clauses, we will entail xj , if aj = 0, and ¬xj if aj = 1. 	

From the above proposition and the last problem in Example 3, it follows that
GSubs-prop is strictly stronger than enforcing GAC.

5 Encoding CSP as SAT

5.1 Direct Encoding

We denote by Di(P ) the translation of a CSP P into SAT under the direct
encoding. From [14] we know that AC enforced on a CSP P can achieve more
pruning than UP applied to Di(P ).



148 Y. Dimopoulos and K. Stergiou

The following example demonstrates that FL-prop is incomparable to PIC
while BinRes-prop is incomparable to AC, RPC, and PIC.

Example 4. Consider a CSP with four variables x1, x2, x3, x4, all with {0, 1}
domains, and constraints x1 = x2, x2 = x3, x3 = x4 and x4 �= x1. This problem
is AC, RPC, and PIC. However, by setting x10 or x11 to true in the direct
encoding, UP generates the empty clause. Therefore, FL-prop sets both x10
and x11 to false and determines that the problem is unsatisfiable. Accordingly,
BinRes-prop generates the unit clauses ¬x10 and ¬x11 and therefore determines
unsatisfiability.

Now consider a CSP with three variables x1, x2, x3, all with {0, 1, 2, 3} domain,
and three constraints. Assume that values 0 and 1 (2 and 3) of x1 are supported
by 0 and 1 (2 and 3) in D(x2) and D(x3), and that values 0 and 1 (2 and
3) of D(x2) are supported by 2 and 3 (0 and 1) in D(x3). FL-prop on the
direct encoding of the problem does not generate the empty clause by setting
any propositional variable to true or false. Therefore is does not achieve any
inference. However, the problem is not PIC.

Finally, consider a CSP with two variables x1 and x2, both with three values
in their domains, where one of the values in D(x1) has no support in D(x2). AC
(and all stronger CSP consistencies) will delete this value. However, BinRes-prop
cannot resolve any clauses and therefore infers nothing.

We now show that if a value in a CSP is not RPC then the FL rule will set the
corresponding variable to false in Di(P ).

Proposition 15. If a value a ∈ D(xi) of a CSP P is not RPC then the FL rule
assigns xia to false when applied to Di(P ).

Proof. Assume that value a ∈ D(xi) of a CSP P is not RPC. This means that
(xi, a) has a single support (say b ∈ D(xj)) in the constraint between xi and
xj and the assignments (xi, a) and (xj , b) cannot be consistently extended to
some third variable xl. That is, there is no value in D(xl) that supports both
(xi, a) and (xj , b). Now consider the direct encoding of the problem and assume
that FL sets xia to true. UP will immediately set each xjb′ , where b′ ∈ D(xj)
and b′ �= b, to false, and as a result xjb will be set to true. UP will then set all
propositional variables corresponding to the values in D(xl) to false. Therefore,
an empty clause is generated and as a result xia will be set to false. 	

A corollary of the above proposition is that FL sets the corresponding proposi-
tional variable to false for any value of the original CSP that is not AC. The first
problem in Example 4 together with Proposition 15 can help prove that FL-prop
is strictly stronger than RPC and AC. The complete proof involves induction
in the number of deletions performed by the algorithms. We now state that if
FL-prop makes an inference in Di(P ) then SAC also makes the corresponding
inference in P .

Proposition 16. If FL-prop sets a propositional variable xia to false in the
direct encoding of a CSP P then SAC deletes value a from D(xi) in P . If FL-
prop sets xia to true then SAC deletes all values in D(xi) apart from a.
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Now consider the second problem in Example 4. This problem is not SAC, but
FL-prop applied to its direct encoding infers nothing. This, together with the
above proposition, prove that SAC is strictly stronger than FL-prop, and there-
fore also BinRes-prop.

We now show that GSubs applied to Di(P ) can do no more work than Unit
Resolution.

Proposition 17. Given a CSP P , GSubs applied to Di(P ) draws an inference
iff only Unit Resolution does.

Proof. It suffices to show that GSubs can only be applied to pairs of clauses of
the form x, ¬xY . Consider two clauses of the form xY , ¬xY C. First assume that
both clauses are non-binary. In this case both clauses are necessarily at-least-one
clauses. But if x is present in one of the clauses, ¬x cannot be present in the
other, since the two clauses encode domains of different variables. Now assume
that at least one of the clauses is of the form xy. There are three cases depending
on what kind of clause xy is. If xy is a conflict clause then ¬x can only be found
in an at-least-one clause. However, literal y cannot be present in this clause. If xy
is an at-most-one clause then ¬x can again only be found in the corresponding
at-least-one clause. However, this clause will contain ¬y and not y. Finally, if xy
is an at-least-one clause then ¬x and y cannot occur together in any conflict or
at-most-one clause. Hence, in all cases GSubs cannot be applied. 	


5.2 Support Encoding

We denote by Sup(P ) the translation of a CSP P into SAT under the support
encoding. From [10,9] we know that AC applied to a CSP P is equivalent to UP
applied to Sup(P ). We now elaborate on the relationship between FL-prop and
SAC.

Proposition 18. FL-prop sets a propositional variable xia to false in the sup-
port encoding of a CSP P iff value SAC deletes value a ∈ D(xi) in P . FL-prop
sets xia to true iff SAC deletes all values in D(xi) apart from a.

The proof is rather simple and proceeds by induction in the number of assign-
ments made by FL-prop and the number of value deletions performed by SAC,
exploiting the equivalence between AC and UP.

It is easy to see that BinRes-prop is strictly stronger than AC. Consider a
problem with three variables x,y,z, each with domain {0, 1} and constraints
x = y, x = z and y �= z. This problem is AC, but BinRes-prop applied to its
support encoding shows that it is inconsistent. This example, coupled with the
fact that BinRes-prop subsumes UP (which is equivalent to AC), proves that
BinRes-prop is strictly stronger than AC.

The following example demonstrates that BinRes-prop is incomparable to
RPC, and PIC.

Example 5. Consider the first problem in Example 4. This problem is AC, RPC,
and PIC. However, BinRes-prop generates the unit clauses ¬x10 and ¬x11 and
therefore determines unsatisfiability.
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Now consider a CSP with three variables x1, x2, x3, all with {0, 1, 2, 3} domain,
and three constraints. Assume that value 0 of x1 is supported by 0 in D(x2) and
0,1 in D(x3), and that value 0 of D(x2) is supported by 2,3 in D(x3). All other
values have at least two supports in any constraint. The problem is not RPC
(or PIC), but BinRes-prop applied to the support encoding does not detect the
inconsistency.

As in the direct encoding, GSubs applied to Sup(P ) can do no more work than
Unit Resolution. The proof proceeds by case analysis and is similar to the proof
of Proposition 17.

Proposition 19. Given a CSP P , GSubs applied to Sup(P ) draws an inference
iff only Unit Resolution does.

6 Conclusion

In this paper we presented theoretical results concerning the relative propagation
power of various local consistency methods for CSP and SAT. More specifically,
we studied AC, PIC, RPC and SAC for CSP, and FL, BinRes, KromS and
GSubs for SAT. The results we obtained complement and tie together recent
similar studies [3,9,14].

As it may be expected, in cases where AC is equivalent to Unit Propagation,
SAC is equivalent to Failed Literal Detection. Under both translations of CSP to
SAT we consider, FL can achieve a level of consistency that is higher than RPC
in the original problem. Among the less powerful methods, that are nevertheless
stronger than AC, BinRes arises as an appealing method that can achieve a rel-
ative high level of local consistency. Indeed, BinRes is stronger than PIC under
the literal encoding, and stronger than AC under the support encoding. General-
ized subsumption resolution finally achieves an intermediate level of consistency
between GAC in N(T ) and AC in D(T ).

Comparing among different encodings, in the case of translating a SAT to CSP,
the dual encoding appears to achieve the highest level of local consistency among
the different approaches studied. Indeed, AC in the dual encoding corresponds
to subset resolution, a method that is stronger than generalized subsumption
resolution. Although the cost of applying such a local consistency method in its
general form may be prohibitive, restricted versions (eg. restricting the number
of literals in the clauses considered) of the method may have some practical
value. The non-binary encoding appears weaker than the dual, and enforcing
GAC on the translated problem can achieve better propagation than UP only
if the original theory contains clauses on the same variables. Finally, under the
literal encoding, techniques that have been used in SAT and CSP are roughly
equivalent, with the exception of BinRes which achieves a level of consistency
between PIC and SAC. When translating from CSP to SAT, the direct encoding
appears to be rather weak. Indeed, strong resolution methods such as generalized
subsumption resolution are weaker than AC in the original problem. The support
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encoding appears to behave better propagation-wise, as already suggested in [9].
A general conclusion that can been drawn from our analysis is that translating
a CSP to SAT can be beneficial only if the support encoding is used, coupled
with a propagation method that is at least as strong as BinRes.

An extended version of this paper contains a more detailed study of propa-
gation in CSP and SAT, including CSP consistency methods such as Neighbor
Inverse Consistency and SAT techniques such as Hyper-resolution. In the future
we intend to extend our study to cover encodings of non-binary constraints into
SAT, and also consider the relationship between learning techniques in CSP and
SAT under the various encodings. Finally, but very importantly, an empirical
evaluation of the different encodings and propagation methods is required.
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