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Building adaptive constraint solvers is a major challenge
in constraint programming. An important line of research to-
wards this goal is concerned with ways to dynamically adapt
the propagation method applied on the constraints of the
problem during search. In this paper we present a heuris-
tic approach to this problem based on the monitoring of
propagation events like value deletions and domain wipe-
outs. We develop a number of heuristics that allow the con-
straint solver to dynamically switch between a weaker and
cheap local consistency and a stronger, but more expensive
one, when certain conditions are met. The success of this ap-
proach is based on the observation that propagation events
for individual constraints in structured problems mostly oc-
cur in clusters of nearby revisions. Hence, parts of the search
space where certain constraints arehighly activecan be iden-
tified and exploited paving the way for the informed use of
constraint propagation techniques. In this paper we first give
some experimental results displaying the clustering of prop-
agation events in structured binary CSPs. Then we present
simple heuristics that exploit this clustering to efficiently
switch between different local consistencies on individual
constraints during search. Finally, we make an experimental
study on various binary CSPs demonstrating the effective-
ness of the proposed heuristics.
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1. Introduction

Constraint Programming (CP) is nowadays consid-
ered an established and successful paradigm for mod-
elling and solving hard combinatorial problems from
areas such as planning and scheduling, timetabling, re-
source allocation, bioinformatics, etc. However, the CP
community still has many challenges to face in order

to make CP technology even more widely known and
used. One of the most important such challenges is
“ease of use” since modelling real problems as con-
straint satisfaction or optimization problems is still
largely dependent on specialized skills and expertise.

An important aspect of the modelling process is
the choice of propagation method for the various con-
straints in the problem. This was not an issue in the
early days of CP when (generalized) arc consistency
or even lesser levels of local consistency like for-
ward checking were the predominant propagation tech-
niques used. However, these days many global con-
straints come with an array of propagators with differ-
ent filtering power and cost [29]. Also, the number of
generic local consistency methods that can be found
in the literature for either binary or non-binary con-
straints has risen significantly [1,4]. Therefore, build-
ing constraint solvers that can efficiently exploit the
wealth of available propagation techniques is a major
challenge. One way to achieve this goal is by build-
ing solvers that are able to dynamically adapt the con-
straint propagation method applied on the constraints
during search. Constraint solvers typically apply (gen-
eralized) arc consistency (G)AC, or a weaker consis-
tency property like bounds consistency, during search.
The choice of the appropriate propagation method for
each constraint is typically left to the modeler who has
to decide upon this based on the features of the prob-
lem and the available propagators for each constraint.
Obviously, this requires a significant amount of exper-
tise.

Although many propagation methods stronger than
(G)AC have been proposed, their practical usage is
limited as they are only applied during preprocessing,
if at all. The main obstacle is the high time and in
some cases space complexity of the algorithms that
can achieve these consistencies. This, coupled with
the implicit general assumption that constraints should
be propagated with a predetermined local consistency
throughout search, makes maintaining strong consis-
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tencies an infeasible option, except for some specific
CSPs. One way to overcome the high complexity of
maintaining a strong consistency while retaining its
benefits is to dynamically evoke it during search only
when certain conditions are met. There have been some
works along this line in the literature, mainly focusing
on methods to switch between GAC and weaker con-
sistencies [13,15,24,20].

In this paper we present a heuristic approach to the
problem of dynamically adapting constraint propaga-
tion. We develop a number of heuristics that allow
the constraint solver to dynamically switch between
a weaker and cheap local consistency and a stronger,
but more expensive one, when certain conditions are
met. The proposed heuristics operate by monitoring
and reacting to propagation events like value deletions
and domain wipeouts. The success of our approach
is based on the observation that propagation events
caused by individual constraints in structured problems
are highly clustered. That is, constraint activity during
search is not uniformly distributed among the revisions
of the constraints. On the contrary it is highly clustered
as value deletions and domain wipeouts caused by in-
dividual constraints largely occur in clusters of nearby
revisions. Hence, parts of the search space where cer-
tain constraints arehighly activecan be identified and
exploited. This is a new and interesting observation
that may pave the way to the informed clever use of
constraint propagation techniques during search.

We start by giving some experimental results dis-
playing the clustering of propagation events in struc-
tured binary CSPs. Then we present simple heuristics
that exploit this clustering to efficiently switch between
different local consistencies on individual constraints
during search. The proposed heuristics achieve this by
monitoring the activity of the constraints in the prob-
lem and triggering a switch between different propa-
gation methods on individual constraints once certain
conditions are met. For example, one of the heuris-
tics works as follows. It applies a weak consistency
on each constraintc until a revision ofc results in a
domain wipeout. Then it switches to a strong consis-
tency and applies it onc for the next few revisions. If
no further domain wipeout occurs during these revi-
sions, it switches back to the weaker consistency. As
a case study we experiment with binary problems us-
ing Arc Consistency as the weak consistency and max
Restricted Path Consistency as the strong one. An ex-
perimental study on various binary CSPs demonstrates
the effectiveness of the proposed heuristics. We show
that the most efficient heuristics can be up to an order

of magnitude faster than MAC, i.e. the standard search
algorithm for binary CSPs, on hard instances.

Besides achieving faster problem solving, the work
presented here contributes towards one of the most im-
portant goals of CP: ease of use. By allowing for the
solver to dynamically change and readapt the way it
propagates individual constraints, some of the burden
of efficient modelling can be lifted from the shoulders
of the user.

The paper is structured as follows. In Section 2 we
give the necessary background and definitions. Sec-
tion 3 makes an empirical investigation of the cluster-
ing of propagation events. Section 4 presents a number
of heuristics for dynamically adapting propagation. In
Section 5 we perform an experimental study of the pro-
posed heuristics on binary CSPs. Section 6 discusses
related work. Finally, in Section 7 we conclude and
point out directions for future work.

2. Background

A Constraint Satisfaction Problem(CSP) is defined
as a tuple(X,D,C) where:X = {x1, . . . , xn} is a set
of n variables,D = {D(x1), . . . ,D(xn)} is a set of
domains, one for each variable, andC = {c1, . . . , ce}
is a set ofe constraints. Each constraintc is a pair
(var(c), rel(c)), wherevar(c) = {x1, . . . , xk} is an
ordered subset ofX, and rel(c) is a subset of the
Cartesian product D(x1)x . . . xD(xk) that specifies
the allowed combinations of values for the variables in
var(c). We denote the assignment of a valueai to vari-
ablexi by the pair(xi, ai). Each tupleτ ∈ rel(ci) is
an ordered list of values(a1, . . . , ak) such thataj ∈
D(xj),j = 1, . . . , k. A tuple τ ∈ rel(ci) is valid iff
none of the values in the tuple has been removed from
the domain of the corresponding variable. The process
which verifies whether a given tuple is allowed by a
constraintc or not is called aconstraint check. A con-
straintc can be either definedextensionallyby explic-
itly giving rel(c), or (usually)intensionallyby implic-
itly specifyingrel(c) through a predicate or arithmetic
function.

In a binary CSP, a directed constraintc, with
var(c) = {xi, xj}, is arc consistent(AC) iff for ev-
ery valueai ∈ D(xi) there exists a valueaj ∈ D(xj)
s.t. the 2-tuple<(xi, ai), (xj , aj)> satisfiesc. In this
case(xj , aj) is called an AC-support of(xi, ai) on c.
A problem is AC iff there is no empty domain inD and
all the (directed) constraints inC are AC. A variable
xi is singleton arc consistent(SAC) iff for each value
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ai ∈ D(xi) after assigningai to xi and applying AC
in the problem there is no empty domain [10].

A directed constraintc, with var(c) = {xi, xj},
is max restricted path consistent(maxRPC) iff it is
AC and for each value(xi, ai) there exists a value
aj ∈ D(xj) that is an AC-support of(xi, ai) s.t.
the 2-tuple<(xi, ai), (xj , aj)> is path consistent(PC)
[10]. A tuple <(xi, ai), (xj , aj)> is PC iff for any
third variablexm there exists a valueam ∈ D(xm)
s.t. (xm, am) is an AC-support of both(xi, ai) and
(xj , aj). In this case we say that(xj , aj) is a maxRPC-
support of(xi, ai) on c.

Following [11], we call a consistency propertyA
strongerthanB iff in any problem in whichA holds
thenB holds, andstrictly strongeriff it is stronger and
there is at least one problem in whichB holds butA
does not.

The standard complete method for solving CSPs is
through backtracking tree search. At each step of the
search process, usually called achoice point, a vari-
able is assigned to one of its available values and con-
straint propagation is triggered to propagate the ef-
fects of this assignment. For solvers that employ 2-way
branching choice points may also correspond to the re-
moval of value from a domain. Constraint propagation
is typically implemented through a list which may hold
constraints, variables, or propagators depending on the
particular solver. If propagation results in the removal
of all values from a variable’s domain, we have ado-
main wipeout(DWO) in which case the search algo-
rithm backtracks to the last choice point undoing the
intermediate effects of propagation.

In this paper we assume the use of a constraint-
oriented scheme for propagation where the propaga-
tion list, implemented as a queue or as a stack, han-
dles constraints. In such a scheme a constraint is added
to the list once a value in the domain of some vari-
able involved in the constraint is deleted. Constraints
are repeatedly removed from the list and are revised,
while any further value deletions may result in new
constraints being added to the list. This process termi-
nates when the list empties or a DWO occurs.

Therevisionof a binary constraintc, with var(c) =
{xi, xj}, using a local consistencyA is the process of
checking whether the values ofxi verify the property
of A. For example, the revision ofc using AC verifies
if all values inD(xi) have AC-supports onc. We say
that a revision isfruitful if it deletes at least one value,
while it is redundantif it achieves no pruning. A DWO-
revision is one that causes a DWO. That is, a revision
that deletes the last remaining value(s) from a domain.

In the following we will say that a constraint isDWO-
active during a run of a search algorithm if at least
one of its revisions was a DWO-revision during the
search process. Accordingly, we will call a constraint
deletion-activeif it deleted at least one value from a
domain anddeletion-inactiveif it caused no pruning at
all.

A standard search algorithm for solving binary CSPs
is MAC (maintaining arc consistency) [23,2]. This al-
gorithm applies AC to all constraints in the problem
throughout search. Algorithms such as MAC use vari-
able (and to a lesser extent value) ordering heuristics
to guide search [28]. One of the most efficient gen-
eral purpose variable ordering heuristics that have been
proposed isdom/wdeg[6]. This heuristic uses infor-
mation derived from conflicts, in the form of DWOs,
and stored as constraint weights to guide search. A
weight is assigned to each constraint and it is initially
set to one. Each time a constraint causes a conflict, its
weight is incremented by one. Each variable is associ-
ated with aweighted degree, which is the sum of the
weights over all constraints involving the variable and
at least another unassigned variable. The dom/wdeg
heuristic chooses the variable with minimum ratio of
current domain size to weighted degree. This heuris-
tic is among the most efficient, if notthe most ef-
ficient, general-purpose heuristics for CSPs. Follow-
ing the work of [6], Grimes and Wallace proposed al-
ternative conflict-driven heuristics that consider value
deletions as the basic propagation events associated
with constraint weights [16]. That is, the weight of
a constraint is incremented each time the constraint
causes one or more value deletions. The efficiency of
all the proposed conflict-directed heuristics is due to
their ability to learn though conflicts encountered dur-
ing search. As a result they can guide search towards
hard parts of the problem and identifycontentiouscon-
straints [16].

3. Constraint Activity during Search

It has been recognized, for example in [20], that
in many, mainly structured, problems only few of the
constraint revisions that occur during search are fruit-
ful while some constraints do not cause any DWOs or
even are deletion-inactive during the run of a search al-
gorithm despite being revised many times. For exam-
ple, when solving the scen11 radio links frequency as-
signment (RLFA) problem with MAC equipped with
dom/wdeg, only 27 of the 4103 constraints in the prob-
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lem were identified as weight-active, while 1921 con-
straints were deletion-inactive.

Hence, it would be desirable to apply a strong con-
sistency only when it is likely that it will prune many
values and avoid using such a consistency when the ex-
pected pruning is non-existent or very low. The prob-
lem is that estimating the likelihood of pruning in or-
der to target strong propagation accordingly is very dif-
ficult. This is because the activity of the constraints
in a problem depends on the structure of the prob-
lem since constraints in difficult local subproblems are
more likely to cause deletions and domain wipeouts,
especially if a heuristic like dom/wdeg that can iden-
tify such subproblems is used. On top of that and due to
the complex interactions that may exist between con-
straints, the activity also depends on the search algo-
rithm, the propagation method, the variable ordering
heuristic, and on the order in which constraints are
propagated. For example, when solving scen11 with
an algorithm that applies maxRPC on each constraint
and dom/wdeg for variable ordering, 29 constraints
were weight-active with only 13 of these identified as
weight-active by both this algorithm and MAC.

Importantly, many revisions of the constraints that
are weight-active and deletion-active are redundant
or achieve very little pruning. To investigate how
the fruitful revisions of the constraints are distributed
along the time-line of their revisions we run experi-
ments on some structured and random binary problems
and recorded the following information for each con-
straintc:

– The number of timesc was revised. To record this
we simply used a counterrevision(c) that was
incremented by one each timec was revised.

– The value ofrevision(c) for each fruitful revi-
sion ofc. To record this information we used an,
initially empty, list of Boolean variables. An ele-
ment was added to the list each timec was revised.
The Boolean variable of the element was set to 0
or 1 depending on whether the revision was re-
dundant or fruitful respectively. After search ter-
minated the list’s length was equal to the total
number of timesc was revised and it offered in-
sight on the “history” ofc’s fruitful revisions.

– The value ofrevision(c) for each DWO-revision
of c. This information was also recorded using a
list in a similar way as above. After search termi-
nated this list offered insight on the “history” of
c’s DWO-revisions.

An analysis and visualization of the results obtained
revealed interesting patterns. The four plots in Figure 1
demonstrate how the number of DWOs (y-axis) caused
by 4 sample constraints increases as constraint revi-
sions (x-axis) occur throughout search. That is, a data
point with coordinates(i, j) corresponds to thej-th
DWO-revision of the constraint, which occurred at the
i-th time it was revised. The algorithm used is MAC +
dom/wdeg and the sample constraints are taken from
three structured and one random problem. Considering
that heuristic dom/wdeg was used, we can also view
data point(i, j) as giving the weight of the constraint
at thei-th time it was revised.

As we can see in Figure 1, DWO-revisions in the
three structured problems form clusters of successive
or very close calls to the revision procedure, with the
exception of a few outliers. This implies that once
a DWO-revision of a constraintc occurs, it is likely
that c will again cause pruning and possibly even
DWOs within its few subsequent revisions. In contrast
to structured problems, DWO-revisions in the random
instance are distributed in a much more uniform way
along the line of revisions.

Similar patterns to the ones of Figure 1 occur with
respect to value deletions. The two plots in Figure 2
demonstrate how the number of fruitful revisions (y-
axis) caused by 2 sample constraints increases as con-
straint revisions (x-axis) occur throughout search. That
is, a data point with coordinates(i, j) corresponds to
the j-th fruitful revision of the constraint, which oc-
curred at thei-th time it was revised. As with DWO-
revisions, fruitful revisions appear clustered within
consecutive or close revisions. Of course in this case
the clusters are closer to one another since value dele-
tions occur much more often than DWOs.

Similar results with respect to the clusterness of
propagation events were obtained when an algorithm
that applied maxRPC was used in place of MAC. Fig-
ure 3 shows the DWO-revisions and value deletions
caused by this algorithm (with dom/wdeg) for one
sample constraint taken from scen11. This constraint
was revised 1020 times during search, but only 85
of these revisions were fruitful and 64 of those were
DWO-revisions. Naturally maxRPC, being stronger,
usually displays a higher percentage of fruitful revi-
sions compared to AC. But redundant revisions for
maxRPC heavily penalize the run times and such revi-
sions still appear in large numbers.

Another interesting observation is that in the struc-
tured problems the percentage of DWO-revisions to to-
tal revisions is in general low and there are also many
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Fig. 1. DWO-revisions (or equivalently weight updates) forsample constraints from the RLFAP instance scen11 (top left), the driver instance
driver-08c (top right), the quasigroup completion instanceqcp15-120-0 (bottom left), and the forced random instance frb35-17-0 (bottom right).
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Fig. 2. Value deletions for two sample constraints from a RLFA(left) and a driver (right) problem.

redundant revisions. For example in the RLFAP of in-
stance Figure 1 the sample constraint, which was the
most active one in terms of DWO-revisions, was re-
vised 3386 times during search, but only 407 of these
revisions were fruitful, while only 265 were DWO-
revisions. Similar results with respect to the percent-
age of fruitful revisions were obtained for constraints
across a variety of structured problems.

To further investigate these observations we run the
Expectation Maximization(EM) clustering algorithm

[12] on the data of Figure 1 (top left). This revealed 20
clusters of DWO-revisions with average size of 13,25.
The mean and median standard deviation (SD) for the
DWO-revisions (x-axis) across the clusters was 21,67
and 7,41 respectively. Accordingly, EM revealed 16
clusters of DWO-revisions for the data of Figure 1
(bottom left) of average size 25,43. The mean and me-
dian SD for the DWO-revisions was 35,91 and 23,80
respectively. The SD in a cluster is an important piece
of information as it represents the average distance of
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Fig. 3. DWO-revisions (left) and value deletions (right) for one sample constraint from scen11 when maxRPC is applied.

Table 1

Clustering results from benchmark instances.

instance #cons avg#cls avg sizemean SDmedian SD

scen11 27/4103 6,66 10,82 41,09 16,12

driver-08c 87/9321 2,44 12,62 38,50 25,11

qcp15-120-0554/3150 12,87 15,26 226,12 129,28

frb35-17-0 233/262 7,20 19,38 1856,70 1649,05

any member of the cluster from the cluster’s centroid.
That is, it is a measure of the cluster’s density. The me-
dian SD over the 20 clusters is quite low which indi-
cates that DWO-revisions are closely grouped together.
The mean is higher because it is affected by the pres-
ence of outliers. That is, some of the clusters formed by
EM may include outliers which increase the cluster’s
SD.

Table 1 shows clustering results from the four
benchmark instances of Figure 1. For each instance we
report the ratio of weight-active constraints over the to-
tal number of constraints, the average number of clus-
ters, the average cluster size, and the mean and median
SD for the clusters of DWO-revisions. Averages are
taken over 20 sample weight-active constraints from
each problem on which EM was applied. The mean
and median SD are much lower in structured problems
compared to the random one verifying the observation
that in the presence of structure DWO-revisions largely
occur in clusters while in its absence they tend to be
uniformly distributed. The question we try to answer
in the following is whether we can take advantage of
this to discover dead-ends sooner through strong prop-
agation while keeping cpu times manageable.

4. Heuristically Adapting Propagation

We now present four simple heuristics that can be
used to dynamically adapt the level of consistency en-
forced on individual constraints during search. These
heuristics exploit information regarding domain reduc-
tions and wipeouts gathered during search. For the
purposes of this paper we limit ourselves to the case
where dynamic adaptation involves switching between
a weak, and cheap, local consistency and a stronger but
more expensive one. In general it may be desirable to
utilize a suit of local consistencies with varying power
and properties. However, adapting the heuristics pre-
sented here to handle more than two propagation meth-
ods is not straightforward, and therefore is left for fu-
ture work.

The intuition behind the proposed heuristics is
twofold. First to target the application of the strong
consistency on areas in the search space where a con-
straint is highly active so that domain pruning is max-
imized and dead-ends are encountered faster. And sec-
ond, to avoid using an expensive propagation method
when pruning is unlikely. The first three heuristics try
to take advantage of the clusterness that fruitful revi-
sions display in structured problems, while the fourth
heuristic simply reacts to any deletions caused by
a constraint. To take advantage of the clusteness of
propagation events the heuristics monitor these events
while the constraints are revised throughout search.

The heuristics can be distinguished according to the
propagation events they monitor (deletions or DWOs)
and also according to the extent of user involvement
in their tuning (fully and semi automated). Heuris-
tics based on DWOs (value deletions) may change or
maintain the level of local consistency employed on a
given constraint by monitoring the DWOs (value dele-
tions) caused by this constraint. There are also hybrid
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heuristics that may react to both types of propagation
events. Fully automated heuristics do not require any
tuning while semi-automated ones are parameterized
by a user-defined bound. This bound specifies the de-
sired number of revisions during which a strong con-
sistency is enforced after a propagation event has been
detected. The greater the bound the longer is the strong
consistency applied.

Importantly, any heuristic, be it for branching or
for adapting the local consistency enforced, must be
lightweight, i.e. cheap to compute. Otherwise, it is pos-
sible that any benefits offered by the heuristic will be
outweighed by the cost of its computation. As it will
become clear, the heuristics proposed here are indeed
lightweight as they affect the complexity of the propa-
gation procedure only by a constant factor.

In our experiments we have used AC and maxRPC
as the weak and strong local consistency respectively.
As proved in [10], maxRPC is strictly stronger than
AC. That is, it will always delete at least the same val-
ues as AC. Also, maxRPC displays a good cpu time
to value deletions ratio compared to other strong lo-
cal consistencies [11]. Of course other local consisten-
cies can be used instead, and this is indeed an inter-
esting direction for future work. Since our approach is
generic, when describing the heuristics we will avoid
naming specific consistencies and instead we will re-
fer to switching between a weak (W ) and a strong (S)
local consistency.

For eachc ∈ C, the heuristics make use of the fol-
lowing data structures:

1. rev[c] is an integer counter holding the number
of timesc has been revised, incremented by one
each timec is revised.

2. dwo[c] is an integer counter denoting the revision
in which the most recent DWO caused byc oc-
curred.

3. del[c] is an integer counter denoting the most re-
cent revision ofc which resulted in at least one
value deletion.

4. del S[c] is an integer counter denoting the most
recent revision ofc in which at least one value
that wasW but notS was identified and deleted.
This means that the deletion of aW -inconsistent
value does not trigger a change in delS[c]. The
counter is incremented only if a value that isW
but notS is deleted.

5. del W [c] is a Boolean flag denoting whether the
current revision ofc resulted in at least one value
deletion (delW [c]=T) or not (delW [c]=F).

We now describe the four heuristics, which we sim-
ply call H1-H4, specifying what type of propagation
events they monitor and the extent of user involvement
in their tuning.

H1(l): semi automated - DWO monitoring Heuristic
H1 monitors and counts the revisions and DWOs of the
constraints in the problem. A constraintc is madeS if
the number of calls toRevise(c) since the last time
it caused a DWO is less or equal to a (user defined)
thresholdl. That is, if rev[c]-dwo[c] ≤ l. Otherwise, it
is madeW .

H2: fully or semi automated - deletion monitoring
Heuristic H2 monitors revisions and value deletions. A
constraintc is madeS if the last call toRevise(c)
caused at least one value deletion. That is,c is made
S as long as del[c]=rev[c]. Otherwise, it is madeW .
H2 can be semi automated in a similar way to H1 by
allowing for a (user defined) numberl of redundant re-
visions after the last fruitful revision. Ifl is set to 0 we
get the fully automated version of H2.

H3: fully or semi automated - hybrid Heuristic H3 is
a refinement of H2. It monitors revisions, value dele-
tions, and DWOs. A constraintc is madeS as long
as delS[c]=rev[c]. Otherwise, it is madeW . Once the
constraint causes a DWO, delS[c] is set to rev[c] and
the monitoring ofS’s effects starts again. If this is not
done then once rev[c] becomes greater than delS[c]
the constraint will thereafter be propagated usingW .
H3 can be semi automated in a similar way to H1 and
H2 by allowing for a (user defined) numberl of revi-
sions that only deleteW -inconsistent values or no val-
ues at all after the last revision that deleted values that
wereW but notS.

H4: fully or semi automated - deletion monitoring
Heuristic H4 monitors value deletions. For any con-
straint c, H4 appliesW until del W [c] becomes T.
In this casec is madeS. In other words, if at least
one value is deleted from the domain of a variable
x ∈ var(c) by W thenS is applied on the remaining
available values inD(x). H4 can be semi automated by
insisting thatS is applied only if a (user defined) pro-
portionp of x’s available values have been deleted by
W during the current revision ofc. With high values
of p S will be applied only when it is likely that it will
cause a DWO.

Importantly, the heuristics defined above can be
combined either disjunctively or conjunctively in var-
ious ways to give rise to new heuristics. For exam-
ple, heuristic H∨

124
appliesS on a constraint whenever
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the condition specified by either H1, H2, or H4 holds.
Heuristic H∧

24
appliesS when both the conditions of

H2 and H4 hold. We can choose a disjunctive or con-
junctive combination depending on whether we want
S applied more or less frequently respectively. Experi-
mental results in the following section demonstrate that
certain disjunctive combinations are more robust than
the individual heuristics displaying good performance
over a range of problems.

4.1. Implementing the Heuristics

The proposed heuristics can be easily crafted into
any solver that performs constraint-oriented propa-
gation. But this does not preclude their use within
solvers where propagation is implemented differently,
i.e. variable-oriented or propagator-oriented. As men-
tioned in Section 2, solvers implementing constraint-
oriented propagation utilize a list that holds the con-
straint to be revised.

function Propagate(X,C,L,h)
while L 6= ∅

remove constraintc, with var(c) = {xi, xj}, from L;
prop← Decide(c,h);
if prop =S then Revise(c,xi,S);
elseRevise(c,xi,W );
if D(xi) has been reducedthen

if D(xi) = ∅ then return FAILURE;
elseadd toL any constraintc′, with var(c′) = {xk, xi};

return SUCCESS;

Fig. 4. The main constraint propagation function for adaptive propa-
gation.

Figures 4 and 5 describe the implementation of the
heuristics in a constraint-oriented solver using function
Propagate and procedureRevise. These are based
on corresponding functions for coarse-grained AC al-
gorithms like AC-3 [19] and AC2001/3.1 [3]. Func-
tion Propagate takes as input the variables and the
constraints of the problem, an initialized listL of con-
straints to be propagated, and the heuristich to be used.
Once a constraintc is removed fromL, functionDe-
cide is called to determine how it will be propagated.
This function is parameterized by the adaptive propa-
gation heuristich and uses the data structures required
for the computation of the heuristics, which for sim-
plicity we assume to be globally defined.Decide sim-
ply applies the heuristic and decides on the local con-
sistency (W or S) to be used for its revision. For exam-
ple, if h is H1(l) thenDecide simply checks whether

function Revise(c,xi,S)
rev[c]++;
for eacha ∈ D(xi)

if a is notW -supported onc then
deletea from D(xi);

2: del[c]← rev[c];
else ifa is notS-supported onc then

deletea from D(xi);
2: del[c]← rev[c];
3: del S[c]← rev[c];

if D(xi) = ∅ then
dwo[c]← rev[c];

3: del S[c]← rev[c];

function Revise(c,xi,W )
rev[c]++;
del W [c]← F;
for eacha ∈ D(xi)

if a is notW -supported onc then
deletea from D(xi);
del W [c]← T;

2: del[c]← rev[c];
if del W=T then

for eacha ∈ D(xi)
if a is notS-supported onc then

deletea from D(xi);
3: del S[c]← rev[c];

if D(xi) = ∅ then
dwo[c]← rev[c];

3: del S[c]← rev[c];

Fig. 5. Constraint revision functions for adaptive propagation. The
versions ofRevise given can apply H∨

124
or H∨

134
. Removing lines

labelled with 3 (2) gives H∨
124

(H∨

134
).

rev[c]-dwo[c] ≤ l holds or not. Thereafter, depending
on the selected consistency, the appropriate version of
procedureRevise (Figure 5) is called to perform the
propagation. If the revision causes a DWO,Propa-
gate returns to denote failure.

The two versions ofRevise shown, one forW
and one forS, implement either the combined heuristic
H∨

124
or H∨

134
. We now briefly describe the implementa-

tion of these heuristics as sketched in Figure 5. The rest
of the heuristics, either individual or combined, can be
implemented in a similar way. Initially, i.e. before the
first revision of any constraintc, rev[c], dwo[c], del[c],
and delW [c] are set to 0, while delS[c] is set to F.

If the computation of the heuristic function in
Decide results in the application ofS then Re-
vise(c,xi,S) is called. First rev[c], the counter ofc’s
revisions, is incremented. Then each valuea of xi is
checked for support onc. This is done by first check-
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ing if a is W -supported onc. If it is not then it is re-
moved fromD(xi) and if H∨

124
is used counter del[c]

is set to rev[c] to denote that the most recent revision
of c resulted in a value deletion. Ifa is W -supported
then it is checked forS-support. If it does not have an
S-support it is deleted and counters del[c] (for H∨

124
)

and delS[c] (for H∨

134
) are set to rev[c] to denote that

the most recent revision ofc resulted in the deletion
of a value that wasW but notS. If the domain ofxi

is wiped out after checking all its values then counter
dwo[c] is set to rev[c] to denote that the most recent
revision ofc resulted in a DWO. Also, in the case of
H∨

134
counter delS[c] is set to rev[c] to restart the mon-

itoring of S’s effects. This is necessary in case all the
remaining values ofD(xi) were removed byW .

If the computation of the heuristic function inDe-
cide results in the application ofW then Re-
vise(c,xi,W ) is called. First, rev[c] is incremented
and flag delW [c] is initialized to F. Then each value
a of xi is checked forW -support onc. If a value is
notW -supported it is deleted, flag delW [c] is set to T
to denote that the current revision ofc caused a value
deletion (this will be used later in this revision), and in
the case of H∨

124
counter del[c] is set to rev[c] to denote

that the most recent revision ofc resulted in a value
deletion (this will be used in subsequent revisions). Af-
ter checking all values inD(xi), if del W [c] is T then
S is applied on the remaining values. Any value that is
not S-supported is deleted and if H∨

134
is used counter

del S[c] is set to rev[c] to denote that the most recent
revision ofc resulted in the deletion of a value that was
W but notS. Finally, if the domain ofxi is wiped out
then counters dwo[c] and delS[c] (for H∨

134
) are set to

rev[c].

5. Experiments

In this section we make a detailed experimental eval-
uation of the proposed heuristics on various binary
CSPs. We first compare the heuristics and some of
their disjunctive and conjunctive combinations against
MAC and an algorithm that propagates all constraints
using maxRPC throughout search. These two algo-
rithms are simply denoted by AC and maxRPC here-
after. As results demonstrate, disjunctively combined
heuristics are more efficient and robust compared to the
single versions, and outperform both AC and maxRPC.
We then study the effect of random restarts on the per-
formance of the heuristics. Results show that the use of
random restarts can result in significant speed-ups in

favor of one of the best adaptive heuristics compared
to AC. We also study the impact that the user defined
bounds l have on the efficiency of semi-automated
heuristics.

Our solver uses d-way branching, lexicographic
value ordering, and can employ restarts. The code was
written in C. In the experiments presented the heuris-
tic used for variable ordering was dom/wdeg. The con-
straint revision list was implemented as a FIFO queue,
which is known to be more efficient than a LIFO im-
plementation1. We experimented with the following
classes of benchmarks taken from C. Lecoutre’s web
page (http://www.cril.univ-artois.fr/ lecoutre/), where
details about them can be found: radio links frequency
assignment (RLFA), black hole, driver, hanoi, quasi-
group completion, quasigroup with holes, graph col-
oring, composed random, forced random, geometric
quasi-random. Some classes and many specific in-
stances we tried are very easy or very hard (e.g black
hole) for all methods.

We need to point out that for many of the tested
classes, with graph coloring being a notable example,
there exist specialized methods that can solve the spe-
cific problems much faster than the generic methods
we use. Our aim is only to demonstrate the efficiency
of the proposed heuristics in dynamically switching
between different local consistencies and not to outper-
form state-of-the-art methods for specific problems.

5.1. Evaluation of the Heuristics

In this section we compare adaptive algorithms that
use the heuristics of Section 4, where each algorithm is
denoted by the corresponding heuristic, to algorithms
that apply AC and maxRPC. All algorithms were run to
completion in a single run (i.e. there were no restarts).
We include results from all four heuristics as well
as from three disjunctive and one conjunctive combi-
nation of the heuristics. For H1, and any combined
heuristic that includes H1, the value ofl was set to
100 while for H2 l was set to 10. These values were
chosen empirically and display a good performance
across a number of instances. However, the value of
these parameters is an important factor that can affect
the performance of the heuristics. This topic is further
discussed in Section 5.3. Results given for heuristic
H3 are also from a semi automated version where the
boundl was set to 100.

1The experimental results given in [26] were obtained using a
LIFO implementation of the revision list.
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Table 2

Nodes (n) and cpu times (t) in seconds from RFLAP instances. The
s and g prefixes stand for scen and graph respectively. The best cpu
time for each instance is highlighted with bold.

instance AC maxRPC H1 H2 H3 H4 H∨

12
H∨

124
H∨

134
H∧

12

s11 n 2,790 1,308 1,399 1,384 1,372 2,213 1,372 1,324 1,335 1,352

t 5.3 12.5 4.7 5.9 4.5 5.8 4.0 4.5 5.8 4.4

s11-f12 n 7,349 1,703 2,531 1,744 2,462 6,030 1,687 1,812 1,744 2,754

t 18.4 30.1 9.9 10.0 9.7 12.3 9.4 8.2 12.6 9.4

s11-f10 n 9,601 2,028 2,932 2,275 2,637 8,154 2,314 2,242 2,371 2,752

t 24.8 42.6 11.6 13.0 10.4 17.3 10.8 9.6 17.2 10.8

s11-f9 n 101,525 33,577 37,722 35,401 34,364 78,487 34,140 36,643 34,310 37,722

t 360.2 973.5 151.7 167.4 153.2 224.2 146.8 153.3 295.5 146.0

s02-f25 n 12,688 5,548 3,878 4,968 2,759 6,673 2,759 3,542 3,143 2,958

t 13.6 56.2 5.0 17.4 4.1 8.7 4.0 6.0 10.3 4.1

s03-f10 n 1,507 700 912 738 922 1,025 922 831 787 921

t 1.8 4.8 2.3 2.8 2.5 2.3 2.5 2.3 2.7 2.4

s03-f11 n 9,486 2,370 3,504 2,294 3,337 5,917 3,311 2,504 2,461 3,570

t 16.8 32.4 9.1 11.2 9.4 9.3 8.2 8.0 14.3 8.8

g08-f10 n 19,590 8,808 9,301 5,651 10,747 10,795 4,242 4,718 6,733 9,301

t 38.3 36.0 19.6 14.4 21.8 16.5 12.2 9.1 20.6 19.4

g08-f11 n 4,439 638 2,059 512 1,976 678 525 565 527 2,170

t 10.3 4.7 5.3 2.9 5.3 2.4 3.0 2.3 2.4 5.6

g14-f27 n 13,833 926 11,140 3,095 10,496 5,697 2,680 3,319 3,457 11,126

t 12.0 4.6 11.0 3.8 10.8 4.8 3.2 3.5 4.1 11.4

g14-f28 n 8,405 1,668 4,511 2,313 4,803 3,014 2,179 4,581 2,051 5,407

t 13.7 7.3 8.0 4.6 7.7 3.9 3.6 6.1 4.1 8.3

Table 2 displays results from some selected real-
world RLFAP instances taken from thescenandgraph
classes of RLFAPs. Originally these are optimization
problems but for the purposes of CSP benchmarking
some have been turned into satisfaction problems [7].
First of all we can note that in most of these problems
maxRPC can be too expensive to maintain compared
to AC. However, in some cases it reduces the size of
the search tree significantly and is faster than AC. The
adaptive heuristics cut down the size of the explored
search space and reduce the run times in most cases.
This is more visible in problems where maxRPC vis-
its considerably less nodes than AC (e.g. graph08-f11).
Importantly, in easy problems or in problems where
maxRPC does not have a considerable effect compared
to AC the heuristics do not slow the search process in
a notable way.

Comparing the various heuristics it seems that all
four individual heuristics are competitive, withH1 and
H3 being better on the scen instances andH3 andH4

on the graph instances. Disjunctive heuristics H∨

12
and

H∨

124
are the most robust as they display good perfor-

mance over all instances, while H∨
134

and the conjunc-
tive heuristic H∧

12
are less robust. For example, H∨

134

is twice as slow as H∨
12

and H∨
124

on the scen11-f9 in-
stance, while H∧

12
is very competitive on the scen in-

stances but less so on the graph ones.
Table 3 displays results from instances belonging

to a collection of the following classes of bench-
marks: graph coloring (1st-5th), driver (6th,7th), quasi-
group completion (8th-11th), quasigroups with holes
(12th,13th). In some of these problems, especially
quasigroup ones, maxRPC is much more efficient than
AC. The heuristics, except H1 and H4, can further
improve on the performance of maxRPC making the
adaptive algorithms considerably more efficient than
MAC.

The results given in Tables 2 and 3 show that in-
dividual heuristics can display considerable variance
in their performance from instance to instance. On the
contrary, combined heuristics are quite robust. A com-
parison between the heuristics shows that H2 and the
combined ones that include H2 display good perfor-
mance on a wide variety of problems. It has to be
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Table 3

Nodes (n) and cpu times (t) in seconds from structured instances.

instance AC maxRPC H1 H2 H3 H4 H∨

12
H∨

124
H∨

134
H∧

12

anna-8 n 69,321 29,260 29,572 29,262 29,578 69,881 29,042 29,248 29,518 29,572

t 22.9 48.4 8.7 19.6 8.7 24.5 8.5 16.0 15.5 8.5

homer-8 n 69,280 28,994 29,368 28,975 29,368 69,321 28,986 29,039 29,237 29,368

t 126.6 225.7 36.4 90.9 37.0 74.3 43.7 62.5 54.6 36.6

games120-8 n 3,208,9781,375,2551,371,0271,371,8821,371,4963,207,1871,366,9021,371,0271,379,4231,371,027

t 374.1 325.2 153.1 187.9 155.4 280.7 169.4 172.4 168.4 152.0

2-fullins-5-4 n 1,052 634 706 609 703 847 703 694 585 706

t 26.8 18.5 12.9 15.7 10.1 13.3 10.3 10.4 14.8 13.4

4-fullins-4-6 n 31,507 15,436 26,777 15,507 23,385 28,720 24,147 22,074 16,944 26,777

t 236.5 228.6 186.6 154.4 190.2 171.4 153.6 144.5 138.7 183.5

driverlogw-08 n 3,872 848 3,314 992 3,693 2,922 942 2,384 1,609 3,314

t 9.8 15.4 8.0 5.5 8.9 6.4 6.6 6.0 4.6 7.8

driverlogw-09 n 14,129 9,814 15,707 9,673 14,683 12,475 10,589 12,333 11,587 15,707

t 155.9 194.8 167.4 114.1 156.8 122.5 130.3 120.5 120.9 167.6

qcp-15-120-0 n 102,136 19,496 79,108 29,064 45,381 99,455 32,403 30,206 29,434 79,108

t 86.8 26.4 63.9 28.4 40.0 68.5 30.6 26.5 27.5 62.6

qcp-15-120-5 n 536,056 62,682 404,003 63,984 135,914 405,187 52,163 73,628 53,311 404,003

t 559.6 103.0 388.4 76.2 138.7 327.6 64.8 82.1 66.1 378.4

qcp-15-120-9 n 851,950 129,526 565,663 162,243 372,360 792,334 128,974 140,900 118,719 565,663

t 841.0 193.8 486.2 162.1 346.0 564.4 130.0 140.2 125.0 481.6

qcp-15-120-10n 1,058,477 54,622 142,637 62,124 97,483 236,131 64,686 59,252 333,339 142,637

t 950.0 76.3 117.9 59.8 79.2 166.6 60.9 55.0 369.4 116.1

qwh-20-166-0 n 94,013 8,975 18,179 15,891 34,409 73,655 21,153 28,508 28,757 18,179

t 238.1 28.4 49.0 41.6 87.7 149.4 58.5 72.3 78.8 48.4

qwh-20-166-1 n 48,892 14,556 46,970 18,285 32,905 80,360 17,414 18,100 26,178 46,970

t 135.4 48.8 120.1 51.9 88.8 169.7 50.3 35.8 77.0 118.5

noted that H∨
24

and H∨
124

were faster than AC in all in-
stances we tried, except for some easy instances where
they were slightly slower. H1 and H3 are effective on
RLAFPs but worse than H2 on quasigroup problems.
The fully automated version of H4 displays the worst
performance among the individual heuristics. But we
have not yet tried semi automated versions of H4.
Overall the heuristics offer a good balance between AC
and maxRPC. In problems where maxRPC offers sig-
nificant savings in nodes compared to AC, they retain
this advantage and translate it into considerable sav-
ings in run times. In problems where maxRPC offers
moderate savings in nodes, the heuristics significantly
reduce the run times of maxRPC and are competitive,
and often faster, than AC.

Table 4 gives result from forced random and ge-
ometric quasi-random problems. As is clear, in such
problems the heuristics are generally outperformed by
AC in run times, especially on the forced random
problems that lack structure. On geometric problems,

which display some structure, the heuristics fare better.
The best heuristics are by far H4 and H∧

12
which are

in fact competitive to AC. The disjunctive heuristics
which apply maxRPC more frequently are the worse. A
probable explanation is that the clusterness of propaga-
tion events is absent in these types of problems which
means that many of the revisions following a value
deletion or a DWO are quite often redundant. There-
fore targeting the application of maxRPC on such re-
visions may only increase cpu times without offering
much pruning. On the other hand, H4 does not target
clusters of activity to apply maxRPC but reacts to value
deletions wherever they occur. Hence, it is not signifi-
cantly handicapped by the absence of clusters.

Table 5 summarizes the above results concerning the
eight tested heuristics and their comparison with AC
and maxRPC. For each heuristic an entry of the form
x/y in the first column gives the numberx of instances
where the heuristic is faster than AC, and the number
y of instances where it is slower than AC. The second
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Table 4

Nodes (n) and cpu times (t) in seconds from random instances.

instance AC maxRPC H1 H2 H3 H4 H∨

12
H∨

124
H∨

134
H∧

12

frb35-17 n 26,729 9,372 19,032 9,460 13,005 20,585 9,520 9,732 9,321 19,032

t 10.4 28.9 13.1 21.2 21.1 11.1 20.2 20.8 27.6 12.9

frb40-19 n 45,296 16,608 33,381 19,001 29,427 35,457 19,037 17,503 17,070 33,381

t 20.1 60.6 25.2 46.7 60.2 21.9 46.9 40.1 60.0 24.8

frb45-21 n 1,207,920 538,317 925,945 561,800 690,290 1,032,873551,669 555,943 537,722 925,945

t 654.0 1957.6 779.5 1450.8 1707.8 741.7 1441.9 1476.0 1970.2 765.4

geo50-20-75-1n 195,270 67,914 138,774 82,092 113,247 161,792 102,452 79,129 69,094 138,774

t 135.4 429.2 135.4 283.9 261.2 135.9 227.8 262.9 390.2 132.6

geo50-20-75-2n 199,608 32,750 157,509 39,001 78,973 174,720 52,481 37,052 32,690 157,509

t 112.8 209.4 133.7 140.7 177.9 133.4 115.4 120.9 196.0 131.5

geo50-20-75-8n 119,180 32,443 83,498 46,300 66,816 98,383 48,285 45,646 40,755 83,498

t 73.4 164.2 71.7 133.6 141.9 73.4 86.2 122.4 185.2 70.8

Table 5

Summary of results for the eight tested heuristics.

AC maxRPC

×1 ×2 ×5 ×1 ×2 ×5

H1 23(1)/6(4) 9/0 1/0 21(6)/9 15(5)/5 4/0

H2 21/9(6) 11/4(4) 4/0 27(6)/3 10/0 1/0

H3 22/8(6) 12/3(3) 1/0 21(6)/9 9/2 4/0

H4 20/9(5) 6/0 1/0 23(6)/7 15(5)/6 1/1

H∨

12
23/7(6) 18/2(2) 3/0 27(6)/3 11/1 4/0

H∨

124
23/7(6) 18/3(3) 3/0 28(6)/2 12/1 2/0

H∨

134
21/9(6) 9/5(5) 2/0 24(4)/6(2) 9/2 1/1

H∧

12
24(2)/6(4) 9/0 1/0 21(6)/9 15(5)/6 4/0

and third columns give similar data for the number of
instances where the heuristic is two times faster (resp.
slower), and five times faster (resp. slower) than AC.
The following three columns give similar information
concerning the comparison between the heuristics and
maxRPC. A numberz in brackets, e.g.x/y(z), is the
number of random instances, i.e. forced random or ge-
ometric, out of they instances.

As is clear, all heuristics are on average better than
both AC and maxRPC but H∨

12
and H∨

124
are the ones

achieving the most robust performance. For example,
looking at the “twice as fast” columns it is clear that
they dominate AC and maxRPC while other heuristics
are not as dominant over both AC and maxRPC.

A final interesting observation is that sometimes the
heuristics result in fewer node visits than maxRPC or
in more than AC. This is explained by the interaction
between constraint propagation and the variable order-
ing heuristic. Different propagation methods can lead
to different weight increases for the constraints, which

in turn can guide dom/wdeg to different variable selec-
tions, and hence different parts of the search space.

5.2. Random Restarts

To investigate the impact of random restarts on the
performance of the heuristics we implemented the fol-
lowing restart policy within our solver. The initial
number of allowed backtracks for the first run has been
set to 10 and at each new run the number of allowed
backtracks increases by a factor of 1.5. Such policies,
where the backtrack bound increases geometrically af-
ter each restart, have been shown to be quite efficient
[30]. In general the use of restarts enables the solver to
tackle much harder problems that are beyond its reach
without restarts, but in some cases restarts slow down
the solver considerably.

Table 6 gives indicative experimental results com-
paring the disjunctive heuristic H∨

12
, which displayed

good overall performance, to AC and maxRPC. The
table displays results from RLFAPs, graph coloring,
quasigroups, and random problems. We include results
of some instances used in Section 5.1 as well as from
additional instances, some of which are not solvable in
reasonable time without restarts.

Results confirm that the adaptive heuristic displays
a better overall performance compared to AC and
maxRPC. H∨

12
is fastest on 12 instances (plus one tied

with AC), AC is fastest on 4 instances (plus one tied
with H∨

12
), and maxRPC is fastest on 5 instances. It is

interesting that maxRPC is the best method on all in-
stances of the “quasigroup with holes” problem, except
qwh20-166-8 where H∨

12
is better. AC performs poorly

on these instances but on the other hand it outperforms
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Table 6

Nodes (n) and cpu times (t) in seconds from RLFA, graph color-
ing problems (left columns) and quasigroup, random problems (right
columns). The best cpu time for each instance is highlighted with
bold. A time out limit of 2 hours was set.

instance AC maxRPC H∨

12
instance AC maxRPC H∨

12

scen11-f9 n 1,632 670 866 qcp15-120-13 1,007,089 150,480 151,743

t 5.0 15.5 5.0 1,001.9 345,1 184.1

scen11-f8 n 2,769 858 824 qcp20-187-0 1,406,618 122,718 120,008

t 9.6 22.6 5.4 3,664.8 566.5 332.6

scen11-f7 n 32,104 3,658 3,758 qcp20-187-1 189,942 357,657 272,574

t 86.2 78.1 13.9 429.8 1,667.7 732.4

scen11-f6 n 74,879 5,220 6,292 qwh20-166-3 227,422 15,480 63,229

t 194.2 148.4 22.3 571.1 38.0 176.5

scen11-f5 n 321,435 44,043 70,677 qwh20-166-4 34,507 6,535 11,308

t 821.4 920.0 233.1 75.8 11.4 19.7

scen11-f4 n 1,110,401 251,304 219,795 qwh20-166-5 776,067 13,650 56,072

t 2,714.7 4,739.7 708.1 1,882.7 30.9 137.2

games120-8n 228,529 93,940 93,908 qwh20-166-6 - 45,947 154,332

t 28.1 26.9 11.9 >2h. 182.5 442.8

anna-8 n 228,497 93,894 93,858 qwh20-166-7 88,429 9,026 10,945

t 112.6 294.5 31.2 205.4 19.5 20.8

homer-8 n 228,495 93,906 93,872 qwh20-166-8 70,945 27,281 12,565

t 509.0 996,4 110,4 158.7 84.0 21.9

myciel5-5 n 22,640,35822,640,35822,640,358 frb40-19 170,345 46,238 45,266

t 1,394.6 2,534.4 2,276.4 74.1 162.8 112.3

4-fullins-4-6 n 9,354 4,070 5,985 geo50-20-75-1 548,208 164,036 230,374

t 76.7 134.3 60.1 389.3 1,116.4 852.6

maxRPC on RLFA, graph coloring, and random prob-
lems. H∨

12
manages to combine the strengths of the two

methods as it can be significantly faster than both AC
and maxRPC on several instances while it rarely per-
forms considerably worse than any of them. Note that
the “quasigroup with holes” instances where maxRPC
can outperform H∨

12
by a large margin are all soluble.

Hence, two different algorithms may discover differ-
ent solutions. As we explain in the next section, an-
other reason for the dominance of maxRPC over H∨

12

on these problems may be related to the value of the
user-defined bounds forH1 andH2 (100 and 10 may
be too low).

5.3. Semi-automated Heuristics

In this section we study the effect that the user
defined bounds have on the performance of semi-
automated heuristics. Figure 6 displays search effort in
visited nodes and cpu time against the value ofl when
heuristics H1 (top plots) and H2 (bottom plots) are used

to solve four sample instances belonging to different
problem classes. Each instance was solved in a single
run of search, i.e. there were no restarts.

As the value ofl increases, the number of visited
nodes decreases in all four instances for bothH1 and
H2. This is to be expected as larger values ofl im-
ply the application of maxRPC in more constraint re-
visions. It is notable however that the number of nodes
more or less stabilizes after a certain value ofl, which
may vary from instance to instance. In the case ofH2

this value is low (around 10 for all four instances) sug-
gesting that allowing for a only a few redundant revi-
sions after a fruitful one is enough to maximize the effi-
ciency of adaptive propagation throughH2. In the case
of H1 the number of nodes seems to stabilize at around
l = 100 except for the quasigroup problem where it
continues to fall even forl > 1000.

Regarding cpu times, some interesting observations
can be made. As expected, for low values ofl cpu
times are closer to those of AC which means that they
are worse for structured problems but better for ran-
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Fig. 6. Node visits (left) and cpu times (right) for H1 (top) and H2 (bottom).

dom ones. It is interesting that on structured problems
heuristicH2 can notably improve on the performance
of AC even for values ofl as low as 1. This is the case
with the RLFAP and the graph coloring problem. After
a relatively small value ofl (again around 10) there is
no notable improvement in the performance ofH2. On
the contrary, asl increases beyond 10 the performance
is in some cases degraded (e.g. RLFAP).

Cpu times for heuristicH1 follow a similar pattern
to node visits in the case of the three structured in-
stances. That is, they tend to stabilize for the RLFAP
and the graph coloring problem at aroundl = 100 but
continue to fall asl increases for the quasigroup prob-
lem. Relating the performance ofH1 on the quasigroup
problem to the data of Table 1, we can derive a possi-
ble explanation for this. The standard deviation in the
clusters of propagation events in quasigroup problems
is quite high compared to RLFAPs and graph coloring
problems. This suggests that clusters are not as dense
which means that DWO-revisions are not as close to
one another. Hence, a higher value ofl is required
to achieve better performance. Finally, in the case of
the quasi-random geometric problem the cpu time in-
creases asl increases.

More experiments are required in the future to better
understand the effect that the values of thel parameters
have on the performance of semi-automated heuristics.
This is important as the semi-automated versions of
the proposed heuristics seem to be considerably bet-
ter than the fully-automated ones. Another possibility
that is worth exploring is the automatic adjustment ofl
during search considering that small values ofl imply
performance closer to the weak consistencyW while
higher values imply more regular use of the strong con-
sistencyS. Hence, it is probable that we would prefer
a high value forl in certain parts of the search space
(e.g. near the top of the search tree) while a low value
of l might be preferable in other parts.

6. Related Work

Building adaptive constraint solvers is a topic that
has attracted considerable interest in the literature (see
for example [5,21,14,17]). Part of this interest has been
directed to the dynamic adaptation of constraint prop-
agation during search. The most common manifesta-
tion of this idea is the use of different propagators
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for different types of domain reductions in arithmetic
constraints. When handling arithmetic constraints most
solvers differentiate between events such as remov-
ing a value from the middle of a domain, or from a
bound of a domain, or reducing a domain to a single-
ton, and apply suitable propagators accordingly. Works
on adaptive propagation for general constraints include
the following.

El Sakkout et al. proposed a scheme calledadap-
tive arc propagationfor dynamically deciding whether
to process individual constraints using AC or forward
checking [13].Anti-functional reductionis an instan-
tiation of this scheme that achieves the same level of
consistency as AC but avoids some redundant over-
heads. Freuder and Wallace proposed a technique,
calledselective relaxationwhich can be used to restrict
AC propagation based on two local criteria; the dis-
tance in the constraint graph of any variable from the
currently instantiated one, and the proportion of values
deleted [15]. Chmeiss and Sais presented a backtrack
search algorithm, MAC (distk), that also uses a dis-
tance parameterk as a bound to maintain a partial form
of AC [9].

Schulte and Stuckey proposed techniques for dy-
namically selecting which propagator to apply to a
given constraint using priorities and staged propagators
[24,25]. Their proposed methods either select a single
propagator from a given set or propagators or choose
the order in which the propagator stages will be applied
[25]. These methods are based on interpreting the event
that triggers propagation for a constraint at any point in
time, such as the reduction of a domain to a singleton
or the removal of a value from a bound of a domain.
On the other hand, our approach is based on monitor-
ing the history of constraint propagation starting from
preprocessing and continuing throughout search. Sim-
ilar ideas to the ones of [25] are also implemented in
constraint solvers such as Choco [18].

Probabilistic arc consistencyis a scheme that can
help avoid some consistency checks and constraint re-
visions that are unlikely to cause any domain pruning
[20]. As in [13], the scheme is based on information
gathered by examining the supports of values in con-
straints which can be very expensive for non-binary
constraints.

Szymanek and Lecoutre studied ways to select val-
ues on which to apply “shaving” (i.e. make the values
SAC) using the semantics of global constraints (e.g.
alldifferent) to suggest values that are most likely to be
removed by shaving [27].

Our work is more closely related to the work of [13]
as the aim is to dynamically adapt the level of local

consistency achieved on individual constraints during
search. However, neither [13] or any of other works
mentioned use information about failures captured in
the form of DWOs to achieve this. Besides, to the best
of our knowledge, although many levels of consistency
stronger than AC have been proposed, they have not
been studied in this context before (i.e evoking them
dynamically).

7. Conclusions and Future Work

We have proposed a number of simple lightweight
heuristics for dynamically switching between differ-
ent constraint propagation methods applied on individ-
ual constraints during search. These heuristics moni-
tor propagation events like DWOs and value deletions
caused by the constraints and react by changing the
propagation method when certain conditions are met.
The inspiration behind the development of the heuris-
tics was based on observing the activity of the con-
straints when using a conflict-driven search heuristic.
As we demonstrated, DWOs and value deletions in
structured problems mostly occur in clusters of consec-
utive of nearby revisions. This can be taken advantage
of to increase or decrease the level of consistency ap-
plied when a constraint is highly active or inactive re-
spectively. Experimental results from various domains
displayed the usefulness of the proposed heuristics.

The work presented here is only a first step towards
designing adaptive constraint propagation heuristics
that can efficiently switch between different levels of
local consistency using information gathered during
search. There are several directions for future work.
For example, we can investigate different local con-
sistencies for binary and non-binary problems, try
to devise more sophisticated heuristics, and integrate
with existing related works (e.g. [20]). Also, it would
be interesting to study the interaction of adaptive
propagation with other adaptive branching heuristics
apart from dom/wdeg. For example, the impact-based
heuristics of [22] and the explanation-based heuristics
of [8].
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